首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
How predictable is the genetic basis of phenotypic adaptation? Answering this question begins by estimating the repeatability of adaptation at the genetic level. Here, we provide a comprehensive estimate of the repeatability of the genetic basis of adaptive phenotypic evolution in a natural system. We used quantitative trait locus (QTL) mapping to discover genomic regions controlling a large number of morphological traits that have diverged in parallel between pairs of threespine stickleback (Gasterosteus aculeatus species complex) in Paxton and Priest lakes, British Columbia. We found that nearly half of QTL affected the same traits in the same direction in both species pairs. Another 40% influenced a parallel phenotypic trait in one lake but not the other. The remaining 10% of QTL had phenotypic effects in opposite directions in the two species pairs. Similarity in the proportional contributions of all QTL to parallel trait differences was about 0.4. Surprisingly, QTL reuse was unrelated to phenotypic effect size. Our results indicate that repeated use of the same genomic regions is a pervasive feature of parallel phenotypic adaptation, at least in sticklebacks. Identifying the causes of this pattern would aid prediction of the genetic basis of phenotypic evolution.  相似文献   

3.
Understanding the genetic basis of traits involved in adaptive divergence and speciation is one of the most fundamental objectives in evolutionary biology. Toward that end, we look for signatures of extreme plate loss in the genome of freshwater threespine sticklebacks (Gasterosteus aculeatus). Plateless stickleback have been found in only a few lakes and streams across the world; they represent the far extreme of a phenotypic continuum (plate number) that has been studied for years, although plateless individuals have not yet been the subject of much investigation. We use a dense single nucleotide polymorphism dataset made using RADseq to study fish from three freshwater populations containing plateless and low plated individuals, as well as fish from full plated marine populations. Analyses were performed using FastStructure, sliding windows FST, Bayescan and latent factor mixed models to search for genomic differences between the low plated and plateless phenotypes both within and among the three lakes. At least 18 genomic regions which may contribute to within‐morph plate number variation were detected in our low plated stickleback populations. We see no evidence of a selective sweep between low and plateless fish; rather reduction of plate number within the low plated morph seems to be polygenic.  相似文献   

4.
Geographical variation in behaviour within species is common. However, how behavioural plasticity varies between and within locally adapted populations is less studied. Here, we studied behavioural plasticity induced by perceived predation risk and food availability in pond (low predation - high competition) vs. coastal marine (high predation - low competition) nine-spined sticklebacks (Pungitius pungitius) reared in a common garden experiment. Pond sticklebacks were more active feeders, more risk-taking, aggressive and explorative than marine sticklebacks. Perceived predation risk decreased aggression and risk-taking of all fish. Food restriction increased feeding activity and risk-taking. Pond sticklebacks became more risk-taking than marine sticklebacks under food shortage, whereas well-fed fish behaved similarly. Among poorly fed fish, males showed higher drive to feed, whereas among well-fed fish, females did. Apart from showing how evolutionary history, ontogenetic experience and sex influence behaviour, the results provide evidence for habitat-dependent expression of adaptive phenotypic plasticity.  相似文献   

5.
Many traits evolve in parallel in widely separated populations. The evolutionary radiation of threespine sticklebacks provides a powerful model for testing the molecular basis of parallel evolution in vertebrates. Although marine sticklebacks are completely covered with bony armor plates, most freshwater populations have dramatic reductions in plates. Recent genetic studies have shown that major changes in armor patterning are likely due to regulatory alterations in the gene encoding the secreted signaling molecule ectodysplasin (EDA). In mammals, mutations in many different components of the EDA-signaling pathway produce similar changes in hair, teeth, sweat glands, and dermal bones. To test whether other genes in the EDA pathway also control natural variation in armor plates, we identified and mapped stickleback EDA Receptor (EDAR), the EDAR-Associated Death Domain adaptor, Tumor Necrosis Factor Receptor (TNFR) SuperFamily member 19, its adaptor TNFR-Associated Factor 6, and the downstream regulator nuclear factor kappa B Essential Modulator (NEMO). In contrast to the diversity of genes underlying ectodermal dysplasia disease phenotypes in humans, none of these EDA pathway components map to chromosomes previously shown to modify armor plates in natural populations, though EDAR showed a small but significant effect on plate number. We further investigated whether these genes exhibit differences in copy number, target size, or genomic organization that might make them less suitable targets for evolutionary change. In comparison with EDA, all these genes have smaller surrounding noncoding (putative regulatory) regions, with fewer evolutionarily conserved regions. We suggest that the presence of highly modular cis-acting control sequences may be a key factor influencing the likelihood that particular genes will serve as the basis of major phenotypic changes in nature.  相似文献   

6.
Gene flow between diverging populations experiencing dissimilar ecological conditions can theoretically constrain adaptive evolution. To minimize the effect of gene flow, alleles underlying traits essential for local adaptation are predicted to be located in linked genome regions with reduced recombination. Local reduction in gene flow caused by selection is expected to produce elevated divergence in these regions. The highly divergent crab‐adapted and wave‐adapted ecotypes of the marine snail Littorina saxatilis present a model system to test these predictions. We used genome‐wide association (GWA) analysis of geometric morphometric shell traits associated with microgeographic divergence between the two L. saxatilis ecotypes within three separate sampling sites. A total of 477 snails that had individual geometric morphometric data and individual genotypes at 4,066 single nucleotide polymorphisms (SNPs) were analyzed using GWA methods that corrected for population structure among the three sites. This approach allowed dissection of the genomic architecture of shell shape divergence between ecotypes across a wide geographic range, spanning two glacial lineages. GWA revealed 216 quantitative trait loci (QTL) with shell size or shape differences between ecotypes, with most loci explaining a small proportion of phenotypic variation. We found that QTL were evenly distributed across 17 linkage groups, and exhibited elevated interchromosomal linkage, suggesting a genome‐wide response to divergent selection on shell shape between the two ecotypes. Shell shape trait‐associated loci showed partial overlap with previously identified outlier loci under divergent selection between the two ecotypes, supporting the hypothesis of diversifying selection on these genomic regions. These results suggest that divergence in shell shape between the crab‐adapted and wave‐adapted ecotypes is produced predominantly by a polygenic genomic architecture with positive linkage disequilibrium among loci of small effect.  相似文献   

7.
8.
A fundamental issue in speciation research is to evaluate phenotypic variation and the genomics driving the evolution of reproductive isolation between sister taxa. Above all, hybrid zones are excellent study systems for researchers to examine the association of genetic differentiation, phenotypic variation and the strength of selection. We investigated two contact zones in the marine gastropod Littorina saxatilis and utilized landmark‐based geometric morphometric analysis together with amplified fragment length polymorphism (AFLP) markers to assess phenotypic and genomic divergence between ecotypes under divergent selection. From genetic markers, we calculated the cline width, linkage disequilibrium and the average effective selection on a locus. Additionally, we conducted an association analysis linking the outlier loci and phenotypic variation between ecotypes and show that a proportion of outlier loci are associated with key adaptive phenotypic traits.  相似文献   

9.
10.
One of the main questions in evolutionary and conservation biology is how geographical and environmental features of the landscape shape neutral and adaptive genetic variation in natural populations. The identification of genomic polymorphisms that account for adaptive variation can aid in finding candidate loci for local adaptation. Consequently, a comparison of spatial patterns in neutral markers and loci under selection may help disentangle the effects of gene flow, genetic drift and selection at the landscape scale. Many amphibians breed in wetlands, which differ in environmental conditions and in the degree of isolation, enhancing the potential for local adaptation. We used microsatellite markers to measure genetic differentiation among 17 local populations of Rana arvalis breeding in a network of wetlands. We found that locus RC08604 deviated from neutral expectations, suggesting that it is a good candidate for directional selection. We used a genetic network analysis to show that the allele distribution in this locus is correlated with habitat characteristics, whereas this was not the case at neutral markers that displayed a different allele distribution and population network in the study area. The graph approach illustrated the genomic heterogeneity (neutral loci vs. the candidate locus for directional selection) of gene exchange and genetic divergence among populations under directional selection. Limited gene flow between wetlands was only observed at the candidate genomic region under directional selection. RC08604 is partially located inside an up‐regulated thyroid‐hormone receptor (TRβ) gene coordinating the expression of other genes during metamorphosis and appears to be linked with variation in larval life‐history traits found among R. arvalis populations. We suggest that directional selection on genes coding larval life‐history traits is strong enough to maintain the divergence in these genomic regions, reducing the effective recombination of locally adapted alleles but not in other regions of the genome. Integrating this knowledge into conservation plans at the landscape scale will improve the design of management strategies to preserve adaptive genetic diversity in wetland networks.  相似文献   

11.
Chromosomal fusions are hypothesized to facilitate adaptation to divergent environments, both by bringing together previously unlinked adaptive alleles and by creating regions of low recombination that facilitate the linkage of adaptive alleles; but, there is little empirical evidence to support this hypothesis. Here, we address this knowledge gap by studying threespine stickleback (Gasterosteus aculeatus), in which ancestral marine fish have repeatedly adapted to freshwater across the northern hemisphere. By comparing the threespine and ninespine stickleback (Pungitius pungitius) genomes to a de novo assembly of the fourspine stickleback (Apeltes quadracus) and an outgroup species, we find two chromosomal fusion events involving the same chromosomes have occurred independently in the threespine and ninespine stickleback lineages. On the fused chromosomes in threespine stickleback, we find an enrichment of quantitative trait loci underlying traits that contribute to marine versus freshwater adaptation. By comparing whole-genome sequences of freshwater and marine threespine stickleback populations, we also find an enrichment of regions under divergent selection on these two fused chromosomes. There is elevated genetic diversity within regions under selection in the freshwater population, consistent with a simulation study showing that gene flow can increase diversity in genomic regions associated with local adaptation and our demographic models showing gene flow between the marine and freshwater populations. Integrating our results with previous studies, we propose that these fusions created regions of low recombination that enabled the formation of adaptative clusters, thereby facilitating freshwater adaptation in the face of recurrent gene flow between marine and freshwater threespine sticklebacks.  相似文献   

12.
Climate change is predicted to lead to increased average temperatures and greater intensity and frequency of high and low temperature extremes, but the evolutionary consequences for biological communities are not well understood. Studies of adaptive evolution of temperature tolerance have typically involved correlative analyses of natural populations or artificial selection experiments in the laboratory. Field experiments are required to provide estimates of the timing and strength of natural selection, enhance understanding of the genetics of adaptation and yield insights into the mechanisms driving evolutionary change. Here, we report the experimental evolution of cold tolerance in natural populations of threespine stickleback fish (Gasterosteus aculeatus). We show that freshwater sticklebacks are able to tolerate lower minimum temperatures than marine sticklebacks and that this difference is heritable. We transplanted marine sticklebacks to freshwater ponds and measured the rate of evolution after three generations in this environment. Cold tolerance evolved at a rate of 0.63 haldanes to a value 2.5°C lower than that of the ancestral population, matching values found in wild freshwater populations. Our results suggest that cold tolerance is under strong selection and that marine sticklebacks carry sufficient genetic variation to adapt to changes in temperature over remarkably short time scales.  相似文献   

13.
The physiological mechanisms underlying local adaptation in natural populations of animals, and whether the same mechanisms contribute to adaptation and acclimation, are largely unknown. Therefore, we tested for evolutionary divergence in aerobic exercise physiology in laboratory bred, size‐matched crosses of ancestral, benthic, normal Lake Whitefish (Coregonus clupeaformis) and derived, limnetic, more actively swimming “dwarf” ecotypes. We acclimated fish to constant swimming (emulating limnetic foraging) and control conditions (emulating normal activity levels) to simultaneously study phenotypic plasticity. We found extensive divergence between ecotypes: dwarf fish generally had constitutively higher values of traits related to oxygen transport (ventricle size) and use by skeletal muscle (percent oxidative muscle, mitochondrial content), and also evolved differential plasticity of mitochondrial function (Complex I activity and flux through Complexes I–IV and IV). The effects of swim training were less pronounced than differences among ecotypes and the traits which had a significant training effect (ventricle protein content, ventricle malate dehydrogenase activity, and muscle Complex V activity) did not differ among ecotypes. Only one trait, ventricle mass, varied in a similar manner with acclimation and adaptation and followed a pattern consistent with genetic accommodation. Overall, the physiological and biochemical mechanisms underlying acclimation and adaptation to swimming activity in Lake Whitefish differ.  相似文献   

14.
We compared ancestral anadromous-marine and nonmigratory, stream-resident threespine stickleback (Gasterosteus aculeatus) populations to examine the outcome of relaxed selection on prolonged swimming performance. We reared marine and stream-resident fish from two locations in a common environment and found that both stream-resident populations had lower critical swimming speeds (U(crits) ) than marine populations. F1 hybrids from the two locations displayed significant differences in dominance, suggesting that the genetic basis for variation in U(crit) differs between locations. To determine which traits evolved in conjunction with, and may underlie, differences in performance capacity we measured a suite of traits known to affect prolonged swimming performance in fish. Although some candidate traits did not evolve (standard metabolic rate and two body shape traits), multiple morphological (pectoral fin size, shape, and four body shape measures) and physiological (maximum metabolic rate; MMR) traits evolved in the predicted direction in both stream-resident populations. However, data from F1 hybrids suggested that only one of these traits (MMR) had dominance effects similar to those of U(crit) in both locations. Overall, our data suggest that reductions in prolonged swimming performance were selected for in nonmigratory populations of threespine stickleback, and that decreases in MMR may mediate these reductions in performance.  相似文献   

15.
If an ancestral stem group repeatedly colonizes similar environments, developmental plasticity specific to that group should consistently give rise to similar phenotypes. Parallel selection on those similar phenotypes could lead to the repeated evolution of characteristic ecotypes, a property common to many adaptive radiations. A key prediction of this "flexible stem" model of adaptive radiation is that patterns of phenotypic divergence in derived groups should mirror patterns of developmental plasticity in their common ancestor. The threespine stickleback radiation provides an excellent opportunity to test this prediction because the marine form is representative of the ancestral stem group, which has repeatedly given rise to several characteristic ecotypes. We examined plasticity of several aspects of shape and trophic morphology in response to diets characteristic of either the derived benthic ecotype or the limnetic ecotype. When marine fish were reared on alternative diets, plasticity of head and mouth shape paralleled phenotypic divergence between the derived ecotypes, supporting the flexible stem model. Benthic and limnetic fish exhibited patterns of plasticity similar to those of the marine population; however, some differences in population means were present, as well as subtle differences in shape plasticity in the benthic population, indicating a role for genetic accommodation in this system.  相似文献   

16.
Understanding the genetics of adaptation is a central focus in evolutionary biology. Here, we use a population genomics approach to examine striking parallel morphological divergences of parapatric stream-lake ecotypes of threespine stickleback fish in three watersheds on the Haida Gwaii archipelago, western Canada. Genome-wide variation at greater than 1000 single nucleotide polymorphism loci indicate separate origin of giant lake and small-bodied stream fish within each watershed (mean F(ST) between watersheds = 0.244 and within = 0.114). Genome scans within watersheds identified a total of 21 genomic regions that are highly differentiated between ecotypes and are probably subject to directional selection. Most outliers were watershed-specific, but genomic regions undergoing parallel genetic changes in multiple watersheds were also identified. Interestingly, several of the stream-lake outlier regions match those previously identified in marine-freshwater and benthic-limnetic genome scans, indicating reuse of the same genetic loci in different adaptive scenarios. We also identified multiple new outlier loci, which may contribute to unique aspects of differentiation in stream-lake environments. Overall, our data emphasize the important role of ecological boundaries in driving both local and broadly occurring parallel genetic changes during adaptation.  相似文献   

17.
Theory of local adaptation predicts that nonadapted migrants will suffer increased costs compared to local residents. Ultimately this process can result in the reduction of gene flow and culminate in speciation. Here, we experimentally investigated the relative fitness of migrants in foreign habitats, focusing on diverging lake and river ecotypes of three‐spined sticklebacks. A reciprocal transplant experiment performed in the field revealed asymmetric costs of migration: whereas mortality of river fish was increased under lake conditions, lake migrants suffered from reduced growth relative to river residents. Selection against migrants thus involved different traits in each habitat but generally contributed to bidirectional reduction in gene flow. Focusing particularly on the parasitic environments, migrant fish differed from resident fish in the parasite community they harboured. This pattern correlated with both cellular phenotypes of innate immunity as well as with allelic variation at the genes of the major histocompatibility complex. In addition to showing the costs of migration in three‐spined sticklebacks, this study highlights the role of asymmetric selection particularly from parasitism in genotype sorting and in the emergence of local adaptation.  相似文献   

18.
The view on homogeneous population genetic structure in many marine fish with high mobility has changed significantly during the last ten years. Molecular genetic population studies over the whole ranges of such species as Atlantic herring and Atlantic cod showed a complex picture of spatial differentiation both on the macrogeographic and, in many areas, on the microgeographic scale, although the differentiation for neutral molecular markers was low. It was established that the migration activity of such fish is constrained in many areas of the species range by hydrological and physicochemical transition zones (environmental gradients), as well as gyres in the spawning regions. Natal homing was recorded in a number of marine fish species. Existing in marine fish constraints of gene migration and a very high variance of reproductive success determine a significantly smaller proportion of effective reproductive size of their populations in the total population size, which generates more complex abundance dynamics than assumed earlier. The various constraints on gene migration and natal homing in marine fish promote the formation of local adaptations at ecologically important phenotypic traits. Effects of selection underlying adaptations are actively investigated in marine fish on the genomic level, using approaches of population genomics. The knowledge of adaptive intraspecific structure enables understanding the ecological and evolutionary processes, that influence biodiversity and providing spatial frames for conservation of genetic resources under commercial exploitation. Contemporary views on the population genetic and adaptive structures or biocomplexity in marine fish support and develop the main principles of the conception of systemic organization of the species and its regional populations, which were advanced by Yu.P. Altukhov and Yu.G. Rychkov.  相似文献   

19.
Abiotic factors can act as barriers to colonization and drive local adaptation. During colonization, organisms may cope with changes in abiotic factors using existing phenotypic plasticity, but the role of phenotypic plasticity in assisting or hindering the process of local adaptation remains unclear. To address these questions, we explore the role of winter conditions in driving divergence during freshwater colonization and the effects of plasticity on local adaptation in ancestral marine and derived freshwater ecotypes of threespine stickleback (Gasterosteus aculeatus). We found that freshwater‐resident stickleback had greater tolerance of acute exposure to low temperatures than marine stickleback, but these differences were abolished after acclimation to simulated winter conditions (9L:15D photoperiod at 4 °C). Plasma chloride levels differed between the ecotypes, but showed a similar degree of plasticity between ecotypes. Gene expression of the epithelial calcium channel (ECaC) differed between ecotypes, with the freshwater ecotype demonstrating substantially greater expression than the marine ecotype, but there was no plasticity in this trait under these conditions in either ecotype. In contrast, growth (assessed as final mass) and the expression of an isoform of the electroneutral Na+/H+ exchanger (NHE3) exhibited substantial change with temperature in the marine ecotype that was not observed in the freshwater ecotype under the conditions tested here, which is consistent with evolution of these traits by a process such as genetic assimilation. These data demonstrate substantial divergence in many of these traits between freshwater and marine stickleback, but also illustrate the complexity of possible relationships between plasticity and local adaptation.  相似文献   

20.
We examine the interaction between phenotypic plasticity and evolutionary adaptation using muscle gene expression levels among populations of the fish Fundulus heteroclitus acclimated to three temperatures. Our analysis reveals shared patterns of phenotypic plasticity due to thermal acclimation as well as non‐neutral patterns of variation among populations adapted to different thermal environments. For the majority of significant differences in gene expression levels, phenotypic plasticity and adaptation operate on different suites of genes. The subset of genes that demonstrate both adaptive differences and phenotypic plasticity, however, exhibit countergradient variation of expression. Thus, expression differences among populations counteract environmental effects, reducing the phenotypic differentiation between populations. Finally, gene‐by‐environment interactions among genes with non‐neutral patterns of expression suggest that the penetrance of adaptive variation depends on the environmental conditions experienced by the individual.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号