首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The pentatricopeptide repeat (PPR) protein family is one of the largest and most complex families in plants. These proteins contain multiple 35-amino acid repeats that are proposed to form a super helix capable of binding RNA. PPR proteins have been implicated in many crucial functions broadly involving organelle biogenesis and plant development. In this study, we identified many genes encoding PPR protein in Upland cotton through an extensive survey of the database of Gossypium hirsutum. Furthermore, we isolated five full-length cDNA of PPR genes from G. hirsutum 0-613-2R which were named GhPPR1–GhPPR5. Domain analysis revealed that the deduced amino acid sequences of GhPPR1–5 contained from 5 to 10 PPR motifs and those PPR proteins were divided into two different PPR subfamilies. GhPPR1–2 belonged to the PLS subfamily and GhPPR3–5 belonged to the P subfamily. Phylogenetic analysis of the five GhPPR proteins and 18 other plant PPR proteins also revealed that the same subfamily clustered together. All five GhPPR genes were differentially but constitutively expressed in roots, stems, leaves, pollens, and fibers based on the gene expression analysis by real-time quantitative RT-PCR. This study is the first report and analysis of genes encoding PPR proteins in cotton.  相似文献   

5.
6.
7.
8.
We isolated a 38 kDa ssDNA-binding protein from the unicellular cyanobacterium Synechococcus sp. strain PCC 6301 and determined its N-terminal amino acid sequence. A genomic clone encoding the 38 kDa protein was isolated by using a degenerate oligonucleotide probe based on the amino acid sequence. The nucleotide sequence and predicted amino acid sequence revealed that the 38 kDa protein is 306 amino acids long and homologous to the nuclear-encoded 370 amino acid chloroplast ribosomal protein CS1 of spinach (48% identity), therefore identifying it as ribosomal protein (r-protein) S1. Cyanobacterial and chloroplast S1 proteins differ in size from Escherichia coli r-protein S1 (557 amino acids). This provides an additional evidence that cyanobacteria are closely related to chloroplasts. The Synechococcus gene rps1 encoding S1 is located 1.1 kb downstream from psbB, which encodes the photosystem 11 P680 chlorophyll a apoprotein. An open reading frame encoding a potential protein of 168 amino acids is present between psbB and rps1 and its deduced amino acid sequence is similar to that of E. coli hypothetical 17.2 kDa protein. Northern blot analysis showed that rps1 is transcribed as a monocistronic mRNA.  相似文献   

9.
With an aim to clone the sorghum fertility restorer gene Rf1, a high-resolution genetic and physical map of the locus was constructed. The Rf1 locus was resolved to a 32-kb region spanning four open reading frames: a plasma membrane Ca2+-ATPase, a cyclin D-1, an unknown protein, and a pentatricopeptide repeat (PPR13) gene family member. An ~19-kb region spanning the cyclin D-1 and unknown protein genes was completely conserved between sterile and fertile plants as was the sequence spanning the coding region of the Ca2+-ATPase. In contrast, 19 sequence polymorphisms were located in an ~7-kb region spanning PPR13, and all markers cosegregated with the fertility restoration phenotype. PPR13 was predicted to encode a mitochondrial-targeted protein containing a single exon with 14 PPR repeats, and the protein is classified as an E-type PPR subfamily member. To permit sequence-based comparison of the sorghum and rice genomes in the Rf1 region, 0.53 Mb of sorghum chromosome 8 was sequenced and compared to the colinear region of rice chromosome 12. Genome comparison revealed a mosaic pattern of colinearity with an ~275-kb gene-poor region with little gene conservation and an adjacent, ~245-kb gene-rice region that is more highly conserved between rice and sorghum. Despite being located in a region of high gene conservation, sorghum PPR13 was not located in a colinear position on rice chromosome 12. The present results suggest that sorghum PPR13 represents a potential candidate for the sorghum Rf1 gene, and its presence in the sorghum genome indicates a single gene transposition event subsequent to the divergence of rice and sorghum ancestors.An erratum to this article can be found at  相似文献   

10.
Pentatricopeptide repeat (PPR) proteins are sequence-specific RNA-binding proteins that form a pervasive family of proteins conserved in yeast, plants, and humans. The plant PPR proteins are grouped mainly into the P and PLS classes. Here, we report the crystal structure of a PLS-class PPR protein from Arabidopsis thaliana called THA8L (THA8-like) at 2.0 Å. THA8L resembles THA8 (thylakoid assembly 8), a protein that is required for the splicing of specific group II introns of genes involved in biogenesis of chloroplast thylakoid membranes. The THA8L structure contains three P-type PPR motifs flanked by one L-type motif and one S-type motif. We identified several putative THA8L-binding sites, enriched with purine sequences, in the group II introns. Importantly, THA8L has strong binding preference for single-stranded RNA over single-stranded DNA or double-stranded RNA. Structural analysis revealed that THA8L contains two extensive patches of positively charged residues next to the residues that are proposed to comprise the RNA-binding codes. Mutations in these two positively charged patches greatly reduced THA8L RNA-binding activity. On the basis of these data, we constructed a model of THA8L-RNA binding that is dependent on two forces: one is the interaction between nucleotide bases and specific amino acids in the PPR motifs (codes), and the other is the interaction between the negatively charged RNA backbone and positively charged residues of PPR motifs. Together, these results further our understanding of the mechanism of PPR protein-RNA interactions.  相似文献   

11.
Chloroplast biogenesis is tightly linked with embryogenesis and seedling development. A growing body of work has been done on the molecular mechanisms underlying chloroplast development; however, the molecular components involved in chloroplast biogenesis during embryogenesis remain largely uncharacterized. In this paper, we show that an Arabidopsis mutant carrying a T‐DNA insertion in a gene encoding a multiple membrane occupation and recognition nexus (MORN)‐containing protein exhibits severe defects during embryogenesis, producing abnormal embryos and thereby leading to a lethality of young seedlings. Genetic and microscopic studies reveal that the mutation is allelic to a previously designated Arabidopsis embryo‐defective 1211 mutant (emb1211). The emb1211 +/? mutant plants produce approximately 25% of white‐colored ovules with abnormal embryos since late globular stage when primary chloroplast biogenesis takes place, while the wild‐type plants produce all green ovules. Transmission electron microscopic analysis reveals the absence of normal chloroplast development, both in the mutant embryos and in the mutant seedlings, that contributes to the albinism. The EMB1211 gene is preferentially expressed in developing embryos as revealed in the EMB1211::GUS transgenic plants. Taken together, the data indicate that EMB1211 has an important role during embryogenesis and chloroplast biogenesis in Arabidopsis.  相似文献   

12.
13.
14.
Arabidopsis LSD1-related proteins that contain LSD1-like zinc finger domains have been identified to be involved in disease resistance and programmed cell death. To investigate the potential role of LSD1-related gene in rice (Oryza sativa L.), we cloned an LSD1 ortholog, OsLOL2, from the rice cDNA plasmid library. The OsLOL2 gene is predicted to encode a polypeptide of 163 amino acids with two LSD1-like zinc finger domains with 74.5% identity to those of LSD1. Southern blot analysis indicated that OsLOL2 was a single-copy gene in the rice genome. Transgenic rice lines carrying the antisense strand of OsLOL2 with decreased expression of OsLOL2 had dwarf phenotypes, and the dwarfism could be restored by exogenous GA3 treatment, suggesting that the dwarfism was the result of a deficiency in bioactive gibberellin (GA). In agreement with this possibility, the content of endogenous bioactive GA1 decreased in the antisense transgenic lines. Expression of OsKS1, one of the genes encoding for GA biosynthetic enzymes, was suppressed in the antisense transgenic lines. Sense transgenic lines with increased expression of OsLOL2 were more resistant to rice bacterial blight, while antisense transgenic lines were less resistant to rice bacterial blight. The OsLOL2-GFP (green fluorescence protein) fusion protein was localized in the nucleus of cells of transgenic BY2 tobacco (Nicotiana tabacum L.). These data suggest that OsLOL2 is involved in rice growth and disease resistance.  相似文献   

15.
We have isolated and characterized a putative rice MAPK gene (designated OsMAPK44) encoding for a protein of 593 amino acids that has the MAPK family signature and phosphorylation activation motif, TDY. Alignment of the predicted amino acid sequences of OsMAPK44 showed high homology with other rice MAPKs. Under normal conditions, the OsMAPK44 gene is highly expressed in root tissues, but relatively less in leaf and stem tissues of the japonica type rice plant (O. sativa L. Donggin). mRNA expression of the gene is highly inducible by salt and drought treatment, but not by cold treatment. Moreover, the mRNA level of the OsMAPK44 is up-regulated by exogenously applied Abscisic acid (ABA) and H2O2. When we compared the OsMAPK44 gene expression level between a salt sensitive indica cultivar (IR64) and a salt resistant indica cultivar (Pokkali), they showed some difference in expression kinetics with the salt treatment. OsMAPK44 gene expression in Pokkali was slightly up-regulated within 30 min and then disappeared rapidly, while IR64 maintained its expression for 1 h following down-regulation. Under the salinity stress, OsMAPK44 overexpression transgenic rice plants showed less damage and greater ratio of potassium and sodium than OsMAPK44 suppressed transgenic lines did, suggesting that OsMAPK44 may have a role to prevent damages due to working for favorable ion balance in the presence of salinity.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号