首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Histone deacetylases (HDACs) counterbalance acetylation of lysine residues, a protein modification involved in numerous biological processes. Here, Hdac1 and Hdac2 conditional knock‐out alleles were used to study the function of class I Hdac1 and Hdac2 in cell cycle progression and haematopoietic differentiation. Combined deletion of Hdac1 and Hdac2, or inactivation of their deacetylase activity in primary or oncogenic‐transformed fibroblasts, results in a senescence‐like G1 cell cycle arrest, accompanied by up‐regulation of the cyclin‐dependent kinase inhibitor p21Cip. Notably, concomitant genetic inactivation of p53 or p21Cip indicates that Hdac1 and Hdac2 regulate p53–p21Cip‐independent pathways critical for maintaining cell cycle progression. In vivo, we show that Hdac1 and Hdac2 are not essential for liver homeostasis. In contrast, total levels of Hdac1 and Hdac2 in the haematopoietic system are critical for erythrocyte‐megakaryocyte differentiation. Dual inactivation of Hdac1 and Hdac2 results in apoptosis of megakaryocytes and thrombocytopenia. Together, these data indicate that Hdac1 and Hdac2 have overlapping functions in cell cycle regulation and haematopoiesis. In addition, this work provides insights into mechanism‐based toxicities observed in patients treated with HDAC inhibitors.  相似文献   

2.
3.
The histone deacetylases HDAC1 and HDAC2 remove acetyl moieties from lysine residues of histones and other proteins and are important regulators of gene expression. By deleting different combinations of Hdac1 and Hdac2 alleles in the epidermis, we reveal a dosage‐dependent effect of HDAC1/HDAC2 activity on epidermal proliferation and differentiation. Conditional ablation of either HDAC1 or HDAC2 in the epidermis leads to no obvious phenotype due to compensation by the upregulated paralogue. Strikingly, deletion of a single Hdac2 allele in HDAC1 knockout mice results in severe epidermal defects, including alopecia, hyperkeratosis, hyperproliferation and spontaneous tumour formation. These mice display impaired Sin3A co‐repressor complex function, increased levels of c‐Myc protein, p53 expression and apoptosis in hair follicles (HFs) and misregulation of HF bulge stem cells. Surprisingly, ablation of HDAC1 but not HDAC2 in a skin tumour model leads to accelerated tumour development. Our data reveal a crucial function of HDAC1/HDAC2 in the control of lineage specificity and a novel role of HDAC1 as a tumour suppressor in the epidermis.  相似文献   

4.
5.
p63 expression during normal cutaneous wound healing in humans   总被引:4,自引:0,他引:4  
Noszczyk BH  Majewski ST 《Plastic and reconstructive surgery》2001,108(5):1242-7; discussion 1248-50
p63, a recently identified member of the p53 family, was shown to play a role in morphogenesis and, probably, in tumors of keratinocyte origin. Because p63 seems to be a marker of keratinocytes with a high proliferative potential, the expression of this protein was studied along with another marker of cell proliferation, Ki67, during normal epidermal regeneration in humans. Serial biopsies of human skin healing by a secondary intention were taken at various time intervals (between days 2 and 21 after the injury) and were studied immunohistochemically with the use of a 4A4 monoclonal antibody against the DeltaNp63 variant and MM1 monoclonal antibody against the Ki67 antigen. In the normal and injured skin, the expression of the DeltaNp63 protein was restricted to the epidermal keratinocytes and hair follicle keratinocytes. In the first days of the healing process, there was a dramatic down-regulation of both DeltaNp63 and Ki67 expression in the area of the epidermal tongue invading under the crust. Five days after the injury, induction of DeltaNp63 in the basal keratinocytes could be detected, followed by a gradual increase of its expression in subsequent days. Several days after complete wound closure, DeltaNp63 was still strongly expressed not only in the basal keratinocytes but also in the entire spinous layer, whereas the Ki67 expression was restricted to single cells in the basal layer. The results indicate that DeltaNp63 could be involved in the control of physiologic processes, such as cell proliferation and migration, related to epidermal repair during healing of normal skin in humans.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号