首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
梅毒是由梅毒螺旋体(Treponema pallidum)亚种苍白螺旋菌引起的性传播感染性疾病,主要通过母婴感染或性接触的方式传播.梅毒螺旋体的外膜蛋白在梅毒螺旋体的传播和宿主的黏附等方面起重要作用,因此,鉴定可以作为抗生素作用靶点的梅毒螺旋体外膜蛋白一直是梅毒疫苗开发的研究重点.本文重点阐述了梅毒螺旋体外膜蛋白的结构...  相似文献   

2.
Controversy exists regarding the constituents and antigenic properties of the Treponema pallidum outer membrane; a major point of contention concerns the cellular location(s) of the spirochaete's lipoprotein immunogens. To address these issues and circumvent problems associated with prior efforts to localize treponemal surface antigens, we developed a novel strategy for investigating T. pallidum molecular architecture. Virulent treponemes were encapsulated in porous agarose beads (gel microdroplets) and then probed in the presence or absence of Triton X-100. Intact., encapsulated treponemes were not labelled by monospecific antisera directed against four major T. pallidum lipoproteins or a candidate T. pailidum outer membrane protein (TpN50) with C-terminal sequence homology to Escherichia coli OmpA or by human or rabbit syphilitic serum. Each of these immunologic reagents, however, labelled encapsulated treponemes co-incubated with detergent. In contrast, antibodies generated against isolated T, pal-lidum outer membranes labelled intact organisms and the pattern of fluorescence was consistent with the distribution of rare outer membrane proteins visualized by freeze-fracture electron microscopy. In addition to providing strong evidence that the protein portions of treponemal lipoproteins are located within the periplasmic space, these studies have extended our understanding of the topographical relationships among T. pallidum cell envelope constituents. They also demonstrate the feasibility of generating antibodies against rare outer membrane proteins and detecting them on the surfaces of virulent treponemes.  相似文献   

3.
High-resolution cryo electron tomography (cryo-ET) was utilized to visualize Treponema pallidum, the causative agent of syphilis, at the molecular level. Three-dimensional (3D) reconstructions from 304 infectious organisms revealed unprecedented cellular structures of this unusual member of the spirochetal family. High-resolution cryo-ET reconstructions provided detailed structures of the cell envelope, which is significantly different from that of Gram-negative bacteria. The 4-nm lipid bilayer of both outer membrane and cytoplasmic membrane resolved in 3D reconstructions, providing an important marker for interpreting membrane-associated structures. Abundant lipoproteins cover the outer leaflet of the cytoplasmic membrane, in contrast to the rare outer membrane proteins visible by scanning probe microscopy. High-resolution cryo-ET images also provided the first observation of T. pallidum chemoreceptor arrays, as well as structural details of the periplasmically located cone-shaped structure at both ends of the bacterium. Furthermore, 3D subvolume averages of periplasmic flagellar motors and flagellar filaments from living organisms revealed the novel flagellar architectures that may facilitate their rotation within the confining periplasmic space. Our findings provide the most detailed structural understanding of periplasmic flagella and the surrounding cell envelope, which enable this enigmatic bacterium to efficiently penetrate tissue and to escape host immune responses.  相似文献   

4.
The spirochete Treponema pallidum is the causative agent of syphilis, a sexually transmitted infection of major global importance. Other closely related subspecies of Treponema also are the etiological agents of the endemic treponematoses, such as yaws, pinta, and bejel. The inability of T. pallidum and its close relatives to be cultured in vitro has prompted efforts to characterize T. pallidum's proteins structurally and biophysically, particularly those potentially relevant to treponemal membrane biology, with the goal of possibly revealing the functions of those proteins. This report describes the structure of the treponemal protein Tp0737; this polypeptide has a fold characteristic of a class of periplasmic ligand‐binding proteins associated with ABC‐type transporters. Although no ligand for the protein was observed in electron‐density maps, and thus the nature of the native ligand remains obscure, the structural data described herein provide a foundation for further efforts to elucidate the ligand and thus the function of this protein in T. pallidum.  相似文献   

5.
Lactoferrin-binding or -associated proteins were identified in Treponema pallidum subspecies pallidum and Treponema denticola by affinity column chromatography using human lactoferrin and detergent-solubilized, radiolabelled spirochaetes. Two discrete polypeptides of T. pallidum with masses of 45 and 40kDa and a broad band from 29-34 kDa exhibited association with human apo- and partially ferrated lactoferrin. T. denticola produced two proteins that associated with a lactoferrin affinity matrix (50 and 35 kDa). T. pallidum and T. denticola did not associate with soluble, human transferrin in parallel experiments. Soluble human lactoferrin competed with all lactoferrin-associated proteins from T. pallidum and T. denticola in competitive-binding assays. However, the T. denticola proteins dissociated from a lacto-ferrin-affinity matrix in the presence of differing concentrations of unlabelled, soluble lactoferrin competitor. Treatment with phospholipase D altered migration of the diffuse 29-34 kDa band of T. pallidum suggesting that the polypeptide was lipid-modified. Each of the lactoferrin-binding proteins from T. pallidum and T. denticola reacted with pooled rabbit syphilitic antisera. The lactoferrin-binding proteins of T. pallidum reacted with human sera from patients at all stages of syphilis. In addition, a monoclonal antibody generated against the 45 kDa polypeptide of T. pallidum crossreacted with the 29–34 kDa protein.  相似文献   

6.
The tissue destruction characteristic of syphilis infection may be caused by inflammation due to Treponema pallidum and the ensuing immune responses to the pathogen. T. pallidum membrane proteins are thought to be potent inducers of inflammation during the early stages of infection. However, the actual membrane proteins that induce inflammatory cytokine production are not known, nor are the molecular mechanisms responsible for triggering and sustaining the inflammatory cascades. In the present study, Tp0751 recombinant protein from T. pallidum was found to induce the production of proinflammatory cytokines, including TNF-α, IL-1βand IL-6, in a THP-1 human monocyte cell line. The signal transduction pathways involved in the production of these cytokines were then further investigated. No inhibition of TNF-a, IL-1β, or IL-6 production was observed following treatment with the SAPK/JNK specific inhibitor SP600125 or with an ERK inhibitor PD98059. By contrast, anti-TLR2 mAb, anti-CD14 mAb, and the p38 inhibitor SB203580 significantly inhibited the production of all three cytokines. In addition, pyrrolidine dithiocarbamate (PDTC), a specific inhibitor of NF-κB, profoundly inhibited the production of these cytokines. Tp0751 treatment strongly activated NF-κB, as revealed by Western blotting. However, NF-κB translocation was significantly inhibited by treatment with PDTC. These results indicated that TLR2, CD14, MAPKs/p38, and NF-κB might be implicated in the inflammatory reaction caused by T. pallidum infection.  相似文献   

7.
We previously identified Treponema pallidum repeat proteins TprC/D, TprF, and TprI as candidate outer membrane proteins (OMPs) and subsequently demonstrated that TprC is not only a rare OMP but also forms trimers and has porin activity. We also reported that TprC contains N- and C-terminal domains (TprCN and TprCC) orthologous to regions in the major outer sheath protein (MOSPN and MOSPC) of Treponema denticola and that TprCC is solely responsible for β-barrel formation, trimerization, and porin function by the full-length protein. Herein, we show that TprI also possesses bipartite architecture, trimeric structure, and porin function and that the MOSPC-like domains of native TprC and TprI are surface-exposed in T. pallidum, whereas their MOSPN-like domains are tethered within the periplasm. TprF, which does not contain a MOSPC-like domain, lacks amphiphilicity and porin activity, adopts an extended inflexible structure, and, in T. pallidum, is tightly bound to the protoplasmic cylinder. By thermal denaturation, the MOSPN and MOSPC-like domains of TprC and TprI are highly thermostable, endowing the full-length proteins with impressive conformational stability. When expressed in Escherichia coli with PelB signal sequences, TprC and TprI localize to the outer membrane, adopting bipartite topologies, whereas TprF is periplasmic. We propose that the MOSPN-like domains enhance the structural integrity of the cell envelope by anchoring the β-barrels within the periplasm. In addition to being bona fide T. pallidum rare outer membrane proteins, TprC/D and TprI represent a new class of dual function, bipartite bacterial OMP.  相似文献   

8.
Leptospirosis is a zoonosis with worldwide distribution caused by pathogenic spirochetes belonging to the genus Leptospira. The leptospiral life cycle involves transmission via fresh water and colonization of the renal tubules of their reservoir hosts or infection of accidental hosts, including humans. Bacterial outer membrane proteins (OMPs), particularly those with surface-exposed regions, play crucial roles in virulence mechanisms of pathogens and the adaptation to various environmental conditions, including those of the mammalian host. Little is known about the surface-exposed OMPs in Leptospira, particularly those with outer membrane-spanning domains. Herein, we describe a comprehensive strategy for identification and characterization of leptospiral transmembrane OMPs. The genomic sequence of L. interrogans serovar Copenhageni strain Fiocruz L1–130 allowed us to employ the β-barrel prediction programs, PRED-TMBB and TMBETA-NET, to identify potential transmembrane OMPs. Several complementary methods were used to characterize four novel OMPs, designated OmpL36, OmpL37, OmpL47 and OmpL54. In addition to surface immunofluorescence and surface biotinylation, we describe surface proteolysis of intact leptospires as an improved method for determining the surface exposure of leptospiral proteins. Membrane integration was confirmed using techniques for removal of peripheral membrane proteins. We also demonstrate deficiencies in the Triton X-114 fractionation method for assessing the outer membrane localization of transmembrane OMPs. Our results establish a broadly applicable strategy for the elucidation of novel surface-exposed outer membrane-spanning proteins of Leptospira, an essential step in the discovery of potential virulence factors, diagnostic antigens and vaccine candidates.  相似文献   

9.
The surface of Treponema pallidum subsp. pallidum (T. pallidum), the etiologic agent of syphilis, appears antigenically inert and lacks detectable protein, as judged by immunocytochemical and biochemical techniques commonly used to identify the outer membrane (OM) constituents of gram-negative bacteria. We examined T. pallidum by freeze-fracture electron microscopy to visualize the architecture of its OM. Treponema phagedenis biotype Reiter (T. phagedenis Reiter), a nonpathogenic host-associated treponeme, and Spirochaeta aurantia, a free-living spirochete, were studied similarly. Few intramembranous particles interrupted the smooth convex and concave fracture faces of the OM of T. pallidum, demonstrating that the OM of this organism is an unusual, nearly naked lipid bilayer. In contrast, the concave fracture face of the OM of S. aurantia was densely covered with particles, indicating the presence of abundant integral membrane proteins, a feature shared by typical gram-negative organisms. The concentration of particles in the OM concave fracture face of T. phagedenis Reiter was intermediate between those of T. pallidum and S. aurantia. Similar to typical gram-negative bacteria, the OM convex fracture faces of the three spirochetes contained relatively few particles. The unique molecular architecture of the OM of T. pallidum can explain the puzzling in vitro properties of the surface of the organism and may reflect a specific adaptation by which treponemes evade the host immune response.  相似文献   

10.
Previously, we determined the crystal structure of apo‐TpMglB‐2, a d ‐glucose‐binding component of a putative ABC transporter from the syphilis spirochete Treponema pallidum. The protein had an unusual topology for this class of proteins, raising the question of whether the d ‐glucose‐binding mode would be different in TpMglB‐2. Here, we present the crystal structures of a variant of TpMglB‐2 with and without d ‐glucose bound. The structures demonstrate that, despite its aberrant topology, the protein undergoes conformational changes and binds d ‐glucose similarly to other Mgl‐type proteins, likely facilitating d ‐glucose uptake in T. pallidum.  相似文献   

11.

Background

Syphilis continues to be a major global health threat with 11 million new infections each year, and a global burden of 36 million cases. The causative agent of syphilis, Treponema pallidum subspecies pallidum, is a highly virulent bacterium, however the molecular mechanisms underlying T. pallidum pathogenesis remain to be definitively identified. This is due to the fact that T. pallidum is currently uncultivatable, inherently fragile and thus difficult to work with, and phylogenetically distinct with no conventional virulence factor homologs found in other pathogens. In fact, approximately 30% of its predicted protein-coding genes have no known orthologs or assigned functions. Here we employed a structural bioinformatics approach using Phyre2-based tertiary structure modeling to improve our understanding of T. pallidum protein function on a proteome-wide scale.

Results

Phyre2-based tertiary structure modeling generated high-confidence predictions for 80% of the T. pallidum proteome (780/978 predicted proteins). Tertiary structure modeling also inferred the same function as primary structure-based annotations from genome sequencing pipelines for 525/605 proteins (87%), which represents 54% (525/978) of all T. pallidum proteins. Of the 175 T. pallidum proteins modeled with high confidence that were not assigned functions in the previously annotated published proteome, 167 (95%) were able to be assigned predicted functions. Twenty-one of the 175 hypothetical proteins modeled with high confidence were also predicted to exhibit significant structural similarity with proteins experimentally confirmed to be required for virulence in other pathogens.

Conclusions

Phyre2-based structural modeling is a powerful bioinformatics tool that has provided insight into the potential structure and function of the majority of T. pallidum proteins and helped validate the primary structure-based annotation of more than 50% of all T. pallidum proteins with high confidence. This work represents the first T. pallidum proteome-wide structural modeling study and is one of few studies to apply this approach for the functional annotation of a whole proteome.
  相似文献   

12.
A collaborative study was designed to asses two freeze-dried human plasma preparations containing anti-Treponema pallidum antibodies, 05/132 and 05/122, for their suitability as international reference reagents for syphilis serology. Both preparations are intended as replacements of the first international standard (IS) for syphilitic serum antibodies (HS). Samples were tested by eight laboratories using the T. pallidum passive particle agglutination assay (TPPA), the venereal disease research laboratory test (VDRL) and the rapid plasma reagin test (RPR). In addition a range of immunoassays was also used. The outcome of the collaborative study revealed that candidate standard 05/132 contains T. pallidum-specific IgG and IgM and is reactive in VDRL or RPR, and that 05/122 contains T. pallidum-specific IgG but is not reactive in either the VDRL or RPR test. Both 05/132 and 05/122 are reactive in the TPPA. On the basis of these results the Expert Committee on Biological Standardization of the World Health Organization designated 05/132 as the 1st IS for human syphilitic plasma IgG and IgM with a unitage of 3 IU per ampoule relative to HS and 05/122 as the 1st IS for human syphilitic plasma IgG with a unitage of 300 mIU per ampoule relative to 05/132.  相似文献   

13.
Identification of Treponema pallidum rare outer membrane proteins (OMPs) has been a longstanding objective of syphilis researchers. We recently developed a consensus computational framework that employs a battery of cellular localization and topological prediction tools to generate ranked clusters of candidate rare OMPs (D. L. Cox et al., Infect. Immun. 78:5178-5194, 2010). TP0117/TP0131 (TprC/D), a member of the T. pallidum repeat (Tpr) family, was a highly ranked candidate. Circular dichroism, heat modifiability by SDS-PAGE, Triton X-114 phase partitioning, and liposome incorporation confirmed that full-length, recombinant TprC (TprC(Fl)) forms a β-barrel capable of integrating into lipid bilayers. Moreover, TprC(Fl) increased efflux of terbium-dipicolinic acid complex from large unilamellar vesicles and migrated as a trimer by blue-native PAGE. We found that in T. pallidum, TprC is heat modifiable, trimeric, expressed in low abundance, and, based on proteinase K accessibility and opsonophagocytosis assays, surface exposed. From these collective data, we conclude that TprC is a bona fide rare OMP as well as a functional ortholog of Escherichia coli OmpF. We also discovered that TprC has a bipartite architecture consisting of a soluble N-terminal portion (TprC(N)), presumably periplasmic and bound directly or indirectly to peptidoglycan, and a C-terminal β-barrel (TprC(C)). Syphilitic rabbits generate antibodies exclusively against TprC(C), while secondary syphilis patients fail to mount a detectable antibody response against either domain. The syphilis spirochete appears to have resolved a fundamental dilemma arising from its extracellular lifestyle, namely, how to enhance OM permeability without increasing its vulnerability to the antibody-mediated defenses of its natural human host.  相似文献   

14.
Mitochondrial membrane permeabilization (MMP) is considered as the “point-of-no-return” in numerous models of programmed cell death. Indeed, mitochondria determine the intrinsic pathway of apoptosis, and play a major role in the extrinsic route as well. MMP affects the inner and outer mitochondrial membranes (IM and OM, respectively) to a variable degree. OM permeabilization culminates in the release of proteins that normally are confined in the mitochondrial intermembrane space (IMS), including caspase activators (e.g. cytochrome c) and caspase-independent death effectors (e.g. apoptosis-inducing factor). Partial IM permeabilization disrupts mitochondrial ion and volume homeostasis and dissipates the mitochondrial transmembrane potential (ΔΨm). The assessment of early mitochondrial alterations allows for the identification of cells that are committed to die but have not displayed yet the apoptotic phenotype. Several techniques to measure MMP by cytofluorometry and fluorescence microscopy have been developed. Here, we summarize the currently available methods for the detection of MMP, and provide a comparative analysis of these techniques.  相似文献   

15.
Definitive identification of Treponema pallidum rare outer membrane proteins (OMPs) has long eluded researchers. TP0326, the sole protein in T. pallidum with sequence homology to a Gram-negative OMP, belongs to the BamA family of proteins essential for OM biogenesis. Structural modelling predicted that five polypeptide transport-associated (POTRA) domains comprise the N-terminus of TP0326, while the C-terminus forms an 18-stranded amphipathic β-barrel. Circular dichroism, heat modifiability by SDS-PAGE, Triton X-114 phase partitioning and liposome incorporation supported these topological predictions and confirmed that the β-barrel is responsible for the native protein's amphiphilicity. Expression analyses revealed that native TP0326 is expressed at low abundance, while a protease-surface accessibility assay confirmed surface exposure. Size-exclusion chromatography and blue native polyacrylamide gel electrophoresis revealed a modular Bam complex in T. pallidum larger than that of Escherichia coli. Non-orthologous ancillary factors and self-association of TP0326 via its β-barrel may both contribute to the Bam complex. T. pallidum-infected rabbits mount a vigorous antibody response to both POTRA and β-barrel portions of TP0326, whereas humans with secondary syphilis respond predominantly to POTRA. The syphilis spirochaete appears to have devised a stratagem for harnessing the Bam pathway while satisfying its need to limit surface antigenicity.  相似文献   

16.
Leptospira is a genus of spirochaetes that includes organisms with a variety of lifestyles ranging from aquatic saprophytes to invasive pathogens. Adaptation to a wide variety of environmental conditions has required leptospires to acquire a large genome and a complex outer membrane with features that are unique among bacteria. The most abundant surface‐exposed outer membrane proteins are lipoproteins that are integrated into the lipid bilayer by amino‐terminal fatty acids. In contrast to many spirochaetes, the leptospiral outer membrane also includes lipopolysaccharide and many homologues of well‐known beta‐barrel transmembrane outer membrane proteins. Research on leptospiral transmembrane outer membrane proteins has lagged behind studies of lipoproteins because of their aberrant behaviour by Triton X‐114 detergent fractionation. For this reason, transmembrane outer membrane proteins are best characterized by assessing membrane integration and surface exposure. Not surprisingly, some outer membrane proteins that mediate host–pathogen interactions are strongly regulated by conditions found in mammalian host tissues. For example, the leptospiral immunoglobulin‐like (Lig) repeat proteins are dramatically induced by osmolarity and mediate interactions with host extracellular matrix proteins. Development of molecular genetic tools are making it possible to finally understand the roles of these and other outer membrane proteins in mechanisms of leptospiral pathogenesis.  相似文献   

17.
Attachment to host tissues is a critical step in the pathogenesis of most bacterial infections. Enterotoxigenic Escherichia coli (ETEC) remains one of the principal causes of infectious diarrhea in humans. The recent identification of additional ETEC surface molecules suggests that new targets may be exploited in vaccine development. The EtpA protein identified in ETEC H10407 is a large glycosylated adhesin secreted via the two-partner secretion system. EtpA requires its putative partner EtpB for translocation across the outer membrane (OM). We investigated the biochemical and electrophysiological properties of purified EtpB. We showed that EtpB is 65-kDa heat-modifiable protein localized to the OM. Electrophysiological experiments indicated that EtpB is able to form pores in planar lipid bilayer membranes with an asymmetric current, suggesting its functional asymmetry. The pore of EtpB frequently assumes an opened conformation and fluctuates between three well-defined conductance states. In silico analysis of the EtpB amino acid sequence and molecular modeling suggest that EtpB is similar to the well-known TpsB protein FhaC from Bordetella pertussis and has a C-terminal transmembrane β-barrel domain that is occluded by an N-terminal α-helix, an extracellular loop, and two periplasmic polypeptide-transport-associated (POTRA) domains. Together, these data confirm that EtpB is a pore-forming protein mainly folded into a β-barrel conformation and indicate that EtpB presents typical features of the OM TpsB proteins.  相似文献   

18.
Currently, the efficacy of syphilis treatment is measured with anti-lipid antibody tests. These can take months to indicate cure and, as a result, syphilis treatment trials require long periods of follow-up. The causative organism, Treponema pallidum (T. pallidum), is detectable in the infectious lesions of early syphilis using DNA amplification. Bacteraemia can likewise be identified, typically in more active disease. We hypothesise that bacterial clearance from blood and ulcers will predict early the standard serology-measured treatment response and have developed a qPCR assay that could monitor this clearance directly in patients with infectious syphilis. Patients with early syphilis were given an intramuscular dose of benzathine penicillin. To investigate the appropriate sampling timeframe samples of blood and ulcer exudate were collected intensively for T. pallidum DNA (tpp047 gene) and RNA (16S rRNA) quantification. Sampling ended when two consecutive PCRs were negative. Four males were recruited. The mean peak level of T. pallidum DNA was 1626 copies/ml whole blood and the mean clearance half-life was 5.7 hours (std. dev. 0.53). The mean peak of 16S rRNA was 8879 copies/ml whole blood with a clearance half-life of 3.9 hours (std. dev. 0.84). From an ulcer, pre-treatment, 67,400 T. pallidum DNA copies and 7.08x107 16S rRNA copies were detected per absorbance strip and the clearance half-lives were 3.2 and 4.1 hours, respectively. Overall, T. pallidum nucleic acids were not detected in any sample collected more than 56 hours (range 20–56) after treatment. All patients achieved serologic cure. In patients with active early syphilis, measuring T. pallidum levels in blood and ulcer exudate may be a useful measure of treatment success in therapeutic trials. These laboratory findings need confirmation on a larger scale and in patients receiving different therapies.  相似文献   

19.
The deep evolutionary history of the Spirochetes places their branch point early in the evolution of the diderms, before the divergence of the present day Proteobacteria. As a spirochete, the morphology of the Borrelia cell envelope shares characteristics of both Gram-positive and Gram-negative bacteria. A thin layer of peptidoglycan, tightly associated with the cytoplasmic membrane, is surrounded by a more labile outer membrane (OM). This OM is rich in lipoproteins but with few known integral membrane proteins. The outer membrane protein A (OmpA) domain is an eight-stranded membrane-spanning β-barrel, highly conserved among the Proteobacteria but so far unknown in the Spirochetes. In the present work, we describe the identification of four novel OmpA-like β-barrels from Borrelia afzelii, the most common cause of erythema migrans (EM) rash in Europe. Structural characterization of one these proteins (BAPKO_0422) by SAXS and CD indicate a compact globular structure rich in β-strand consistent with a monomeric β-barrel. Ab initio molecular envelopes calculated from the scattering profile are consistent with homology models and demonstrate that BAPKO_0422 adopts a peanut shape with dimensions 25×45 Å (1 Å=0.1 nm). Deviations from the standard C-terminal signature sequence are apparent; in particular the C-terminal phenylalanine residue commonly found in Proteobacterial OM proteins is replaced by isoleucine/leucine or asparagine. BAPKO_0422 is demonstrated to bind human factor H (fH) and therefore may contribute to immune evasion by inhibition of the complement response. Encoded by chromosomal genes, these proteins are highly conserved between Borrelia subspecies and may be of diagnostic or therapeutic value.  相似文献   

20.
GNA1946, a conserved outer membrane lipoprotein from Neisseria meningitidis, has been identified as a candidate antigen for an urgently needed broad-spectrum meningococcal vaccine. It has been predicted to be a periplasmic receptor in the d-methionine uptake ABC transporter system. The crystal structure of GNA1946 was solved by the single-wavelength anomalous dispersion (SAD) method to a resolution of 2.25 Å, and it reveals a Venus flytrap-like structure. GNA1946 consists of two globular lobes connected by a hinge region. Surprisingly, the structure showed an l-methionine bound within the cleft between the lobes. A comparison of GNA1946 with two other outer membrane lipoproteins, the l-methionine-binding Tp32 from Treponema pallidum and the dipeptide GlyMet-binding protein Pg110 from Staphylococcus aureus, revealed that although these three proteins share low sequence similarities, there is a high degree of structural conservation and similar substrate-binding frameworks. Our results reveal that GNA1946 is an l-methionine binding lipoprotein in the outer membrane, and should function as an initial receptor for ABC transporters with high affinity and specificity. The GNA1946 structure reported here should provide a valuable starting point for the development of a broad-spectrum meningococcal vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号