首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Host-pathogen interactions result in protein expression changes within both the host and the pathogen. Here, results from proteomic characterization of host response following exposure to Yersinia pestis, the causative agent of plague, and to two near neighbors, Yersinia pseudotuberculosis and Yersinia enterocolitica, are reported. Human monocyte-like cells were chosen as a model for macrophage immune response to pathogen exposure. Two-dimensional electrophoresis followed by mass spectrometry was used to identify host proteins with differential expression following exposure to these three closely related Yersinia species. This comparative proteomic characterization of host response clearly shows that host protein expression patterns are distinct for the different pathogen exposures, and contributes to further understanding of Y. pestis virulence and host defense mechanisms. This work also lays the foundation for future studies aimed at defining biomarkers for presymptomatic detection of plague.  相似文献   

2.
Yersinia type III secretion: send in the effectors   总被引:26,自引:0,他引:26       下载免费PDF全文
Pathogenic Yersinia spp (Yersinia pestis, Yersinia pseudotuberculosis, and Yersinia enterocolitica) have evolved an exquisite method for delivering powerful effectors into cells of the host immune system where they inhibit signaling cascades and block the cells' response to infection. Understanding the molecular mechanisms of this system has provided insight into the processes of phagocytosis and inflammation.  相似文献   

3.
4.
Data about interaction of virulence factors of Yersinia enterocolitica and Yersinia pseudotuberculosis with host immune system cells are presented in the review. Response of innate and adaptive immunity cytokine system in cultures in vitro and during experiment was characterized; scarce data on production of cytokines in patients with yersiniosis are presented.  相似文献   

5.
Nucleotide oligomerisation domain 2 (NOD2) is a component of the innate immunity known to be involved in the homeostasis of Peyer patches (PPs) in mice. However, little is known about its role during gut infection in vivo. Yersinia pseudotuberculosis is an enteropathogen causing gastroenteritis, adenolymphitis and septicaemia which is able to invade its host through PPs. We investigated the role of Nod2 during Y. pseudotuberculosis infection. Death was delayed in Nod2 deleted and Crohn's disease associated Nod2 mutated mice orogastrically inoculated with Y. pseudotuberculosis. In PPs, the local immune response was characterized by a higher KC level and a more intense infiltration by neutrophils and macrophages. The apoptotic and bacterial cell counts were decreased. Finally, Nod2 deleted mice had a lower systemic bacterial dissemination and less damage of the haematopoeitic organs. This resistance phenotype was lost in case of intraperitoneal infection. We concluded that Nod2 contributes to the susceptibility to Y. pseudotuberculosis in mice.  相似文献   

6.
Ebolaviruses naturally infect a wide variety of cells including macrophages and dendritic cells (DCs), and the resulting cytokine and interferon-α/β (IFN) responses of infected cells are thought to influence viral pathogenesis. The VP35 protein impairs RIG-I-like receptor-dependent signaling to inhibit IFN production, and this function has been suggested to promote the ineffective host immune response characteristic of ebolavirus infection. To assess the impact of VP35 on innate immunity in biologically relevant primary cells, we used a recombinant Newcastle disease virus encoding VP35 (NDV/VP35) to infect macrophages and conventional DCs, which primarily respond to RNA virus infection via RIG-I-like pathways. VP35 suppressed not only IFN but also tumor necrosis factor (TNF)-α secretion, which are normally produced from these cells upon NDV infection. Additionally, in cells susceptible to the activity of VP35, IRF7 activation is impaired. In contrast, NDV/VP35 infection of plasmacytoid DCs, which activate IRF7 and produce IFN through TLR-dependent signaling, leads to robust IFN production. When plasmacytoid DCs deficient for TLR signaling were infected, NDV/VP35 was able to inhibit IFN production. Consistent with this, VP35 was less able to inhibit TLR-dependent versus RIG-I-dependent signaling in vitro. These data demonstrate that ebolavirus VP35 suppresses both IFN and cytokine production in multiple primary human cell types. However, cells that utilize the TLR pathway can circumvent this inhibition, suggesting that the presence of multiple viral sensors enables the host to overcome viral immune evasion mechanisms.  相似文献   

7.
To examine the regulation of cytokine synthesis during murine listeriosis, we have monitored IFN-gamma, TNF-alpha, and IL-1 beta mRNA levels in the spleens of C57B1/6 mice after the i.v. infusion of virulent and nonvirulent preparations of Listeria monocytogenes (LM). Messenger RNA coding for TNF, IL-1, or IFN did not become detectable until approximately 12 to 15 h after the infusion of virulent LM. Levels of each cytokine mRNA then increased synchronously reaching peak or near peak levels around 24 h after infection. Levels gradually decreased over the next 4 to 5 days. Unlike virulent LM, neither heat-killed LM, nor nonvirulent LM variants lacking listeriolysin O, stimulated monokine or IFN mRNA accumulation even when administered in very large doses. To gain perspective concerning the response to LM, we examined the early pattern of cytokine mRNA accumulation induced by Salmonella typhimurium (ST), an intracellular pathogen expressing LPS. We noted at least three significant differences between the cytokine responses to LM and ST: 1) monokine mRNA levels increased much more rapidly (within 1 h) after ST infection; 2) unlike LM, ST retained the capacity to stimulate cytokine mRNA production when injected as heat-killed bacteria; 3) in contrast to LM, ST could not trigger the early IFN production characteristic of LM infection. Our data suggest that monokine and IFN production early in listeriosis are critically linked with the process of bacterial invasion of host cells. The timing and pattern of cytokine mRNA accumulation in this setting is qualitatively different from that induced by LPS. The pathway described in these studies may also play a role in the host cytokine response to other intracellular pathogens as well.  相似文献   

8.
9.
Pathogens such as influenza A viruses (IAV) have to overcome a number of barriers defined and maintained by the host, to successfully establish an infection. One of the initial barriers is collectively characterized as the innate immune system. This is a broad anti-pathogen defense program that ranges from the action of natural killer cells to the induction of an antiviral cytokine response. In this article we will focus on new developments and discoveries concerning the interaction of IAV with the cellular innate immune signaling. We discuss new mechanisms of interference of IAV with the pathogen recognition receptor RIG-I and the type I IFN antagonist NS1 in the background of already known and established concepts. Further we summarize progress related to recently identified IFN induced proteins and the role of RNA interference in the context of IAV infection.  相似文献   

10.
11.
The ability of macrophages to release cytokines is crucial to the host response to intracellular infection. In particular, macrophage-derived TNF plays an important role in the host response to infection with the intracellular pathogen Mycobacterium tuberculosis. In mice, TNF is indispensable for the formation of tuberculous granulomas, which serve to demarcate the virulent bacterium. TNF is also implicated in many of the immunopathological features of tuberculosis. To investigate the role of TNF in the local immune response, we infected human alveolar macrophages with virulent and attenuated mycobacteria. Infection with virulent strains induced the secretion of significantly higher levels of bioactive TNF than attenuated strains correlating with their ability to multiply intracellularly. Treatment of infected macrophages with neutralizing anti-TNF Abs reduced the growth rate of intracellular bacteria, whereas bacterial replication was augmented by addition of exogenous TNF. Infected and uninfected macrophages contributed to cytokine production as determined by double-staining of M. tuberculosis and intracellular TNF. The induction of TNF by human alveolar macrophages at the site of infection permits the multiplication of intracellular bacteria and may therefore present an evasion mechanism of human pathogens.  相似文献   

12.
Interferon-gamma (IFN gamma) is a cytokine that plays physiologically important roles in promoting innate and adaptive immune responses. The absence of IFN gamma production or cellular responsiveness in humans and experimental animals significantly predisposes the host to microbial infection, a result that validates the physiologic importance of this cytokine in preventing infectious disease. Recently, an additional role for IFN gamma in preventing development of primary and transplanted tumors has been identified. Although there now appears to be a consensus that IFN gamma promotes host responses to tumors, the mechanisms by which this cytokine achieves its effects remain unclear. In this review, we briefly discuss key issues of the molecular cell biology of IFN gamma and its receptor that are most relevant to IFN gamma-dependent anti-tumor effects and then focus on the data implicating IFN gamma as a critical immune system component that regulates tumor development. Potential mechanisms underlying IFN gamma's anti-tumor effects are discussed and a preliminary integrative model of IFN gamma's actions on tumors is proposed. Finally, the capacity of IFN gamma and lymphocytes to not only provide protection against tumor development but also to sculpt the immunogenic phenotype of tumors that develop in an immunocompetent host is presented and introduced as a "cancer immunoediting" process.  相似文献   

13.
Immunomodulation by cytomegaloviruses: manipulative strategies beyond evasion   总被引:23,自引:0,他引:23  
Human cytomegalovirus (CMV) remains the major infectious cause of birth defects as well as an important opportunistic pathogen. Individuals infected with CMV mount a strong immune response that suppresses persistent viral replication and maintains life-long latency. Loss of immune control opens the way to virus reactivation and disease. The large number of immunomodulatory functions encoded by CMV increases the efficiency of infection, dissemination, reactivation and persistent infection in hosts with intact immune systems and could contribute to virulence in immunocompromised hosts. These functions modulate both the innate and adaptive arms of the immune response and appear to target cellular rather than humoral responses preferentially. CMV encodes a diverse arsenal of proteins focused on altering and/or mimicking: (1) classical and non-classical major histocompatibility complex (MHC) protein function; (2) leukocyte migration, activation and cytokine responses; and (3) host cell susceptibility to apoptosis. Evidence that the host evolves mechanisms to counteract virus immune modulation is also accumulating. Although immune evasion is certainly one clear goal of the virus, the pro-inflammatory impact of certain viral functions suggests that increased inflammation benefits viral dissemination. The ability of such viral functions to successfully 'face off' against the host immune system ensures the success of this pathogen in the human population and could provide key insights into disease mechanisms.  相似文献   

14.
Small molecule screening identified 5-nitro-7-((4-phenylpiperazine-1-yl-)methyl)quinolin-8-ol INP1750 as a putative inhibitor of type III secretion (T3S) in the Gram-negative pathogen Yersinia pseudotuberculosis. In this study we report structure-activity relationships for inhibition of T3S and show that the most potent compounds target both the extracellular bacterium Y. pseudotuberculosis and the intracellular pathogen Chlamydia trachomatis in cell-based infection models.  相似文献   

15.
Since its recent emergence from the enteropathogen Yersinia pseudotuberculosis, Y. pestis, the plague agent, has acquired an intradermal (id) route of entry and an extreme virulence. To identify pathophysiological events associated with the Y. pestis high degree of pathogenicity, we compared disease progression and evolution in mice after id inoculation of the two Yersinia species. Mortality studies showed that the id portal was not in itself sufficient to provide Y. pseudotuberculosis with the high virulence power of its descendant. Surprisingly, Y. pseudotuberculosis multiplied even more efficiently than Y. pestis in the dermis, and generated comparable histological lesions. Likewise, Y. pseudotuberculosis translocated to the draining lymph node (DLN) and similar numbers of the two bacterial species were found at 24 h post infection (pi) in this organ. However, on day 2 pi, bacterial loads were higher in Y. pestis-infected than in Y. pseudotuberculosis-infected DLNs. Clustering and multiple correspondence analyses showed that the DLN pathologies induced by the two species were statistically significantly different and identified the most discriminating elementary lesions. Y. pseudotuberculosis infection was accompanied by abscess-type polymorphonuclear cell infiltrates containing the infection, while Y. pestis-infected DLNs exhibited an altered tissue density and a vascular congestion, and were typified by an invasion of the tissue by free floating bacteria. Therefore, Y. pestis exceptional virulence is not due to its recently acquired portal of entry into the host, but is associated with a distinct ability to massively infiltrate the DLN, without inducing in this organ an organized polymorphonuclear cell reaction. These results shed light on pathophysiological processes that draw the line between a virulent and a hypervirulent pathogen.  相似文献   

16.
Yersinia pseudotuberculosis is a pathogenic enteric bacteria that evades host cellular immune response and resides extracellularly in vivo. Nevertheless, an important contribution of T cells to defense against Yersinia has been previously established. In this study we demonstrate that Lewis rats infected with virulent strains of Y. pseudotuberculosis, mount a Yersinia-specific, RT1-A-restricted, CD8+ T cell-mediated, cytotoxic response. Sensitization of lymphoblast target cells for cytolysis by Yersinia-specific CTLs required their incubation with live Yersinia and was independent of endocytosis. Although fully virulent Yersinia did not invade those cells, they attached to their surface. In contrast, invasin-deficient strain failed to bind to blast targets or to sensitize them for cytolysis. Furthermore, an intact virulence plasmid was an absolute requirement for Yersinia to sensitize blast targets for cytolysis. Using a series of Y. pseudotuberculosis mutants selectively deficient in virulence plasmid-encoded proteins, we found no evidence for a specific role played by YadA, YopH, YpkA, or YopJ in the sensitization process of blast targets. In contrast, mutations suppressing YopB, YopD, or YopE expression abolished the capacity of Yersinia to sensitize blast targets. These results are consistent with a model in which extracellular Yersinia bound to lymphoblast targets via invasin translocate inside eukaryotic cytosol YopE, which is presented in a class I-restricted fashion to CD8+ cytotoxic T cells. This system could represent a more general mechanism by which bacteria harboring a host cell contact-dependent or type III secretion apparatus trigger a class I-restricted CD8+ T cell response.  相似文献   

17.
YopJ, a virulence factor of Yersinia pseudotuberculosis, can bind to several key intracellular signaling proteins, members of the MAPKK family, preventing their activation and protecting the pathogen from host defense mechanisms.  相似文献   

18.
During most infections, the population of immune cells known as macrophages are key to taking up and killing bacteria as an integral part of the immune response. However, during infection with Mycobacterium tuberculosis (Mtb), host macrophages serve as the preferred environment for mycobacterial growth. Further, killing of Mtb by macrophages is impaired unless they become activated. Activation is induced by stimulation from bacterial antigens and inflammatory cytokines derived from helper T cells. The key macrophage-activating cytokines in Mtb infection are tumor necrosis factor-α (TNF) and interferon (IFN)-γ. Due to differences in cellular sources and secretion pathways for TNF and IFN-γ, the possibility of heterogeneous cytokine distributions exists, suggesting that the timing of macrophage activation from these signals may affect activation kinetics and thus impact the outcome of Mtb infection. Here we use a mathematical model to show that negative feedback from production of nitric oxide (the key mediator of mycobacterial killing) that typically optimizes macrophage responses to activating stimuli may reduce effective killing of Mtb. Statistical sensitivity analysis predicts that if TNF and IFN-γ signals precede infection, the level of negative feedback may have a strong effect on how effectively macrophages kill Mtb. However, this effect is relaxed when IFN-γ or TNF+IFN-γ signals are received coincident with infection. Under these conditions, the model suggests that negative feedback induces fast responses and an initial overshoot of nitric oxide production for given doses of TNF and IFN-γ, favoring killing of Mtb. Together, our results suggest that direct entry of macrophages into a granuloma site (and not distal to it) from lung vascular sources represents a preferred host strategy for mycobacterial control. We examine implications of these results in establishment of latent Mtb infection.  相似文献   

19.
20.
B Deng  S Zhang  Y Geng  Y Zhang  Y Wang  W Yao  Y Wen  W Cui  Y Zhou  Q Gu  W Wang  Y Wang  Z Shao  Y Wang  C Li  D Wang  Y Zhao  P Liu 《PloS one》2012,7(7):e41365

Background

Severe fever with thrombocytopenia syndrome virus (SFTSV), which can cause hemorrhagic fever–like illness, is a newly discovered bunyavirus in China. The pathogenesis of SFTSV infection is poorly understood. However, it has been suggested that immune mechanisms, including cytokines and chemokines, play an important role in disease pathogenesis. In the present study, we investigated host cytokine and chemokine profiles in serum samples of patients with SFTSV infection from Northeast China and explored a possible correlation between cytokine levels and disease severity.

Methods and Principal Findings

Acute phase serum samples from 40 patients, diagnosed with SFTSV infection were included. Patients were divided into two groups – severe or non-severe – based on disease severity. Levels of tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β, interleukin-6, interferon (IFN)-γ, IFN- γ-induced protein (IP)-10 and RANTES were measured in the serum samples with commercial ELISAs. Statistical analysis showed that increases in TNF-α, IP-10 and IFN-γ were associated with disease severity.

Conclusions

We suggest that a cytokine-mediated inflammatory response, characterized by cytokine and chemokine production imbalance, might be in part responsible for the disease progression of patients with SFTSV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号