共查询到20条相似文献,搜索用时 15 毫秒
1.
The repair of psoralen monoadducts by the Escherichia coli UvrABC endonuclease. 总被引:4,自引:4,他引:4 下载免费PDF全文
We have examined the interactions of UvrABC endonuclease with DNA containing the monoadducts of 8-methoxypsoralen (8-MOP) and 4,5',8-trimethylpsoralen (TMP). The UvrA and UvrB proteins were found to form a stable complex on DNA that contains the psoralen monoadducts. Subsequent binding of UvrC protein to this complex activates the UvrABC endonuclease activity. As in the case of incision at pyrimidine dimers, a stable protein-DNA complex was observed after the incision events. For both 8-MOP and TMP, the UvrABC endonuclease incised the monoadduct-containing strand of DNA on the two sides of the monoadduct with 12 bases included between the two cuts. One incision was at the 8th phosphodiester bond on the 5' side of the modified base. The other incision was at the 5th phosphodiester bond 3' to the modified base. The UvrABC endonuclease incision data revealed that the reactivity of psoralens is 5'TpA greater than 5'ApT greater than 5'TpG. 相似文献
2.
The UvrA, UvrB and UvrC proteins of Escherichia coli have been purified in good yields to homogeneity with rapid three- or four-step purification procedures. The cloned uvrA and uvrB genes were placed under control of the E. coli bacteriophage lambda PL promoter for amplification of expression. Expression of the uvrC gene could not be amplified by this strategy, however, subcloning of this gene into the replication-defective plasmid pRLM24 led to significant overproduction of the UvrC protein. The purified UvrA protein, with its associated ATPase activity, has a molecular weight of 114,000, the purified UvrB is an 84,000 molecular weight protein and the UvrC protein has a molecular weight of 67,000. 相似文献
3.
ATPase activity of the UvrA and UvrAB protein complexes of the Escherichia coli UvrABC endonuclease. 总被引:5,自引:1,他引:5 下载免费PDF全文
We have analyzed the ATPase activity exhibited by the UvrABC DNA repair complex. The UvrA protein is an ATPase whose lack of DNA dependence may be related to the ATP induced monomer-dimer transitions. ATP induced dimerization may be responsible for the enhanced DNA binding activity observed in the presence of ATP. Although the UvrA ATPase is not stimulated by dsDNA, such DNA can modulate the UvrA ATPase activity by decreases in Km and Vm and alterations in the Ki for ADP and ATP-gamma-S. The induction of such changes upon binding to DNA may be necessary for cooperative interactions of UvrA with UvrB that result in a DNA stimulated ATPase for the UvrAB protein complex. The UvrAB ATPase displays unique kinetic profiles that are dependent on the structure of the DNA effector. These kinetic changes correlate with changes in footprinting patterns, the stabilization of protein complexes on DNA damage and with the expression of helicase activity. 相似文献
4.
The Escherichia coli truncated methionyl-tRNA synthetase (delta MTS) was shown to catalyze alpha-carbon hydrogen-deuterium exchange of L-selenomethionine, L-methionine, L-ethionine, and L-norleucine in the presence of deuterium oxide. The rate of alpha-proton exchange for L-methionine was shown to be linear with respect to delta MTS concentration. The exchange reaction showed saturation kinetics with apparent Km values of 21 and 4 mM in the absence and presence of saturating adenosine concentrations, respectively. As expected, delta MTS did not catalyze alpha-proton exchange of D-methionine since the enzyme has been shown to be specific for L-amino acids. In the absence of enzyme or in the presence of an equivalent concentration of Zn2+, no hydrogen-deuterium exchange was detected. The exchange reaction was not observed with L-methioninol, an analogue of L-methionine lacking the carboxylate group. These results suggest that the alpha-carboxylate group is a requirement for the delta MTS-catalyzed exchange reaction. The E. coli methionyl-tRNA synthetase (MTS) has previously been shown to be a zinc metalloprotein [Posorske, L. H., Cohn, M., Yanagisawa, N., & Auld, D. S. (1979) Biochim. Biophys. Acta 576, 128]. On the basis of the structural and mechanistic information available on MTS, we propose that the enzyme-bound zinc coordinates the carboxylate of the amino acid, while a base on the enzyme is responsible for exchange of the alpha-proton. The role of the enzyme-bound metal is to render the alpha-proton more acidic through coordination of the carboxylate group.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
5.
Martí-Arbona R Fresquet V Thoden JB Davis ML Holden HM Raushel FM 《Biochemistry》2005,44(19):7115-7124
Isoaspartyl dipeptidase (IAD) is a member of the amidohydrolase superfamily and catalyzes the hydrolytic cleavage of beta-aspartyl dipeptides. Structural studies of the wild-type enzyme have demonstrated that the active site consists of a binuclear metal center positioned at the C-terminal end of a (beta/alpha)(8)-barrel domain. Steady-state kinetic parameters for the hydrolysis of beta-aspartyl dipeptides were obtained at pH 8.1. The pH-rate profiles for the hydrolysis of beta-Asp-Leu were obtained for the Zn/Zn-, Co/Co-, Ni/Ni-, and Cd/Cd-substituted forms of IAD. Bell-shaped profiles were observed for k(cat) and k(cat)/K(m) as a function of pH for all four metal-substituted forms. The pK(a) of the group that must be unprotonated for catalytic activity varied according to the specific metal ion bound in the active site, whereas the pK(a) of the group that must be protonated for catalytic activity was relatively independent of the specific metal ion present. The identity of the group that must be unprotonated for catalytic activity was consistent with the hydroxide that bridges the two divalent cations of the binuclear metal center. The identity of the group that must be protonated for activity was consistent with the free alpha-amino group of the dipeptide substrate. Kinetic constants were obtained for the mutant enzymes at conserved residues Glu77, Tyr137, Arg169, Arg233, Asp285, and Ser289. The catalytic properties of the wild-type and mutant enzymes, coupled with the X-ray crystal structure of the D285N mutant complexed with beta-Asp-His, are consistent with a chemical reaction mechanism for the hydrolysis of dipeptides that is initiated by the polarization of the amide bond via complexation to the beta-metal ion of the binuclear metal center. Nucleophilic attack by the bridging hydroxide is facilitated by abstraction of its proton by the side chain carboxylate of Asp285. Collapse of the tetrahedral intermediate and cleavage of the carbon-nitrogen bond occur with donation of a proton from the protonated form of Asp285. 相似文献
6.
Incision of damaged versus nondamaged DNA by the Escherichia coli UvrABC proteins. 总被引:4,自引:5,他引:4 下载免费PDF全文
Incision of damaged DNA by the Escherichia coli UvrABC endonuclease requires the UvrA, UvrB, and UvrC proteins as well as ATP hydrolysis. This incision reaction can be divided into three steps: site recognition, preincision complex formation, and incision. UvrAB is able to execute the first two steps in the reaction while the addition of UvrC is required for the incision of DNA. This incision reaction does not require ATP hydrolysis and results in the formation of a tight UvrABC post-incision complex and the generation of an oligomer of approximately 12 nucleotides. At high UvrABC concentrations the specificity of the incision for damaged DNA is decreased and significant incision of undamaged DNA occurs. Analogous to damage specific incision, this type of incision leads to generation of an oligonucleotide, but in this case the size is approximately 9 nucleotides in length. Further evidence shows that the combination of UvrB and UvrC proteins can generate a significant amount of a similar size product on undamaged DNA. In addition, the UvrC protein alone can generate a small amount of the same product. Immunological characterization of the weak nuclease activity seen with UvrC indicates that the activity is very tightly associated with the purified UvrC protein. 相似文献
7.
8.
Prokaryotic DNA repair nucleases are useful reagents for detecting DNA lesions. Escherichia coli UvrABC endonuclease can incise DNA containing UV photoproducts and bulky chemical adducts. The limited stability of the E. coli UvrABC subunits leads to difficulty in estimating incision efficiency and quantitative adduct detection. To develop a more stable enzyme with greater utility for the detection of DNA adducts, thermoresistant UvrABC endonuclease was cloned from the eubacterium Bacillus caldotenax (Bca) and individual recombinant protein subunits were overexpressed in and purified from E. coli. Here, we show that Bca UvrC that had lost activity or specificity could be restored by dialysis against buffer containing 500 mM KCl and 20mM dithiothreitol. Our data indicate that UvrC solubility depended on high salt concentrations and UvrC nuclease activity and the specificity of incisions depended on the presence of reduced sulfhydryls. Optimal conditions for BCA UvrABC-specific cleavage of plasmid DNAs treated with [3H](+)-7R,8S-dihydroxy-9S,10R-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE) (1-5 lesions/plasmid) were developed. Preincubation of substrates with UvrA and UvrB enhanced incision efficiency on damaged substrates and decreased non-specific nuclease activity on undamaged substrates. Under optimal conditions for damaged plasmid incision, approximately 70% of adducts were incised in 1 nM plasmid DNA (2 BPDE adducts/5.4 kbp plasmid) with UvrA at 2.5 nM, UvrB at 62.5 nM, and UvrC at 25 nM. These results demonstrate the potential usefulness of the Bca UvrABC for monitoring the distribution of chemical carcinogen-induced lesions in DNA. 相似文献
9.
The physiological synthesis of L-tryptophan from indoleglycerol phosphate and L-serine catalyzed by the alpha 2 beta 2 bienzyme complex of tryptophan synthase requires spatial and dynamic cooperation between the two distant alpha and beta active sites. The carbanion of the adduct of L-tryptophan to pyridoxal phosphate accumulated during the steady state of the catalyzed reaction. Moreover, it was formed transiently and without a lag in single turnovers, and glyceraldehyde 3-phosphate was released only after formation of the carbanion. These and further data prove first that the affinity for indoleglycerol phosphate and its cleavage to indole in the alpha subunit are enhanced substantially by aminoacrylate bound to the beta subunit. This indirect activation explains why the turnover number of the physiological reaction is larger than that of the indoleglycerol phosphate cleavage reaction. Second, reprotonation of nascent tryptophan carbanion is rate limiting for overall tryptophan synthesis. Third, most of the indole generated in the active site of the alpha subunit is transferred directly to the active site of the beta subunit and only insignificant amounts pass through the solvent. Comparison of the single turnover rate constants with the known elementary rate constants of the partial reactions catalyzed by the alpha and beta active sites suggests that the cleavage reaction rather than the transfer of indole or its condensation with aminoacrylate is rate limiting for the formation of nascent tryptophan. 相似文献
10.
Characterization of the reaction product of the oriT nicking reaction catalyzed by Escherichia coli DNA helicase I. 总被引:6,自引:2,他引:6 下载免费PDF全文
DNA helicase I, encoded on the Escherichia coli F plasmid, catalyzes a site- and strand-specific nicking reaction within the F plasmid origin of transfer (oriT) to initiate conjugative DNA strand transfer. The product of the nicking reaction contains a single phosphodiester bond interruption as determined by single-nucleotide resolution mapping of both sides of the nick site. This analysis has demonstrated that the nick is located at precisely the same site previously shown to be nicked in vivo (T. L. Thompson, M. B. Centola, and R. C. Deonier, J. Mol. Biol. 207:505-512, 1989). In addition, studies with two oriT point mutants have confirmed the specificity of the in vitro reaction. Characterization of the nicked DNA product has revealed a modified 5' end and a 3' OH available for extension by E. coli DNA polymerase I. Precipitation of nicked DNA with cold KCl in the presence of sodium dodecyl sulfate suggests the existence of protein covalently attached to the nicked DNA molecule. The covalent nature of this interaction has been directly demonstrated by transfer of radiolabeled phosphate from DNA to protein. On the basis of these results, we propose that helicase I becomes covalently bound to the 5' end of the nicked DNA strand as part of the reaction mechanism for phosphodiester bond cleavage. A model is presented to suggest how helicase I could nick the F plasmid at oriT and subsequently unwind the duplex DNA to provide single-stranded DNA for strand transfer during bacterial conjugation. 相似文献
11.
Stenberg F Chovanec P Maslen SL Robinson CV Ilag LL von Heijne G Daley DO 《The Journal of biological chemistry》2005,280(41):34409-34419
Protein complexes are an intrinsic aspect of life in the membrane. Knowing which proteins are assembled in these complexes is therefore essential to understanding protein function(s). Unfortunately, recent high throughput protein interaction studies have failed to deliver any significant information on proteins embedded in the membrane, and many membrane protein complexes remain ill defined. In this study, we have optimized the blue native-PAGE technique for the study of membrane protein complexes in the inner and outer membranes of Escherichia coli. In combination with second dimension SDS-PAGE and mass spectrometry, we have been able to identify 43 distinct protein complexes. In addition to a number of well characterized complexes, we have identified known and orphan proteins in novel oligomeric states. For two orphan proteins, YhcB and YjdB, our findings enable a tentative functional assignment. We propose that YhcB is a hitherto unidentified additional subunit of the cytochrome bd oxidase and that YjdB, which co-localizes with the ZipA protein, is involved in cell division. Our reference two-dimensional blue native-SDS-polyacrylamide gels will facilitate future studies of the assembly and composition of E. coli membrane protein complexes during different growth conditions and in different mutant backgrounds. 相似文献
12.
DNA base composition determines the specificity of UvrABC endonuclease incision of a psoralen cross-link 总被引:8,自引:0,他引:8
The sequences flanking a psoralen interstrand cross-link may determine how it is repaired. Our comparison of the Escherichia coli UvrABC endonuclease incision of a variety of specific cross-link sequences in a single natural DNA fragment showed that DNA base composition determines which of two cross-linked DNA strands will be incised. G/C enrichment of the region 6-12 bases 5' of the modified T on the furan-side strand results in preferential incision of the furan-side strand. When the G/C-rich region is on the 3' side, or on neither side, incisions occur on either strand. These effects of DNA base composition suggest that UvrAB can bind in two ways to a psoralen cross-link. 相似文献
13.
The stereochemical course of the reaction catalyzed by the EcoRV restriction endonuclease has been determined. This endonuclease recognizes GATATC sequence and cuts between the central T and dA bases. The Rp isomer of d(GACGATsATCGTC) (this dodecamer contains a phosphorothioate rather than the usual phosphate group between the central T and dA residues, indicated by the s) was a substrate for the endonuclease. Performing this reaction in H2 18O gave [18O]dps(ATCGTC) (a pentamer containing an 18O-labeled 5'-phosphorothioate) which was converted to [18O]dAMPS with nuclease P1. This deoxynucleoside 5'-[18O]phosphorothioate was stereospecifically converted to [18O]dATP alpha S with adenylate kinase and pyruvate kinase [Brody, R. S., & Frey, P. A. (1981) Biochemistry 20, 1245-1251]. Analysis of the position of the 18O in this product by 31P NMR spectroscopy showed that it was in a bridging position between the alpha- and beta-phosphorus atoms. This indicates that the EcoRV hydrolysis proceeds with inversion of configuration at phosphorus. The simplest interpretation is that the mechanism of this endonuclease involves a direct in-line attack at phosphorus by H2O with a trigonal bipyramidal transition state. A covalent enzyme oligodeoxynucleotide species can be discounted as an intermediate. An identical result has been previously observed with the EcoR1 endonuclease [Connolly, B. A., Eckstein, F., & Pingoud, A. (1984) J. Biol. Chem. 259, 10760-10763]. X-ray crystallography has shown that both of these endonucleases contain a conserved array of amino acids at their active sites. Possible mechanistic roles for these conserved amino acids in the light of the stereochemical findings are discussed. 相似文献
14.
Escherichia coli Fpg protein and UvrABC endonuclease repair DNA damage induced by methylene blue plus visible light in vivo and in vitro. 下载免费PDF全文
pBR322 plasmid DNA was treated with methylene blue plus visible light (MB-light) and tested for transformation efficiency in Escherichia coli mutants defective in either formamidopyrimidine-DNA glycosylase (Fpg protein) and/or UvrABC endonuclease. The survival of pBR322 DNA treated with MB-light was not significantly reduced when transformed into either fpg-1 or uvrA single mutants compared with that in the wild-type strain. In contrast, the survival of MB-light-treated pBR322 DNA was greatly reduced in the fpg-1 uvrA double mutant. The synergistic effect of these two mutations was not observed in transformation experiments using pBR322 DNA treated with methyl methanesulfonate, UV light at 254 nm, or ionizing radiation. In vitro experiments showed that MB-light-treated pBR322 DNA is a substrate for the Fpg protein and UvrABC endonuclease. The number of sites sensitive to cleavage by either Fpg protein or UvrABC endonuclease was 10-fold greater than the number of apurinic-apyrimidinic sites indicated as Nfo protein (endonuclease IR)-sensitive sites. Seven Fpg protein-sensitive sites per PBR322 molecule were required to produce a lethal hit when transformed into the uvrA fpg-1 mutant. These results suggest that MB-light induces DNA base modifications which are lethal and that these modifications are repaired by Fpg protein and UvrABC endonuclease in vivo and in vitro. Therefore, one of the physiological functions of Fpg protein might be to repair DNA base damage induced by photosensitizers and light. 相似文献
15.
The enzyme L-aspartate-beta-semialdehyde dehydrogenase from Escherichia coli has been studied by oligonucleotide-directed mutagenesis. The focus of this investigation was to examine the role of a cysteine residue that had been previously identified by chemical modification with an active site directed reagent (Biellmann et al. (1980) Eur. J. Biochem. 104, 59-64). Substitution of this cysteine at position 135 with an alanine results in complete loss of enzyme activity. However, changing this cysteine to a serine yields a mutant enzyme with a maximum velocity that is 0.3% that of the native enzyme. This C135S mutant has retained essentially the same affinity for substrates as the native enzyme, and the same overall conformation as reflected in identical behavior on gel electrophoresis and in identical fluorescence spectra. The pH profile of the native enzyme shows a loss in catalytic activity upon protonation of a group with a pKa value of 7.7. The same activity loss is observed at this pH with the serine-135 mutant, despite the differences in the pKa values for a cysteine sulfhydryl and a serine hydroxyl group that have been measured in model compounds. This observed pKa value may reflect the protonation of an auxiliary catalyst that enhances the reactivity of the active site cysteine nucleophile in the native aspartate-beta-semialdehyde dehydrogenase. 相似文献
16.
Zharkov DO Golan G Gilboa R Fernandes AS Gerchman SE Kycia JH Rieger RA Grollman AP Shoham G 《The EMBO journal》2002,21(4):789-800
Endonuclease VIII (Nei) of Escherichia coli is a DNA repair enzyme that excises oxidized pyrimidines from DNA. Nei shares with formamidopyrimidine-DNA glycosylase (Fpg) sequence homology and a similar mechanism of action: the latter involves removal of the damaged base followed by two sequential beta-elimination steps. However, Nei differs significantly from Fpg in substrate specificity. We determined the structure of Nei covalently crosslinked to a 13mer oligodeoxynucleotide duplex at 1.25 A resolution. The crosslink is derived from a Schiff base intermediate that precedes beta-elimination and is stabilized by reduction with NaBH(4). Nei consists of two domains connected by a hinge region, creating a DNA binding cleft between domains. DNA in the complex is sharply kinked, the deoxyribitol moiety is bound covalently to Pro1 and everted from the duplex into the active site. Amino acids involved in substrate binding and catalysis are identified. Molecular modeling and analysis of amino acid conservation suggest a site for recognition of the damaged base. Based on structural features of the complex and site-directed mutagenesis studies, we propose a catalytic mechanism for Nei. 相似文献
17.
V A A?vazashvili S N Mikha?lov N Sh Padiukova R Sh Bibilashvili M Ia Karpe?ski? 《Molekuliarnaia biologiia》1987,21(4):1080-1091
It was shown that RNA-polymerase is able to discriminate diastereoisomers of 5'-methyl-substituted analogs of ribonucleoside triphosphates (rNTP). Under conditions of soil substrate reactions when the analog is added to the presynthesized ternary complexes, D-allo- and L-talo-stereoisomers incorporate into RNA 100 and 1000 times, respectively, less effectively, then the natural rNTP. The effectivities of incorporation of other 2'- and 3'-substituted analogs of rNTP were measured under the same conditions and compared with that for 5'-Me-rNTP. It was shown also that RNA-polymerase does not support long-chain RNA synthesis from 5'-Me-rNTP in the absence of natural rNTP. No more then two analog residues can be attached to the 3'-end of the presynthesized RNA under such conditions. Addition of one natural rNTP to this reaction mixture results in the synthesis of long alternating RNA containing D-allo-stereoisomer and natural rNTP residues. In the case of L-talo-stereoisomer RNA elongation is not inhibited, if the distance between the analog residues in the RNA chain is not shorter then five nucleotide residues. The rate of pyrophosphorolysis from the RNA of the analogs studied was the same as for the natural rNTP residues. 相似文献
18.
The conditions for phosphatidylethanolamine (PE)-diacylglycerol (DAG) exchange catalysed by cell-free extracts of Escherichia coli were studied using 14C- or 3H-analogues of both these lipids. The reaction, examined with either labelled PE or labelled DAG, occurred without co-factor addition and was inhibited by Ca2+ and Mg2+. Detergents such as Triton X-100 greatly enhanced the activity; however, the optimal concentration of this agent depended on the lipid substrate concentration. The exchange-catalysing enzyme involved in these extracts appeared to be very specific for DAG and PE, since no other labelled phospholipid or acylglycerol derivative formed radioactive product under the assay conditions tested. Again, endogenous [3H]PE present in the enzyme source, but no other endogenous lipid, was converted to labelled DAG in the presence of added 1,2-dioleoyl-sn-glycerol. The Vmax value for the conversion of labelled PE to DAG was very similar to the Vmax value found for the conversion of labelled DAG to PE as would be expected in the case of an exchange reaction being responsible for both conversions. However, the Km value for PE was appreciably larger than that for DAG. The enzyme involved, displayed a broad acyl chain specificity as could be judged from: (1) the ability of various species of DAG and PE to stimulate the exchange; (2) the suitability of lipid substrates prepared from widely different biological sources; and (3) the interchange of acyl groups that occurred between dimyristoyl PE and dilauroylglycerol. As would be expected for an exchange reaction, the incorporation of lauroyl groups into PE occurred without an increase in the total fatty acid content of this phospholipid. The results of the present study confirm and further characterize the PE-DAG exchange reaction of E. coli. 相似文献
19.
The restriction endonuclease coded by the Escherichia coli plasmid P15 cleaves unmodified DNA in the presence of ATP and magnesium ions. This reaction is stimulated by the addition of S-adenosylmethionine. Both ATP and S-adenosylmethionine behave as allosteric effectors. The enzyme forms a complex with unmodified DNA in the absence of S-adenosylmethionine and ATP. Neither the rate of complex formation nor its stability is significantly affected by S-adenosylmethionine. The reaction of ATP with this complex is a late step in the reaction sequence prior to DNA cleavage and is affected by the presence of S-adenosylmethionine. 相似文献
20.
Catalytic cycle of the biosynthetic reaction catalyzed by adenylylated glutamine synthetase from Escherichia coli 总被引:1,自引:0,他引:1
The covalently attached AMP moiety of adenylylated glutamine synthetase from Escherichia coli has been replaced by its fluorescent analog, 2-aza-1,N6-etheno-AMP (aza-epsilon-AMP). The modified glutamine synthetase (aza-epsilon-GS) exhibits divalent cation requirement (Mn2+, rather than Mg2+), pH profile, Vmax, and Km similar to those of naturally adenylylated glutamine synthetase. Whereas naturally adenylylated glutamine synthetase exhibits only negligible fluorescence changes upon the binding of substrates, aza-epsilon-GS exhibits large fluorescence changes. The fluorescence changes have been used by means of a stopped flow technique to reveal the involvement of five fluorometrically distinct intermediates in the catalytic cycle for the biosynthesis of glutamine catalyzed by the adenylylated glutamine synthetase. The mechanism is very similar to that previously established for the unadenylylated enzyme, using intrinsic tryptophan fluorescence. Substrates bind via a rapid equilibrium random mechanism, but the reaction proceeds in a stepwise manner. The formation of an enzyme-bound intermediate (probably gamma-glutamyl phosphate + ADP) from ATP and L-glutamate is the rate-limiting step, with the subsequent reaction of the enzyme-bound intermediate occurring very rapidly. The success in elucidating this complex mechanism is due largely to the vastly different amplitudes of the fluorescence changes at the two excitation maxima (300 nm and 360 nm) of the aza-epsilon-AMP moiety which accompany the formation of the various intermediates. 相似文献