首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Present work deals with the biotechnological production of fuel ethanol from different raw materials. The different technologies for producing fuel ethanol from sucrose-containing feedstocks (mainly sugar cane), starchy materials and lignocellulosic biomass are described along with the major research trends for improving them. The complexity of the biomass processing is recognized through the analysis of the different stages involved in the conversion of lignocellulosic complex into fermentable sugars. The features of fermentation processes for the three groups of studied feedstocks are discussed. Comparative indexes for the three major types of feedstocks for fuel ethanol production are presented. Finally, some concluding considerations on current research and future tendencies in the production of fuel ethanol regarding the pretreatment and biological conversion of the feedstocks are presented.  相似文献   

2.
在分析木质纤维素类生物质制备燃料乙醇原理基础上,重点对燃料乙醇转化过程的发酵工艺进行了论述。目前乙醇发酵工艺主要包括直接发酵、分步糖化发酵、同步糖化发酵、同步糖化共发酵和联合生物加工技术等,对这几种技术的研究现状进行了分析并对其发展趋势进行了展望,通过基因工程构建高效发酵菌种的联合生物加工技术将是未来高效发酵工艺的发展趋势,旨在为有效提高发酵菌株的底物代谢能力,获得高的乙醇产量提供重要参考。  相似文献   

3.
Technological trends,global market,and challenges of bio-ethanol production   总被引:1,自引:0,他引:1  
Ethanol use as a fuel additive or directly as a fuel source has grown in popularity due to governmental regulations and in some cases economic incentives based on environmental concerns as well as a desire to reduce oil dependency. As a consequence, several countries are interested in developing their internal market for use of this biofuel. Currently, almost all bio-ethanol is produced from grain or sugarcane. However, as this kind of feedstock is essentially food, other efficient and economically viable technologies for ethanol production have been evaluated. This article reviews some current and promising technologies for ethanol production considering aspects related to the raw materials, processes, and engineered strains development. The main producer and consumer nations and future perspectives for the ethanol market are also presented. Finally, technological trends to expand this market are discussed focusing on promising strategies like the use of microalgae and continuous systems with immobilized cells.  相似文献   

4.
Biotechnological processes for conversion of corn into ethanol   总被引:2,自引:0,他引:2  
Ethanol has been utilized as a fuel source in the United States since the turn of the century. However, it has repeatedly faced significant commercial viability obstacles relative to petroleum. Renewed interest exists in ethanol as a fuel source today owing to its positive impact on rural America, the environment and United States energy security. Today, most fuel ethanol is produced by either the dry grind or the wet mill process. Current technologies allow for 2.5 gallons (wet mill process) to 2.8 gallons (dry grind process) of ethanol (1 gallon = 3.785 l) per bushel of corn. Valuable co-products, distillers dried grains with solubles (dry grind) and corn gluten meal and feed (wet mill), are also generated in the production of ethanol. While current supplies are generated from both processes, the majority of the growth in the industry is from dry grind plant construction in rural communities across the corn belt. While fuel ethanol production is an energy-efficient process today, additional research is occurring to improve its long-term economic viability. Three of the most significant areas of research are in the production of hybrids with a higher starch content or a higher extractable starch content, in the conversion of the corn kernel fiber fraction to ethanol, and in the identification and development of new and higher-value co-products.  相似文献   

5.
Fermentative butanol production by Clostridia   总被引:1,自引:0,他引:1  
Butanol is an aliphatic saturated alcohol having the molecular formula of C(4)H(9)OH. Butanol can be used as an intermediate in chemical synthesis and as a solvent for a wide variety of chemical and textile industry applications. Moreover, butanol has been considered as a potential fuel or fuel additive. Biological production of butanol (with acetone and ethanol) was one of the largest industrial fermentation processes early in the 20th century. However, fermentative production of butanol had lost its competitiveness by 1960s due to increasing substrate costs and the advent of more efficient petrochemical processes. Recently, increasing demand for the use of renewable resources as feedstock for the production of chemicals combined with advances in biotechnology through omics, systems biology, metabolic engineering and innovative process developments is generating a renewed interest in fermentative butanol production. This article reviews biotechnological production of butanol by clostridia and some relevant fermentation and downstream processes. The strategies for strain improvement by metabolic engineering and further requirements to make fermentative butanol production a successful industrial process are also discussed.  相似文献   

6.
纤维素乙醇的统合生物加工过程(consolidated bioprocessing,CBP)是将(半)纤维素酶生产、纤维素水解和乙醇发酵过程组合,通过一种微生物完成的生物加工过程。 CBP有利于降低生物转化过程的成本,受到研究者的普遍关注。酿酒酵母( Saccharomyces cerevisiae)作为传统的乙醇生产菌株,是极具潜力的CBP底盘细胞。纤维小体是某些厌氧微生物细胞表面由纤维素酶系与支架蛋白组成的大分子复合物,它能高效降解木质纤维,在酿酒酵母表面展示纤维小体已成为构建CBP细胞的研究热点。笔者综述了人造纤维小体在酿酒酵母细胞表面展示组装的研究进展,重点阐述了纤维小体各元件的设计和改造,并针对酿酒酵母分泌途径的改造,提出提高人造纤维小体分泌组装的可能性策略。  相似文献   

7.
Corn-based fuel ethanol production processes provide several advantages which could be synergistically applied to overcome limitations of biofuel processes based on lignocellulose. These include resources such as equipment, manpower, nutrients, water, and heat. The fact that several demonstration-scale biomass ethanol processes are using corn as a platform supports this viewpoint. This report summarizes the advantages of first-generation corn-based biofuel processes and then describes the technologies, advantages, and limitations of second-generation lignocellulose-based biofuel systems. This is followed by a discussion of the potential benefit of fully integrating first- and second-generation processes. We conclude with an overview of the technology improvements that are needed to enhance the profitability of biofuel production through development of an integrated biorefinery. A key requirement is creation of industrially robust, multifunctional ethanologens that are engineered for maximum ethanol production from mixed sugars. In addition to ethanol, combined biorefineries could also be the source of valuable co-products, such as chemicals and plastics. However, this will require expression systems that produce high-value co-products. Advantages of this approach are that (1) such strains could be used for bioconversion in any part of the combined biorefinery and (2) using one recombinant organism with many additions should simplify the process of obtaining necessary FDA approval for feed products produced by or containing recombinant organisms.  相似文献   

8.
微生物与能源的可持续开发   总被引:1,自引:0,他引:1  
张薇  李鱼  黄国和 《微生物学通报》2008,35(9):1472-1478
微生物技术在新能源开发领域中有广阔的应用潜力,对能源的可持续发展具有重要的理论和现实意义.简要叙述了生物柴油、燃料酒精、生物制沼气、生物制氢和微生物电池等新能源的原理、优缺点和开发现状,概述了微生物资源在能源领域的应用,指出发掘新的微生物资源或构建工程菌株、明确微生物作用机理、开发新工艺将会是今后研究的重点.  相似文献   

9.
In this paper, integration possibilities for production of biodiesel and bioethanol using a single source of biomass as a feedstock (oil palm) were explored through process simulation. The oil extracted from Fresh Fruit Bunches was considered as the feedstock for biodiesel production. An extractive reaction process is proposed for transesterification reaction using in situ produced ethanol, which is obtained from two types of lignocellulosic residues of palm industry (Empty Fruit Bunches and Palm Press Fiber). Several ways of integration were analyzed. The integration of material flows between ethanol and biodiesel production lines allowed a reduction in unit energy costs down to 3.4%, whereas the material and energy integration leaded to 39.8% decrease of those costs. The proposed integrated configuration is an important option when the technology for ethanol production from biomass reaches such a degree of maturity that its production costs be comparable with those of grain or cane ethanol.  相似文献   

10.
With industrial development growing rapidly, there is a need for environmentally sustainable energy sources. Bioethanol (ethanol from biomass) is an attractive, sustainable energy source to fuel transportation. Based on the premise that fuel bioethanol can contribute to a cleaner environment and with the implementation of environmental protection laws in many countries, demand for this fuel is increasing. Efficient ethanol production processes and cheap substrates are needed. Current ethanol production processes using crops such as sugar cane and corn are well-established; however, utilization of a cheaper substrate such as lignocellulose could make bioethanol more competitive with fossil fuel. The processing and utilization of this substrate is complex, differing in many aspects from crop-based ethanol production. One important requirement is an efficient microorganism able to ferment a variety of sugars (pentoses, and hexoses) as well as to tolerate stress conditions. Through metabolic engineering, bacterial and yeast strains have been constructed which feature traits that are advantageous for ethanol production using lignocellulose sugars. After several rounds of modification/evaluation/modification, three main microbial platforms, Saccharomyces cerevisiae, Zymomonas mobilis, and Escherichia coli, have emerged and they have performed well in pilot studies. While there are ongoing efforts to further enhance their properties, improvement of the fermentation process is just one of several factors-that needs to be fully optimized and integrated to generate a competitive lignocellulose ethanol plant.  相似文献   

11.
Fuel ethanol industry presents different problems during bioreactors operation. One of them is the unexpected variation in the output ethanol concentration from the bioreactor or a drastic fall in the productivity. In this paper, a compilation of concepts and relevant results of several experimental and theoretical studies about dynamic behavior of fermentation systems for bioethanol production with Saccharomyces cerevisiae and Zymomonas mobilis is done with the purpose of understanding the stability phenomena that could affect the productivity of industries producing fuel ethanol. It is shown that the design of high scale biochemical processes for fuel ethanol production must be done based on stability studies.  相似文献   

12.
The production of biofuels via microbial biotechnology is a very active field of research. A range of fuel molecule types are currently under consideration: alcohols, ethers, esters, isoprenes, alkenes and alkanes. At the present, the major alcohol biofuel is ethanol. The ethanol fermentation is an old technology. Ongoing efforts aim to increase yield and energy efficiency of ethanol production from biomass. n‐Butanol, another microbial fermentation product, is potentially superior to ethanol as a fuel but suffers from low yield and unwanted side‐products currently. In general, biodiesel fuels consist of fatty acid methyl esters in which the carbon derives from plants, not microbes. A new biodiesel product, called microdiesel, can be generated in engineered bacterial cells that condense ethanol with fatty acids. Perhaps the best fuel type to generate from biomass would be biohydrocarbons. Microbes are known to produce hydrocarbons such as isoprenes, long‐chain alkenes and alkanes. The biochemical mechanisms of microbial hydrocarbon biosynthesis are currently under study. Hydrocarbons and minimally oxygenated molecules may also be produced by hybrid chemical and biological processes. A broad interest in novel fuel molecules is also driving the development of new bioinformatics tools to facilitate biofuels research.  相似文献   

13.
Yinbo Q  Zhu M  Liu K  Bao X  Lin J 《Biotechnology journal》2006,1(11):1235-1240
As the biggest developing country, China faces a serious challenge in satisfying its need for huge amounts of energy resources, especially for liquid fuel. The Chinese government has recently started a bioethanol project, and has produced about 1 million tons of ethanol fuel from corn and wheat in 2005. As it has the largest population in the world and limited lands for food production, cellulosic ethanol would be a more suitable choice for China. Many research projects in China on biodegradation and biotransformation of lignocellulosics have been carried out. Furthermore, understanding the biodegradation mechanism of lignocellulosics and developing practical processes for ethanol production have been ongoing. After more than 30 years of research, several pilot scale facilities have been set up, and lots of experience has been acquired. However, the calculated production cost of cellulosic ethanol is still higher than that of corn ethanol. To overcome this problem, the biorefinery conception has been introduced into research on lignocellulosics transformation. A corncob biorefinery process has been developed in Shandong University. By combining the cellulase and ethanol production with a xylose-related products production, the total production cost can be reduced. A scale of 50,000-ton/year cellulosic ethanol biorefinery is being planned to be built at Yucheng.  相似文献   

14.
Micro and macroalgal biomass: A renewable source for bioethanol   总被引:2,自引:0,他引:2  
Population outburst together with increased motorization has led to an overwhelming increase in the demand for fuel. In the milieu of economical and environmental concern, algae capable of accumulating high starch/cellulose can serve as an excellent alternative to food crops for bioethanol production, a green fuel for sustainable future. Certain species of algae can produce ethanol during dark-anaerobic fermentation and thus serve as a direct source for ethanol production. Of late, oleaginous microalgae generate high starch/cellulose biomass waste after oil extraction, which can be hydrolyzed to generate sugary syrup to be used as substrate for ethanol production. Macroalgae are also harnessed as renewable source of biomass intended for ethanol production. Currently there are very few studies on this issue, and intense research is required in future in this area for efficient utilization of algal biomass and their industrial wastes to produce environmentally friendly fuel bioethanol.  相似文献   

15.
Various processes have been developed or proposed for converting cellulosic residues from pulp and paper mills into products which can be used for fuel or food. Among the promising practical possibilities are processes for ethanol, methane and microbial protein production by fermentation technology. Given the current Canadian financial climate and product demand, the results of techno-economic sensitivity analyses of these three process options indicate that microbial protein production for animal food applications is the most attractive followed by methane then ethanol, the last being quite uneconomical at present. Ironically, research emphasis seems to be placed in the reverse order. It is evident that the relevant costs of upstream and downstream processing in the various process proposals have not been adequately addressed. Case studies of several scenarios illustrate the problems.  相似文献   

16.
能利用五碳糖和六碳糖生产乙醇的基因工程菌菌株的构建   总被引:5,自引:0,他引:5  
燃料乙醇是一种极具前景的燃油代用品,近年来发展尤为迅速,为了推广这种能源和满足日益增长的需求,我们有必要开发更为高效的生产工艺和寻找更为廉价的原料。解决此问题的关键在于获得高效的工程菌,使其能利用木质纤维素水解液中的五碳糖和六碳糖发酵生产乙醇。通过代谢工程的研究和基因重组技术,几种重组细菌显示出良好的开发前景,它们是运动发酵单胞菌、大肠杆菌、产酸克雷伯氏菌和菊欧文氏菌。本文就这四种细菌的研究进展以及基因重组过程进行了介绍和评价。  相似文献   

17.
The production of single-cell protein (SCP) from ethanol by different imcroorganisms is briefly reviewed. The trends in modeling the SCP production are outlined with a stress on the need to incorporate metabolic and engineering considerations into the pertinent models. Data on batch yeast growth on ethanol are analyzed, a metabolic model involving design parameters is suggested, parameters values are estimated, and their significance is discussed. The model essentially describes the response of a system to disturbances (substrate, metabolites, oxygen, etc.). An effective numerical integration procedure is necessary in the solution of the model which has “stiff” character.  相似文献   

18.
Liquid and gaseous fuels from biotechnology: challenge and opportunities   总被引:3,自引:0,他引:3  
Abstract: This paper presents challenging opportunities for production of liquid and gaseous fuels by biotechnology. From the liquid fuels, ethyl alcohol production has been widely researched and implemented. The major obstacle for large scale production of ethanol for fuel is the cost, whereby the substrate represents one of the major cost components. Various scenarios will be presented for a critical assessment of cost distribution for production of ethanol from various substrates by conventional and high rate processes. The paper also focuses on recent advances in the research and application of biotechnological processes and methods for the production of liquid transportation fuels other than ethanol (other oxygenates; diesel fuel extenders and substitutes), as well as gaseous fuels (biogas, methane, reformed syngas). Potential uses of these biofuels are described, along with environmental concerns which accompany them. Emphasis is also put on microalgal lipids as diesel substitute and biogas/methane as a renewable alternative to natural gas. The capturing and use of landfill gases is also mentioned, as well as microbial coal liquefaction. Described is also the construction and performance of microbial fuel cells for the direct high-efficiency conversion of chemical fuel energy to electricity. Bacterial carbon dioxide recovery is briefly dealt with as an environmental issue associated with the use of fossil energy.  相似文献   

19.
The process of ethanol fermentation has a long history in the production of alcoholic drinks, but much larger scale production of ethanol is now required to enable its use as a substituent of gasoline fuels at 3%, 10%, or 85% (referred to as E3, E10, and E85, respectively). Compared with fossil fuels, the production costs are a major issue for the production of fuel ethanol. There are a number of possible approaches to delivering cost-effective fuel ethanol production from different biomass sources, but we focus in our current report on high-temperature fermentation using a newly isolated thermotolerant strain of the yeast Kluyveromyces marxianus. We demonstrate that a 5°C increase only in the fermentation temperature can greatly affect the fuel ethanol production costs. We contend that this approach may also be applicable to the other microbial fermentations systems and propose that thermotolerant mesophilic microorganisms have considerable potential for the development of future fermentation technologies.  相似文献   

20.
中国小麦燃料乙醇的能量收益   总被引:1,自引:0,他引:1  
李胜  路明  杜凤光 《生态学报》2007,27(9):3794-3800
分析了燃料乙醇能量收益问题提出的背景,国外有关燃料乙醇能量收益研究的最新进展及国内研究现状,采用全生命周期分析方法,计算了小麦燃料乙醇净能量值和能量产投比,对中国小麦燃料乙醇的能量收益进行了评价。主要结论有:如不考虑副产品能量价值,旧工艺和新工艺的NEV分别为-17022MJ/t燃料乙醇和-11778MJ/t燃料乙醇,R值分别是0.64和0.72;如考虑副产品能量价值,旧工艺和新工艺的NEV值分别为2271MJ/t燃料乙醇和11249MJ/t燃料乙醇,R值分别是1.05和1.27,从能源经济性角度看,旧工艺和新工艺的能量收益已是正效益,且新工艺的能量收益显著提高;与美国玉米燃料乙醇生产相比,如考虑副产品能量价值,新工艺和美国玉米燃料乙醇的NEV分别为11249MJ/t燃料乙醇和7457MJ/t燃料乙醇,R值分别是1.27和1.34。由于小麦转化率要低于玉米,因而小麦燃料乙醇的R值会低于玉米燃料乙醇。中国小麦燃料乙醇生产(新工艺)NEV大于美国玉米燃料乙醇的原因在于:中国小麦燃料乙醇副产品综合利用水平(23027MJ/t燃料乙醇)已明显优于美国玉米燃料乙醇(5078MJ/t燃料乙醇)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号