首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lutz MS  Ellis SR  Martin NC 《Genetics》2000,154(3):1013-1023
The Saccharomyces cerevisiae nuclear gene RPM2 encodes a component of the mitochondrial tRNA-processing enzyme RNase P. Cells grown on fermentable carbon sources do not require mitochondrial tRNA processing activity, but still require RPM2, indicating an additional function for the Rpm2 protein. RPM2-null cells arrest after 25 generations on fermentable media. Spontaneous mutations that suppress arrest occur with a frequency of approximately 9 x 10(-6). The resultant mutants do not grow on nonfermentable carbon sources. We identified two loci responsible for this suppression, which encode proteins that influence proteasome function or assembly. PRE4 is an essential gene encoding the beta-7 subunit of the 20S proteasome core. A Val-to-Phe substitution within a highly conserved region of Pre4p that disrupts proteasome function suppresses the growth arrest of RPM2-null cells on fermentable media. The other locus, UMP1, encodes a chaperone involved in 20S proteasome assembly. A nonsense mutation in UMP1 also disrupts proteasome function and suppresses Deltarpm2 growth arrest. In an RPM2 wild-type background, pre4-2 and ump1-2 strains fail to grow at restrictive temperatures on nonfermentable carbon sources. These data link proteasome activity with Rpm2p and mitochondrial function.  相似文献   

2.
3.
Stribinskis V  Gao GJ  Ellis SR  Martin NC 《Genetics》2001,158(2):573-585
RPM2 is a Saccharomyces cerevisiae nuclear gene that encodes the protein subunit of mitochondrial RNase P and has an unknown function essential for fermentative growth. Cells lacking mitochondrial RNase P cannot respire and accumulate lesions in their mitochondrial DNA. The effects of a new RPM2 allele, rpm2-100, reveal a novel function of RPM2 in mitochondrial biogenesis. Cells with rpm2-100 as their only source of Rpm2p have correctly processed mitochondrial tRNAs but are still respiratory deficient. Mitochondrial mRNA and rRNA levels are reduced in rpm2-100 cells compared to wild type. The general reduction in mRNA is not reflected in a similar reduction in mitochondrial protein synthesis. Incorporation of labeled precursors into mitochondrially encoded Atp6, Atp8, Atp9, and Cytb protein was enhanced in the mutant relative to wild type, while incorporation into Cox1p, Cox2p, Cox3p, and Var1p was reduced. Pulse-chase analysis of mitochondrial translation revealed decreased rates of translation of COX1, COX2, and COX3 mRNAs. This decrease leads to low steady-state levels of Cox1p, Cox2p, and Cox3p, loss of visible spectra of aa(3) cytochromes, and low cytochrome c oxidase activity in mutant mitochondria. Thus, RPM2 has a previously unrecognized role in mitochondrial biogenesis, in addition to its role as a subunit of mitochondrial RNase P. Moreover, there is a synthetic lethal interaction between the disruption of this novel respiratory function and the loss of wild-type mtDNA. This synthetic interaction explains why a complete deletion of RPM2 is lethal.  相似文献   

4.
5.
Mitochondrial RNase P RNA (Rpm1r) is coded by the RPM1 gene of mitochondrial DNA in many yeasts. As an initial step to developing a genetic approach to the structure and biogenesis of yeast mitochondrial RNase P, biolistic transformation has been used to introduce wild type and altered RPM1 genes into strains containing no mitochondrial DNA. The introduced wild type gene does support RNase P activity demonstrating that pre-existing RNase P activity is not necessary for the biosynthesis of the enzyme. Mutations introduced into RPM1 in vitro result in reduced accumulation of mature tRNA and in an alteration of the processing of Rpm1r in vivo.  相似文献   

6.
7.
Distinct metabolic pathways can intersect in ways that allow hierarchical or reciprocal regulation. In a screen of respiration-deficient Saccharomyces cerevisiae gene deletion strains for defects in mitochondrial RNA processing, we found that lack of any enzyme in the mitochondrial fatty acid type II biosynthetic pathway (FAS II) led to inefficient 5′ processing of mitochondrial precursor tRNAs by RNase P. In particular, the precursor containing both RNase P RNA (RPM1) and tRNAPro accumulated dramatically. Subsequent Pet127-driven 5′ processing of RPM1 was blocked. The FAS II pathway defects resulted in the loss of lipoic acid attachment to subunits of three key mitochondrial enzymes, which suggests that the octanoic acid produced by the pathway is the sole precursor for lipoic acid synthesis and attachment. The protein component of yeast mitochondrial RNase P, Rpm2, is not modified by lipoic acid in the wild-type strain, and it is imported in FAS II mutant strains. Thus, a product of the FAS II pathway is required for RNase P RNA maturation, which positively affects RNase P activity. In addition, a product is required for lipoic acid production, which is needed for the activity of pyruvate dehydrogenase, which feeds acetyl-coenzyme A into the FAS II pathway. These two positive feedback cycles may provide switch-like control of mitochondrial gene expression in response to the metabolic state of the cell.  相似文献   

8.
To search genetically for additional components of the protein translocation apparatus of mitochondria, we have used low fidelity PCR mutagenesis to generate temperature-sensitive mutants in the outer membrane translocation pore component ISP42. A high copy number suppressor of temperature-sensitive isp42 has been isolated and sequenced. This novel gene, denoted ISP6, encodes a 61 amino acid integral membrane protein of the mitochondrial outer membrane, which is oriented with its amino-terminus facing the cytosol. Disruption of the ISP6 gene is without apparent effect in wild type yeast cells, but is lethal in temperature-sensitive isp42 mutants. Immunoprecipitation of the gene product, ISP42p, from mitochondria solubilized under mild conditions reveals a multi-protein complex containing ISP6p and ISP42p.  相似文献   

9.
MAS6 encodes an essential inner membrane protein required for mitochondrial protein import in the yeast Saccharomyces cerevisiae (Emtage and Jensen, 1993). To identify new inner membrane import components, we isolated a high-copy suppressor (SMS1) of the mas6-1 mutant. SMS1 encodes a 16.5-kDa protein that contains several potential membrane-spanning domains. The Sms1 protein is homologous to the carboxyl-terminal domain of the Mas6 protein. Like Mas6p, Sms1p is located in the mitochondrial inner membrane and is an essential protein. Depletion of Sms1p from cells causes defects in the import of several mitochondrial precursor proteins, suggesting that Sms1p is a new inner membrane import component. Our observations raise the possibility that Sms1p and Mas6p act together to translocate proteins across the inner membrane.  相似文献   

10.
11.
Initial steps in the synthesis of functional tRNAs require 5'- and 3'-processing of precursor tRNAs (pre-tRNAs), which in yeast mitochondria are achieved by two endonucleases, RNase P and RNase Z. In this study, using a combination of detergent-free Blue Native Gel Electrophoresis, proteomics and in vitro testing of pre-tRNA maturation, we reveal the physical association of these plus other mitochondrial activities in a large, stable complex of 136 proteins. It contains a total of seven proteins involved in RNA processing including RNase P and RNase Z, five out of six subunits of the mitochondrial RNA degradosome, components of the fatty acid synthesis pathway, translation, metabolism and protein folding. At the RNA level, there are the small and large rRNA subunits and RNase P RNA. Surprisingly, this complex is absent in an oar1Δ deletion mutant of the type II fatty acid synthesis pathway, supporting a recently published functional link between pre-tRNA processing and the FAS II pathway--apparently by integration into a large complex as we demonstrate here. Finally, the question of mt-RNase P localization within mitochondria was investigated, by GFP-tracing of a known protein subunit (Rpm2p). We find that about equal fractions of RNase P are soluble versus membrane-attached.  相似文献   

12.
The processing enhancing protein of mitochondria (PEP) is an essential component that has been shown to participate in proteolytic removal of NH2-terminal signal peptides from precursor proteins imported into the mitochondrial matrix. Using a yeast strain bearing a PEP mutation that renders it temperature-sensitive, an approach of genetic suppression was taken in order to identify additional components that could be involved with protein import: high copy plasmids comprising a yeast genomic library were tested for ability to suppress the 37 degrees C growth defect. Two plasmids were isolated, pSMF1 and pSMF2, which suppressed the growth defect nearly as well as the cloned PEP gene itself. Sequence analysis of the rescuing genes predicted extremely hydrophobic proteins with sizes of 63 and 60 kDa, respectively. Remarkably, the predicted SMF1 and SMF2 products are 49% identical to each other overall. To test the requirement for SMF1 and SMF2, the chromosomal genes were disrupted. Individual disruption was without effect, but cells in which both genes were disrupted grew poorly. When mitochondria were prepared from the double disruption strain grown in a nonfermentable carbon source, they were morphologically normal but defective for translocation of radiolabeled precursor proteins. SMF1 protein was provisionally localized to the mitochondrial membranes using epitope tagging. We suggest that SMF1 and SMF2 are mitochondrial membrane proteins that influence PEP-dependent protein import, possibly at the step of protein translocation.  相似文献   

13.
C Witte  R E Jensen  M P Yaffe    G Schatz 《The EMBO journal》1988,7(5):1439-1447
We have previously described a yeast mutant (mas1) that accumulates mitochondrial precursor proteins at high temperature and is deficient in the activity of a matrix-localized protease which cleaves presequences from mitochondrial precursor proteins. We have now cloned and sequenced the wild-type MAS1 gene and found that it encodes a subunit of the mitochondrial processing protease, that it is essential for cell viability and that the protein product participates in its own cleavage during import into mitochondria. The MAS1 protein is thus the first genetically defined component of the mitochondrial protein import pathway.  相似文献   

14.
We previously showed that the conductance of a mitochondrial inner membrane channel, called MCC, was specifically blocked by peptides corresponding to mitochondrial import signals. To determine if MCC plays a role in protein import, we examined the relationship between MCC and Tim23p, a component of the protein import complex of the mitochondrial inner membrane. We find that antibodies against Tim23p, previously shown to inhibit mitochondrial protein import, inhibit MCC activity. We also find that MCC activity is altered in mitochondria isolated from yeast carrying the tim23-1 mutation. In contrast to wild-type MCC, we find that the conductance of MCC from the tim23-1 mutant is not significantly blocked by mitochondrial presequence peptides. Tim23 antibodies and the tim23-1 mutation do not, however, alter the activity of PSC, a presequence-peptide sensitive channel in the mitochondrial outer membrane. Our results show that Tim23p is required for normal MCC activity and raise the possibility that precursors are translocated across the inner membrane through the pore of MCC.  相似文献   

15.
The mmd1 mutation causes temperature-sensitive growth and defects in mitochondrial morphology and distribution in the fission yeast Schizosaccharomyces pombe. In mutant cells, mitochondria aggregate at the two cell ends, with increased aggregation at elevated temperatures. Microtubules, which mediate mitochondrial positioning in fission yeast, seem normal in mmd1 cells at permissive temperature and after several hours at the nonpermissive temperature but display aberrant organization after prolonged periods at 37 degrees C. Additionally, cells harboring both mmd1 and ban5-4, a temperature-sensitive allele of alpha2-tubulin, display synthetic defects in growth and mitochondrial distribution. The mmd1 mutation maps to an open reading frame encoding a novel 35.7-kDa protein. The Mmd1p sequence features repeating EZ-HEAT motifs and displays high conservation with uncharacterized homologues found in a variety of organisms. Saccharomyces cerevisiae cells depleted for their MMD1 homologue show increased sensitivity to the antimicrotubule drug benomyl, and the S. cerevisiae gene complemented the S. pombe mutation. Mmd1p was localized to the cytosol. Mmd1p is the first identified component required for the alignment of mitochondria along microtubules in fission yeast.  相似文献   

16.
A C Maarse  J Blom  L A Grivell    M Meijer 《The EMBO journal》1992,11(10):3619-3628
To identify components of the mitochondrial protein import pathway in yeast, we have adopted a positive selection procedure for isolating mutants disturbed in protein import. We have cloned and sequenced a gene, termed MPI1, that can rescue the genetic defect of one group of these mutants. MPI1 encodes a hydrophilic 48.8 kDa protein that is essential for cell viability. Mpi1p is a low abundance and constitutively expressed mitochondrial protein. Mpi1p is synthesized with a characteristic mitochondrial targeting sequence at its amino-terminus, which is most probably proteolytically removed during import. It is a membrane protein, oriented with its carboxy-terminus facing the intermembrane space. In cells depleted of Mpi1p activity, import of the precursor proteins that we tested thus far, is arrested. We speculate that the Mpi1 protein is a component of a proteinaceous import channel for translocation of precursor proteins across the mitochondrial inner membrane.  相似文献   

17.
18.
A requisite step in the biosynthesis of tRNA is the removal of 5' leader sequences from tRNA precursors. We have detected an RNase P activity in yeast mitochondrial extracts that can carry out this reaction on a homologous precursor tRNA. This mitochondrial RNase P was sensitive to both micrococcal nuclease and protease, demonstrating that it requires both a nucleic acid and protein for activity. The presence of RNase P activity in vitro directly correlated with the presence of a locus on yeast mitochondrial DNA previously shown by genetic and biochemical studies to be required for tRNA maturation. The product of the locus, the 9S RNA, and this newly described mitochondrial RNase P activity cofractionated, providing further evidence that the 9S RNA is the RNA component of yeast mitochondrial RNase P.  相似文献   

19.
A gene family of at least five members encodes the tobacco mitochondrial Rieske Fe-S protein (RISP). To determine whether all five RISPs are translocated to mitochondria, fusion proteins containing the putative presequences of tobacco RISPs and Escherichia coli -glucuronidase (GUS) were expressed in transgenic tobacco, and the resultant GUS proteins were localized by cell fractionation. The aminoterminal 75 and 71 residues of RISP2 and RISP3, respectively, directed GUS import into mitochondria, where fusion protein processing occurred. The amino-terminal sequence of RISP4, which contains an atypical mitochondrial presequence, can translocate the GUS protein specifically into tobacco mitochondria with apparently low efficiency.Consistent with the proposal of a conserved mechanism for protein import in plants and fungi, the tobacco RISP3 and RISP4 presequences can direct import and processing of a GUS fusion protein in yeast mitochondria. Plant presequences, however, direct mitochondrial import in yeast less efficiently than the yeast presequence, indicating subtle differences between the plant and yeast mitochondrial import machineries. Our studies show that import of RISP4 may not require positively charged amino acid residues and an amphipathic secondary structure; however, these structural properties may improve the efficiency of mitochondrial import.  相似文献   

20.
RNase MRP is a ribonucleoprotein endoribonuclease that has been shown to have roles in both mitochondrial DNA replication and nuclear 5.8S rRNA processing. SNM1 encodes an essential 22.5-kDa protein that is a component of yeast RNase MRP. It is an RNA binding protein that binds the MRP RNA specifically. This 198-amino-acid protein can be divided into three structural regions: a potential leucine zipper near the amino terminus, a binuclear zinc cluster in the middle region, and a serine- and lysine-rich region near the carboxy terminus. We have performed PCR mutagenesis of the SNM1 gene to produce 17 mutants that have a conditional phenotype for growth at different temperatures. Yeast strains carrying any of these mutations as the only copy of snm1 display an rRNA processing defect identical to that in MRP RNA mutants. We have characterized these mutant proteins for RNase MRP function by examining 5.8S rRNA processing, MRP RNA binding in vivo, and the stability of the RNase MRP RNA. The results indicate two separate functional domains of the protein, one responsible for binding the MRP RNA and a second that promotes substrate cleavage. The Snm1 protein appears not to be required for the stability of the MRP RNA, but very low levels of the protein are required for processing of the 5.8S rRNA. Surprisingly, a large number of conditional mutations that resulted from nonsense and frameshift mutations throughout the coding regions were identified. The most severe of these was a frameshift at amino acid 7. These mutations were found to be undergoing translational suppression, resulting in a small amount of full-length Snm1 protein. This small amount of Snm1 protein was sufficient to maintain enough RNase MRP activity to support viability. Translational suppression was accomplished in two ways. First, CEN plasmid missegregation leads to plasmid amplification, which in turn leads to SNM1 mRNA overexpression. Translational suppression of a small amount of the superabundant SNM1 mRNA results in sufficient Snm1 protein to support viability. CEN plasmid missegregation is believed to be the result of a prolonged telophase arrest that has been recently identified in RNase MRP mutants. Either the SNM1 gene is inherently susceptible to translational suppression or extremely small amounts of Snm1 protein are sufficient to maintain essential levels of MRP activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号