首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Early activation of p160ROCK by pressure overload in rat heart   总被引:1,自引:0,他引:1  
We investigated the mechanisms underlying regulation of contraction with measurements of isometric force and intracellular Ca2+ concentration ([Ca2+]i) in NIH 3T3 fibroblast reconstituted into fibers with the use of a collagen matrix. Treatment with the major phospholipids, neurotransmitters, and growth factors had little effect on baseline isometric force. However, U-46619, a thromboxane A2 (TxA2) analog, increased force and [Ca2+]i; EC50 values were 11.0 and 10.0 nM, respectively. The time courses were similar to those induced by calf serum (CS), and the maximal force was 65% of a CS-mediated contraction. The selective TxA2 receptor antagonist SQ-29548 abolished the U-46619-induced responses. CS-induced contractions are dependent on an intracellular Ca2+ store function; however, the U-46619 response depended not only on intracellular Ca2+ stores, but also on Ca2+ influx from the extracellular medium. Inhibition of Rho kinase suppressed U-46619- and CS-induced responses; in contrast, inhibition of C kinase (PKC) reduced only the U-46619 response. Moreover, addition of U-46619 to a CS contracture enhanced force and [Ca2+]i responses. These results indicate that U-46619-induced responses involve PKC and Rho kinase pathways, in contrast to activation by CS. Thus TxA2 may have a role in not only the initial step of wound repair as an activator of blood coagulation, but also in fibroblast contractility in later stages. collagen matrix; signal transduction; wound repair  相似文献   

2.
Early activation of p160ROCK by pressure overload in rat heart   总被引:2,自引:0,他引:2  
We investigated the effects of acutepressure overload on activation of p160ROCK in ratmyocardium. Constriction of transverse aorta, controlled to increasepeak systolic pressure of ascending aorta by ~40 mmHg, induced arapid association of RhoA with Dbl-3 and p160ROCK. Thebinding of p160ROCK to RhoA was rapidly increased, peakingat 30 min (~3.5-fold), but reduced to lower levels (~1.9-fold) by60 min of pressure overload. The activity of immunoprecipitatedp160ROCK toward myosin light chain increased ~2.5-foldwithin 10 min but decreased to lower levels (~1.6-fold) after 60 minof pressure overload. Confocal microscopic analysis indicated thatpressure overload induced the formation of aggregates ofp160ROCK and RhoA along the longitudinal axis of cardiacmyocytes. Immunoelectron microscopic analysis showed that pressureoverload induced the association of p160ROCK and RhoA toZ-line, T-tubule, and subsarcolemmal areas. The rapid activation ofp160ROCK by pressure overload and its aggregation insubcellular structures involved in transmission of mechanical forcesuggest a role for this enzyme in the mechanobiochemical transductionin the myocardium.

  相似文献   

3.
Transforming growth factor-beta (TGF-b) can mediate G1/S cell-cycle inhibition and changes in the cytoskeletal organization through multiple parallel downstream signaling pathways. Recent findings regarding TGF-b-mediated cell-cycle checkpoint control and epithelial to mesenchymal transition have converged to the RhoA/p160ROCK signaling pathway. The activation of TGF-b-mediated p160ROCK rapidly inhibits the Cdc25A phosphatase as a component of the G1/S checkpoint control at the time cytoskeletal re-organization occurs. This can be likened to the ability to preserve genomic integrity in circumstances of genotoxic stress. The inactivation of the RhoA/p160ROCK pathway may be a mechanism by which cancer cells bypass growth inhibition even in the presence of TGF-b.  相似文献   

4.
Detachment of parenchymal cells from a solid matrix switches contextual cues from survival to death during anoikis. Marked shape changes accompany detachment and are thought to trigger cell death, although a working model to explain the coordination of attachment sensation, shape change, and cell fate is elusive. The constitutive form of the adapter Shc, p52Shc, confers survival properties, whereas the longer p66Shc signals death through association with cytochrome c. We find that cells that lack p66Shc display poorly formed focal adhesions and escape anoikis. However, reexpression of p66Shc restores anoikis through a mechanism requiring focal adhesion targeting and RhoA activation but not an intact cytochrome c-binding motif. This pathway stimulates the formation of focal adhesions and stress fibers in attached cells and tension-dependent cell death upon detachment. p66Shc may thus report attachment status to the cell by imposing a tension test across candidate anchorage points, with load failure indicating detachment.  相似文献   

5.
Transforming growth factor-beta (TGF-beta) can mediate G(1)/S cell-cycle inhibition and changes in the cytoskeletal organization through multiple parallel downstream signaling pathways. Recent findings regarding TGF-beta-mediated cell-cycle checkpoint control and epithelial to mesenchymal transition have converged to the RhoA/p160(ROCK) signaling pathway. The activation of TGF-beta-mediated p160(ROCK)rapidly inhibits the Cdc25A phosphatase as a component of the G(1)/S checkpoint control at the time cytoskeletal re-organization occurs. This can be likened to the ability to preserve genomic integrity in circumstances of genotoxic stress. The inactivation of the RhoA/p160(ROCK) pathway may be a mechanism by which cancer cells bypass growth inhibition even in the presence of TGF-beta.  相似文献   

6.
7.
We have previously shown that the beta-adrenergic receptor (beta-AR) stimulates activity of the ubiquitous Na-H exchanger (NHE-1) independently of changes in cAMP accumulation and independently of a cholera toxin-sensitive stimulatory GTP-binding protein (Gs). To further investigate the potential role of a GTP-binding protein in coupling the beta-AR to NHE-1, we have used a recently available nonhydrolyzable GTP analog, "caged" guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S), to study time-dependent effects of GTP on NHE-1 in intact cells. By monitoring intracellular pH (pHi) in cells loaded with the fluorescent pH-sensitive dye, 2,7-biscarboxyethyl-5(6)-carboxyfluorescein, we determined NHE-1 activity in primary cultures of canine enteric endocrine cells, which express an endogenous beta-AR, and in mouse L cells stably transfected with either the wild type hamster beta 2-AR or a mutant construct of the hamster beta 2-AR containing a deletion in amino acid residues 222-229. This D(222-229)beta 2-AR is functionally uncoupled from Gs and adenylylcyclase. In all three cell types, NaF and GTP gamma S induced an increase in activity of the exchanger, determined by assessing the rate of pHi recovery from an acute intracellular acid load (dpHi/dt). This increase in pHi recovery was dependent on extracellular Na+ and sensitive to the amiloride analog ethylisopropylamiloride. GTP gamma S, but not NaF, also increased beta-adrenergic stimulation of resting NHE-1 activity. The alkalinization in response to isoproterenol was reversed by propranolol in the absence, but not the presence, of GTP gamma S and was completely blocked by GDP beta S. The ability of guanine nucleotides to regulate beta-adrenergic activation of NHE-1 in cells expressing the mutant D(222-229)beta 2-AR suggests that functional coupling of the beta-AR to NHE-1 may be mediated by a GTP-binding protein other than Gs.  相似文献   

8.
9.
Vascular smooth muscle cell contractile state is the primary determinant of blood vessel tone. Vascular smooth muscle cell contractility is directly related to the phosphorylation of myosin light chains (MLCs), which in turn is tightly regulated by the opposing activities of myosin light chain kinase (MLCK) and myosin phosphatase. Myosin phosphatase is the principal enzyme that dephosphorylates MLCs leading to relaxation. Myosin phosphatase is regulated by both vasoconstrictors that inhibit its activity to cause MLC phosphorylation and contraction, and vasodilators that activate its activity to cause MLC dephosphorylation and relaxation. The RhoA/ROCK pathway is activated by vasoconstrictors to inhibit myosin phosphatase activity. The mechanism by which RhoA and ROCK are localized to and interact with myosin light chain phosphatase (MLCP) is not well understood. We recently found a new member of the myosin phosphatase complex, myosin phosphatase-rho interacting protein, that directly binds to both RhoA and the myosin-binding subunit of myosin phosphatase in vitro, and targets myosin phosphatase to the actinomyosin contractile filament in smooth muscle cells. Because myosin phosphatase-rho interacting protein binds both RhoA and MLCP, we investigated whether myosin phosphatase-rho interacting protein was required for RhoA/ROCK-mediated myosin phosphatase regulation. Myosin phosphatase-rho interacting protein silencing prevented LPA-mediated myosin-binding subunit phosphorylation, and inhibition of myosin phosphatase activity. Myosin phosphatase-rho interacting protein did not regulate the activation of RhoA or ROCK in vascular smooth muscle cells. Silencing of M-RIP lead to loss of stress fiber-associated RhoA, suggesting that myosin phosphatase-rho interacting protein is a scaffold linking RhoA to regulate myosin phosphatase at the stress fiber.  相似文献   

10.
11.
Summary Previous work showed that amiloride partially inhibits the net gain of Na in cold-stored red cells of guinea pig and that the proportion of unidirectional Na influx sensitive to amiloride increases dramatically with cooling. This study shows that at 37°C amiloride-sensitive (AS) Na influx in guinea pig red blood cells is activated by cytoplasmic H+, hypertonic incubation, phorbol ester in the presence of extracellular Cat2+ and is correlated with cation-dependent H+ loss from acidified cells. Cytoplasmic acidification increases AS Na efflux into Na-free medium. These properties are consistent with the presence of a Na-H exchanger with a H+ regulatory site. Elevation of cytoplasmic free Mg2– above 3 mm greatly increases AS Na influx: this correlates with a Na-dependent loss of Mg2–, indicating the presence of a Na-Mg exchanger.At 20°C activators of Na-H exchange have little or no further stimulatory effect on the already elevated AS Na influx. AS Na influx is much larger than either Na-dependent H+ loss or AS Na efflux at 20°C. The affinity of the AS Na influx for cytoplasmic H+ is greater at 20°C than at 37°C. Depletion of cytoplasmic Mg2+ does not abolish the high AS Na influx at 20°C.Thus, elevation of AS Na influx with cooling appears to be due to increased activity of a Na-H exchanger (operating in a slippage mode) caused by greater sensitivity to H+ at a regulatory site.  相似文献   

12.
PKC is required for activation of ROCK by RhoA in human endothelial cells   总被引:3,自引:0,他引:3  
Rho/Rho-kinase (ROCK) complex formation is the only proposed mechanism for ROCK activation. Rho/ROCK and PKC can exhibit a convergence of cellular effects such as suppression of endothelial nitric oxide synthase (eNOS) expression. We, therefore, investigated the role of PKC in RhoA/ROCK complex formation and activation linked to eNOS expression in cultured human umbilical vein endothelial cells. We showed that expression of constitutively active RhoA (Rho63) or ROCK (CAT) suppressed eNOS gene expression. This effect of Rho63 but not that of CAT was abolished by phorbol ester-sensitive PKC depletion. Accordingly, depletion or inhibition of PKC prevented ROCK activation by Rho63 without affecting RhoA/ROCK complex formation. Similarly, suppression of eNOS expression and activation of ROCK, but not RhoA by thrombin were prevented by PKC inhibition or depletion. These results indicate that RhoA/ROCK complex formation alone is not sufficient and PKC is required for RhoA-induced ROCK activation leading to eNOS gene suppression.  相似文献   

13.
Lung fibrosis is an ultimate consequence of pulmonary oxygen toxicity in human and animal models. Excessive production and deposition of extracellular matrix proteins, e.g., collagen-I, is the most important feature of pulmonary fibrosis in hyperoxia-induced lung injury. In this study, we investigated the roles of RhoA and reactive oxygen species (ROS) in collagen-I synthesis in hyperoxic lung fibroblasts and in a mouse model of oxygen toxicity. Exposure of human lung fibroblasts to hyperoxia resulted in RhoA activation and an increase in collagen-I synthesis and cell proliferation. Inhibition of RhoA by C3 transferase CT-04, dominant-negative RhoA mutant T19N, or RhoA siRNA prevented hyperoxia-induced collagen-I synthesis. The constitutively active RhoA mutant Q63L mimicked the effect of hyperoxia on collagen-I expression. Moreover, the Rho kinase inhibitor Y27632 inhibited collagen-I synthesis in hyperoxic lung fibroblasts and fibrosis in mouse lungs after oxygen toxicity. Furthermore, the ROS scavenger tiron attenuated hyperoxia-induced increases in RhoA activation and collagen-I synthesis in lung fibroblasts and mouse lungs after oxygen toxicity. More importantly, we found that hyperoxia induced separation of guanine nucleotide dissociation inhibitor (GDI) from RhoA in lung fibroblasts and mouse lungs. Further, tiron prevented the separation of GDI from RhoA in hyperoxic lung fibroblasts and mouse lungs with oxygen toxicity. Together, these results indicate that ROS-induced separation of GDI from RhoA leads to RhoA activation with oxygen toxicity. ROS-dependent RhoA activation is responsible for the increase in collagen-I synthesis in hyperoxic lung fibroblasts and mouse lungs.  相似文献   

14.
The p160-Rho-associated coiled-coil-containing protein kinase (ROCK) is identified as a new centrosomal component. Using immunofluorescence with a variety of p160ROCK antibodies, immuno EM, and depletion with RNA interference, p160ROCK is principally bound to the mother centriole (MC) and an intercentriolar linker. Inhibition of p160ROCK provoked centrosome splitting in G1 with the MC, which is normally positioned at the cell center and shows little motion during G1, displaying wide excursions around the cell periphery, similar to its migration toward the midbody during cytokinesis. p160ROCK inhibition late after anaphase in mitosis triggered MC migration to the midbody followed by completion of cell division. Thus, p160ROCK is required for centrosome positioning and centrosome-dependent exit from mitosis.  相似文献   

15.
16.
Leukemia-associated Rho guanine-nucleotide exchange factor (LARG) belongs to the subfamily of Dbl homology RhoGEF proteins (including p115 RhoGEF and PDZ-RhoGEF) that possess amino-terminal regulator of G protein signaling (RGS) boxes also found within GTPase-accelerating proteins (GAPs) for heterotrimeric G protein alpha subunits. p115 RhoGEF stimulates the intrinsic GTP hydrolysis activity of G alpha 12/13 subunits and acts as an effector for G13-coupled receptors by linking receptor activation to RhoA activation. The presence of RGS box and Dbl homology domains within LARG suggests this protein may also function as a GAP toward specific G alpha subunits and couple G alpha activation to RhoA-mediating signaling pathways. Unlike the RGS box of p115 RhoGEF, the RGS box of LARG interacts not only with G alpha 12 and G alpha 13 but also with G alpha q. In cellular coimmunoprecipitation studies, the LARG RGS box formed stable complexes with the transition state mimetic forms of G alpha q, G alpha 12, and G alpha 13. Expression of the LARG RGS box diminished the transforming activity of oncogenic G protein-coupled receptors (Mas, G2A, and m1-muscarinic cholinergic) coupled to G alpha q and G alpha 13. Activated G alpha q, as well as G alpha 12 and G alpha 13, cooperated with LARG and caused synergistic activation of RhoA, suggesting that all three G alpha subunits stimulate LARG-mediated activation of RhoA. Our findings suggest that the RhoA exchange factor LARG, unlike the related p115 RhoGEF and PDZ-RhoGEF proteins, can serve as an effector for Gq-coupled receptors, mediating their functional linkage to RhoA-dependent signaling pathways.  相似文献   

17.
18.
19.
20.
Focal adhesion kinase (FAK) has been shown to be activated in cardiac myocytes exposed to mechanical stress. However, details of how mechanical stimuli induce FAK activation are unknown. We investigated whether signaling events mediated by the RhoA/Rho-associated coiled coil-containing kinase (ROCK) pathway are involved in regulation of stretch-induced FAK phosphorylation at Tyr(397) in neonatal rat ventricular myocytes (NRVMs). Immunostaining showed that RhoA localized to regions of myofilaments alternated with phalloidin (actin) staining. The results of coimmunoprecipitation assays indicated that FAK and RhoA are associated in nonstretched NRVMs, but cyclic stretch significantly reduced the amount of RhoA recovered from anti-FAK immunoprecipitates. Cyclic stretch induced rapid and sustained (up to 2 h) increases in phosphorylation of FAK at Tyr(397) and ERK1/2 at Thr(202)/Tyr(204). Blockade of RhoA/ROCK signaling by pharmacological inhibitors of RhoA (Clostridium botulinum C3 exoenzyme) or ROCK (Y-27632, 10 micromol/l, 1 h) markedly attenuated stretch-induced FAK and ERK1/2 phosphorylation. Similar effects were observed in cells treated with the inhibitor of actin polymerization cytochalasin D. Transfection of NRVMs with RhoA antisense oligonucleotide attenuated stretch-induced FAK and ERK1/2 phosphorylation and expression of beta-myosin heavy chain mRNA. Similar results were seen in cells transfected with FAK antisense oligonucleotide. These findings demonstrate that RhoA/ROCK signaling plays a crucial role in stretch-induced FAK phosphorylation, presumably by coordinating upstream events operationally linked to the actin cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号