首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT In apparent response to recent periods of global warming, some migratory birds now arrive earlier at stopover sites and breeding grounds. However, the effects of this warming on arrival times vary among locations and species. Migration timing is generally correlated with temperature, with earlier arrival during warm years than during cold years, so local variation in climate change might produce different effects on migration phenology in different geographic regions. We examined trends in first spring arrival dates (FADs) for 44 species of common migrant birds in South Dakota (1971–2006) and Minnesota (1964–2005) using observations compiled by South Dakota and Minnesota Ornithologists’ Unions. We found significant trends in FAD over time for 20 species (18 arriving earlier and two later) in South Dakota and 16 species (all earlier) in Minnesota. Of these species, 10 showed similar significant trends for both states. All 10 of these species exhibited significantly earlier arrival, and all were early spring migrants, with median FADs before 10 April in both states. Eighteen of the 44 species showed significant negative correlations of FADs with either winter (December–February) or spring (arrival month plus previous month) temperatures in one or both states. Interestingly, spring temperatures in both South Dakota and Minnesota did not warm significantly from 1971–2006, but winter temperatures in both states warmed significantly over the same time period. This suggests that the warmer winters disproportionately affected early spring migrants, especially those associated with aquatic habitats (seven of the 10 species showing significantly earlier spring arrival in both states). The stronger response to climate change by early spring migrants in our study is consistent with the results of several other studies, and suggests that migrants, especially early migrants, are capable of responding to local temperature conditions experienced on wintering grounds or along the migration route.  相似文献   

2.
IDO IZHAKI  ASAF MAITAV 《Ibis》1998,140(2):234-243
Spring and autumn Palaearctic-African migration patterns of Blackcaps Sylvia atricapilla during stopover at Elat, Israel, showed that males appeared significantly earlier than females during spring but not during autumn migration, suggesting that in males there is a stronger drive to reaching breeding territories early. The difference in mean appearance dates between sexes in spring tended to be greatest in years when the males appeared earliest. Longer spread of passage (the dates between which the central 50% of individuals were captured) for each sex in spring was found in years with an early mean passage datebut was significant only for females. These observations suggest that the timing of Blackcap migration is governed not only by endogenous factors but also by exogenous factors, and when the environmental conditions are unfavourable, the differences in passage dates between sexes decrease and the passage lengths shorten. The early individuals (both males and females) that stopped over at Elat in spring were those with relatively small body size (as indicated by relatively short wings) and relatively large fat reserves and in good body condition (as indicated from fat score and body mass/wing-length ratio). No differences in body size between early and late transients were detected during the autumn migration, but late birds of both sexes carried larger fat reserves. These phenomena may be explained either by leap-frog migration or by differential fitness among wintering males and females or both, with only the fittest Blackcaps being capable of an early departure. These individuals probably face much less intensive intra- and interspecific competition with residents and other transients in stopover sites than do later transients.  相似文献   

3.
As a response to increasing spring temperature in temperate regions in recent years, populations of many plant and animal species, including migratory birds, have advanced the seasonal start of their reproduction or growth. However, the effects of climate changes on subsequent events of the annual cycle remain poorly understood. We investigated long-term changes in the timing of autumn migration in birds, a key event in the annual cycle limiting the reproductive period. Using data spanning a 42-year period, we analysed long-term changes in the passage of 65 species of migratory birds through Western Europe. The autumn passage of migrants wintering south of the Sahara has advanced in recent years, presumably as a result of selection pressure to cross the Sahel before its seasonal dry period. In contrast, migrants wintering north of the Sahara have delayed autumn passage. In addition, species with a variable rather than a fixed number of broods per year have delayed passage, possibly because they are free to attempt more broods. Recent climate changes seem to have a simple unidirectional effect on the seasonal onset of reproduction, but complex and opposing effects on the timing of subsequent events in the annual cycle, depending on the ecology and life history of a species. This complicates predictions of overall effects of global warming on avian communities.  相似文献   

4.
Long-term monitoring of the dates of arrival, breeding, and autumn migration in 25 passerine bird species on the Kurshskaya (Courland) Spit, the Baltic Sea, has shown that spring migration and nesting in most species wintering in Europe or Africa have shifted to earlier dates in the past two decades, whereas the dates of autumn migration in most species studied have not changed significantly. In 16 bird species, a significant negative correlation of the timing of arrival and breeding with the average spring air temperature and the North Atlantic Oscillation index (NAO) in February and March was revealed. In years with early and warm springs, birds arrived at the spit and nested considerably earlier than in years with cold springs. The dates of autumn migration in most species studied largely depended on the timing of nesting but not on weather conditions in autumn. The data obtained indicate that the main factor responsible for long-term changes in the timing of arrival, nesting, and autumn migrations of passerine birds in the Baltic Region is climate fluctuations that led to considerable changes in thermal conditions in the Northern Hemisphere in the 20th century. The hypothesis is proposed that recent climate warming has caused changes in the timing of not only the arrival of birds in Europe but also of their spring migrations from Africa. Further changes in the dates of passerine bird arrival and breeding in the Palearctic in subsequent years will largely depend on the dynamics of winter and spring air temperatures in the Northern Hemisphere, whereas the timing of autumn migrations will be determined mainly by the dates of their arrival and nesting.  相似文献   

5.
1.?Climate change has been associated with shifts in the timing of biological events, including the spring arrival of migratory birds. Early arrival at breeding sites is an important life-history trait, usually associated with higher breeding success and therefore, susceptible to selection and evolution in response to changing climatic conditions. 2.?Here, we examine the effect of changes in the environmental conditions of wintering and passage areas on the mean passage time of 13 trans-Saharan passerines during their spring migration through the western Mediterranean over the 15 years from 1993 to 2007. 3.?We found that most of the species studied have been advancing the timing of their passage in recent years. However, annual variation in the mean date of passage was positively correlated with vegetation growth (measured as the normalized difference vegetation index [NDVI]) both in the Sahel (the region of departure) and in northern Africa (the passage area). Thus, migration dates were delayed in years with high primary productivity in passage and wintering zones. All species seem to respond similarly to NDVI in the Sahel; however, late migrants were less affected by ecological conditions in northern Africa than those migrating earlier, suggesting differences based on species ecology. 4.?Mean timing of passage was not related to the North Atlantic Oscillation (NAO), El Ni?o-Southern Oscillation (ENSO), temperature or NDVI in the species-specific wintering areas (the overwintering region) when analysed in combination with the other covariates. 5.?Our findings show that ecological conditions in the winter quarters (specifically the Sahel) and en route are relevant factors influencing trends in the passage dates of trans-Saharan migratory birds on the southern fringe of Europe. Possible long-term consequences for late arriving spring migrants are discussed.  相似文献   

6.
This paper analyses the dependence of the first spring arrival dates of short/medium- and long-distance migrant bird species on climate warming in eastern Europe. The timing of arrival of the selected species at the observation site correlates with the North Atlantic Oscillation (NAO) index, air temperature, atmospheric pressure, precipitation and wind characteristics. A positive correlation of fluctuations in winter and spring air temperatures with variations in the NAO index has been established in eastern Europe. Positive winter NAO index values are related to earlier spring arrival of birds in the eastern Baltic region and vice versa—arrival is late when the NAO index is negative. The impact of climate warming on the bird’s life cycle depends on local or regional climate characteristics. We tested the hypothesis that differences in climate indices between North Africa and Europe can influence the timing of spring arrival. Our results support the hypothesis that differences in first spring arrival dates between European populations occur after individuals cross the Sahara. We assume that the endogenous programme of migration control in short/medium-distance migrants synchronises with the changing environment on their wintering grounds and along their migration routes, whereas in long-distance migrants it is rather with environmental changes in the second part of their migratory route in Europe. Our results strongly indicate that the mechanism of dynamic balance in the interaction between the endogenous regulatory programme and environmental factors determines the pattern of spring arrival, as well as migration timing.  相似文献   

7.
The life cycles of plants and animals are changing around the world in line with the predictions originated from hypotheses concerning the impact of global warming and climate change on biological systems. Commonly, the search for ecological mechanisms behind the observed changes in bird phenology has focused on the analysis of climatic patterns from the species breeding grounds. However, the ecology of bird migration suggests that the spring arrival of long‐distance migrants (such as trans‐Saharan birds) is more likely to be influenced by climate conditions in wintering areas given their direct impact on the onset of migration and its progression. We tested this hypothesis by analysing the first arrival dates (FADs) of six trans‐Saharan migrants (cuckoo Cuculus canorus, swift Apus apus, hoopoe Upupa epops, swallow Hirundo rustica, house martin Delichon urbica and nightingale Luscinia megarhynchos), in a western Mediterranean area since from 1952 to 2003. By means of multiple regression analyses, FADs were analysed in relation to the monthly temperature and precipitation patterns of five African climatic regions south of the Sahara where species are thought to overwinter and from the European site from where FADs were collected. We obtained significant models for five species explaining 9–41% of the variation in FADs. The interpretation of the models suggests that: (1) The climate in wintering quarters, especially the precipitation, has a stronger influence on FADs than that in the species' potential European breeding grounds. (2) The accumulative effects of climate patterns prior to migration onset may be of considerable importance since those climate variables that served to summarize climate patterns 12 months prior to the onset of migration were selected by final models. (3) Temperature and precipitation in African regions are likely to affect departure decision in the species studied through their indirect effects on food availability and the build‐up of reserves for migration. Our results concerning the factors that affect the arrival times of trans‐Saharan migrants indicate that the effects of climate change are more complex than previously suggested, and that these effects might have an interacting impact on species ecology, for example by reversing ecological pressures during species' life cycles.  相似文献   

8.
Examination of the plumage of Palaearctic warblers as migrants or wintering birds at Kampala, Uganda, provided useful material for a consideration of moult in relation to the timing of spring and autumn migration. Reasons are suggested for observed interspecific differences in the moult pattern, and for the variation reported from different wintering areas in the African continent.  相似文献   

9.
We describe the detoured migration route of the Oriental honey-buzzard Pernis ptilorhyncus , showing differences between autumn and spring migration, using data from 10 adult individuals marked with satellite transmitters. In autumn, the migration routes were very similar from Japan to the south end of the Malay Peninsula. The wintering sites were distributed within the Philippines, Borneo and the Malay Archipelago. During autumn, migration of the birds had few long-term stopover sites, instead, sometimes decidedly slowing their migration rate while proceeding in a consistent direction. During spring migration, the honey-buzzards penetrated into southern China, moving north to the base of the Korean Peninsula. The birds then went south through the Korean Peninsula to reach Japan. Before travelling to China, all spring migrants stopped for several weeks in south-east Asia. The slow rate of travel in the autumn suggests that migrants were foraging and replenishing their energy reserves. Instead of a migration strategy that uses only a few long-term stopover sites, honey-buzzards may adopt a strategy based on a number of short-term stay sites.  相似文献   

10.
Current climate change has been found to advance spring arrival and breeding dates of birds, but the effects on autumn migration and possible responses in the distribution of wintering individuals are poorly known. To thoroughly understand the consequences of climate change for animal life histories and populations, exploration of whole annual cycles are needed. We studied timing of migration (years 1979–2007), breeding phenology (1979–2007) and breeding success (1973–2007) of Eurasian sparrowhawks Accipiter nisus in Finland. We also investigated whether the migration distance of Finnish sparrowhawks has changed since the 1960s, using ringing recovery records. Since the late 1970s Finnish sparrowhawks have advanced their spring arrival, breeding and autumn departure considerably, but the migration distance has not changed. Early migrants, who are the ones with the highest reproductive success, show the strongest advance in the timing of spring migration. In autumn, advanced departure concerns young sparrowhawks. Late autumn migrants, who are mainly adults, have not advanced their migration significantly. The sparrowhawk is the most common bird of prey and the main predator of most passerines in Finland. Therefore, changes in sparrowhawk migration phenology may affect the migration behaviour of many prey species. The breeding success of sparrowhawks has increased significantly over the study period. This is however more likely caused by other factors than climate change, such as reduced exposure to organochlorine pollutants.  相似文献   

11.
Christopher J. Butler 《Ibis》2003,145(3):484-495
Recent studies have shown that, in response to global climate change, diverse avian taxa are now nesting measurably earlier (< 10 days) in both the United States and Britain. Similarly, several studies on European birds have now demonstrated that a variety of species (although not all) are arriving increasingly early. However, surprisingly, widespread changes in North American migrant phenology have not been demonstrated. It is hypothesized that short-distance migrants (birds that winter in the southern United States) may be quicker to adapt to climate change than long-distance migrants (birds that winter south of the United States), as short-distance migrants can respond to meteorological cues indicating weather conditions to the north whereas long-distance migrants must rely on photoperiod. This study examined the first arrival dates of 103 migrant birds in New York and Massachusetts and found that, on average, all migrants arrived significantly earlier during the period 1951–1993 than the period 1903–1950. From 1951–1993 birds wintering in the southern United States arrived on average 13 days earlier while birds wintering in South America arrived 4 days earlier. Although a change in observer effort cannot be quantified and may be a source of bias, a comparison of the numbers of reporting observers during the 1930s and the 1980s revealed no significant difference. These results are consistent with those expected under a scenario of global warming.  相似文献   

12.
According to migration theory and several empirical studies, long‐distance migrants are more time‐limited during spring migration and should therefore migrate faster in spring than in autumn. Competition for the best breeding sites is supposed to be the main driver, but timing of migration is often also influenced by environmental factors such as food availability and wind conditions. Using GPS tags, we tracked 65 greater white‐fronted geese Anser albifrons migrating between western Europe and the Russian Arctic during spring and autumn migration over six different years. Contrary to theory, our birds took considerably longer for spring migration (83 days) than autumn migration (42 days). This difference in duration was mainly determined by time spent at stopovers. Timing and space use during migration suggest that the birds were using different strategies in the two seasons: In spring they spread out in a wide front to acquire extra energy stores in many successive stopover sites (to fuel capital breeding), which is in accordance with previous results that white‐fronted geese follow the green wave of spring growth. In autumn they filled up their stores close to the breeding grounds and waited for supportive wind conditions to quickly move to their wintering grounds. Selection for supportive winds was stronger in autumn, when general wind conditions were less favourable than in spring, leading to similar flight speeds in the two seasons. In combination with less stopover time in autumn this led to faster autumn than spring migration. White‐fronted geese thus differ from theory that spring migration is faster than autumn migration. We expect our findings of different decision rules between the two migratory seasons to apply more generally, in particular in large birds in which capital breeding is common, and in birds that meet other environmental conditions along their migration route in autumn than in spring.  相似文献   

13.
Migratory birds are often faithful to wintering (nonbreeding) sites, and also migration timing is usually remarkably consistent, that is, highly repeatable. Spatiotemporal repeatability can be of advantage for multiple reasons, including familiarity with local resources and predators as well as avoiding the costs of finding a new place, for example, nesting grounds. However, when the environment is variable in space and time, variable site selection and timing might be more rewarding. To date, studies on spatial and temporal repeatability in short‐lived long‐distance migrants are scarce, most notably of first‐time and subsequent migrations. Here, we investigated repeatability in autumn migration directions, wintering sites, and annual migration timing in Hoopoes (Upupa epops), a long‐distance migrant, using repeated tracks of adult and first‐time migrants. Even though autumn migration directions were mostly the same, individual wintering sites often changed from year to year with distances between wintering sites exceeding 1,000 km. The timing of migration was repeatable within an individual during autumn, but not during spring migration. We suggest that Hoopoes respond to variable environmental conditions such as north–south shifts in rainfall during winter and differing onset of the food availability during spring migration.  相似文献   

14.
Evidences for phenological changes in response to climate change are now numerous. One of the most documented changes has been the advance of spring arrival dates in migratory birds. However, the effects of climate change on subsequent events of the annual cycle remain poorly studied and understood. Moreover, the rare studies on autumn migration have mainly concerned passerines. Here, we investigated whether raptor species have changed their autumn migratory phenology during the past 30 years at one of the most important convergent points of western European migration routes in France, the Organbidexka pass, in the Western Pyrenees. Eight out of the 14 studied raptor species showed significant phenological shifts during 1981–2008. Long-distance migrants displayed stronger phenological responses than short-distance migrants, and advanced their mean passage dates significantly. As only some short-distance migrants were found to delay their autumn migration and as their trends in breeding and migrating numbers were not significantly negative, we were not able to show any possible settling process of raptor populations. Negative trends in numbers of migrating raptors were found to be related to weaker phenological responses. Further studies using data from other migration sites are necessary to investigate eventual changes in migration routes and possible settling process.  相似文献   

15.
Long‐distance migrants may respond to climate change in breeding, wintering or staging area by changing their phenology. The geographical variation in such responses (e.g. coastal vs. continental Europe) and the relative importance of climate at different spatial scales remain unclear. Here we analysed variation in first arrival dates (FADs) and laying dates of the Collared Flycatcher Ficedula albicollis in a central European population, from 1973 to 2002. The North Atlantic Oscillation (NAO) index correlated weakly with local temperature during the laying period. Decreasing spring temperatures until 1980 were associated with a trend towards later laying. The rate of warming (0.2 °C per year) and laying advancement (0.4 days per year) since 1980 are amongst the highest values reported elsewhere. This long‐term trend in laying date was largely explained by the change in climatic factors. The negative effect of local spring temperature on laying was relatively stronger than that of NAO. The number of clutches initiated on a particular day was marginally affected by the temperature 3 days prior to laying and the response of females to daily variation in temperature did not change over years. Correspondence between the average population‐level and the individual‐level responses of laying date to climate variation suggests that the advancement of laying was due to phenotypic plasticity. Despite warmer springs and advanced laying, FADs did not change over years and were not correlated with local spring temperature. Marginal evidence suggests later departure from wintering grounds and faster migration across staging areas in warmer conditions. Advancement of arrival was probably constrained by low local temperatures in early spring just before arrival that have not changed over years. The interval between first arrival and laying has declined since 1980 (0.5 days per year), but the increasing temperature during that period may have kept the food supply approximately unchanged.  相似文献   

16.
Climate change can influence many aspects of avian phenology and especially migratory shifts and changes in breeding onset receive much research interest in this context. However, changes in these different life‐cycle events in birds are often investigated separately and by means of ringing records of mixed populations. In this long‐term study on the willow warbler Phylloscopus trochilus, we investigated timing of spring and autumn migration in conjunction with timing of breeding. We made distinction among individuals with regard to age, sex, juvenile origin and migratory phase. The data set comprised 22‐yr of ringing records and two temporally separated data sets of egg‐laying dates and arrival of the breeding population close to the ringing site. The results reveal an overall advancement consistent in most, but not all, phenological events. During spring migration, early and median passage of males and females became earlier by between 4.4 to 6.3 d and median egg‐laying dates became earlier by 5 d. Male arrival advanced more, which may lead to an increase in the degree of protandry in the future. Among breeding individuals, only female arrival advanced in timing. In autumn, adults and locally hatched juvenile females did not advanced median passage, but locally hatched juvenile males appeared 4.2 d earlier. Migrating juvenile males and females advanced passage both in early and median migratory phase by between 8.4 to 10.1 d. The dissimilarities in the response between birds of different age, sex and migratory phase emphasize that environmental change may elicit intra‐specific selection pressures. The overall consistency of the phenological change in spring, autumn and egg‐laying, coupled with the unchanged number of days between median spring and autumn migration in adults, indicate that the breeding area residence has advanced seasonally but remained temporally constant.  相似文献   

17.
Migrating birds require en route habitats to rest and refuel. Yet, habitat use has never been integrated with passage to understand the factors that determine where and when birds stopover during spring and autumn migration. Here, we introduce the stopover‐to‐passage ratio (SPR), the percentage of passage migrants that stop in an area, and use 8 years of data from 12 weather surveillance radars to estimate over 50% SPR during spring and autumn through the Gulf of Mexico and Atlantic coasts of the south‐eastern US, the most prominent corridor for North America’s migratory birds. During stopovers, birds concentrated close to the coast during spring and inland in forested landscapes during autumn, suggesting seasonal differences in habitat function and highlighting the vital role of stopover habitats in sustaining migratory communities. Beyond advancing understanding of migration ecology, SPR will facilitate conservation through identification of sites that are disproportionally selected for stopover by migrating birds.  相似文献   

18.
Migratory geese accumulate energy and nutrient stores in winter to fly to refuelling spring staging areas before onward migration to breeding areas. Mean ground temperatures at two important Greenland White-fronted Geese wintering sites rose in winter and spring by 1.0–1.3°C during 1973–2007. Greenland White-fronted Geese departed the Wexford winter quarters on 3rd April 2007 for Icelandic spring staging areas, the earliest on record, representing a mean advancement of 15 days since 1973, mirrored amongst mean dates of departure amongst Scottish wintering birds that have advanced by 12 days during 1973–2007. Icelandic temperatures at critical midway staging areas en route to Greenland showed no significant change since 1973, suggesting that it is warming on the winter quarters that enable geese to depart earlier, rather than elevated temperatures at ultimate spring staging areas. However, Wexford departure date did not correlate with spring temperature. Data presented here show that Greenland White-fronted Geese have accumulated threshold body stores progressively earlier in spring migration, especially during 1995–2007. Although this did not correlate with ambient temperature, the mean degree of accumulated fat stored by 1st April in each year was a statistically significant predictor of departure date for the wintering population at Wexford. These data support the hypothesis that it is intrinsic factors (i.e. improvements in internal body state resulting from better feeding conditions) that has permitted progressively earlier departure of these geese from Wexford on spring migration, rather than amelioration of spring conditions in Iceland or solely the result of warming of the winter quarters.  相似文献   

19.
Ecological processes are changing in response to climatic warming. Birds, in particular, have been documented to arrive and breed earlier in spring and this has been attributed to elevated spring temperatures. It is not clear, however, how long-distance migratory birds that overwinter thousands of kilometers to the south in the tropics cue into changes in temperature or plant phenology on northern breeding areas. We explored the relationships between the timing and rate of spring migration of long-distance migratory birds, and variables such as temperature, the North Atlantic Oscillation (NAO) and plant phenology, using mist net capture data from three ringing stations in North America over a 40-year period. Mean April/May temperatures in eastern North America varied over a 5°C range, but with no significant trend during this period. Similarly, we found few significant trends toward earlier median capture dates of birds. Median capture dates were not related to the NAO, but were inversely correlated to spring temperatures for almost all species. For every 1°C increase in spring temperature, median capture dates of migratory birds averaged, across species, one day earlier. Lilac (Syringa vulgaris) budburst, however, averaged 3 days earlier for every 1°C increase in spring temperature, suggesting that the impact of temperature on plant phenology is three times greater than on bird phenology. To address whether migratory birds adjust their rate of northward migration to changes in temperature, we compared median capture dates for 15 species between a ringing station on the Gulf Coast of Louisiana in the southern USA with two stations approximately 2,500 km to the north. The interval between median capture dates in Louisiana and at the other two ringing stations was inversely correlated with temperature, with an average interval of 22 days, that decreased by 0.8 days per 1°C increase in temperature. Our results suggest that, although the onset of migration may be determined endogenously, the timing of migration is flexible and can be adjusted in response to variation in weather and/or phenology along migration routes.  相似文献   

20.
The recent formation of a migratory divide in the blackcap (Sylvia atricapilla) involves sympatrically breeding birds migrating to different overwintering quarters. Within the last 50 years, a novel migratory strategy has evolved resulting in an increasing proportion of birds now wintering in Britain instead of migrating to the traditional sites in the Mediterranean area. This rapid microevolution has been attributed to allochronic spring arrival of migrants from the respective wintering quarters leading to assortative mating. Moreover, blackcaps wintering in Britain may experience fitness advantages owing to improved local wintering conditions. We used stable hydrogen isotope signatures (δD) to scrutinize the degree of temporal segregation of blackcaps upon spring arrival and to test for carry-over effects in body condition associated with the disparate wintering environments. Although we found that migrants from Britain arrive significantly earlier on German breeding grounds than migrants from the Mediterranean region, we also found a considerable overlap in arrival times. In a resampling model, the mean probability of assortative mating of birds wintering in Britain is ≤28% in both years. These results suggest that allochrony alone is not a strong isolating barrier between the two subpopulations. Migrants from both wintering locations did not differ in terms of body mass, mass-tarsus residuals or mass-tarsus ratio and arrived in a similar reproductive disposition. Thus, blackcaps wintering in Britain do not gain an apparent fitness advantage on spring migration due to carry-over effects in body condition. Future studies should explore additional factors such as differences in song quality and habitat that might contribute to the rapid microevolution of the blackcap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号