首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Several gene products are involved in co-translational insertion of selenocysteine by the tRNA(Sec). In addition, a stem-loop structure in the mRNAs coding for selenoproteins is essential to mediate the selection of the proper selenocysteine UGA codon. Interestingly, in eukaryotic selenoprotein mRNAs, this stem-loop structure, the selenocysteine insertion sequence (SECIS) element, resides in the 3'-untranslated region, far downstream of the UGA codon. In view of unravelling the underlying complex mechanism, we have attempted to detect RNA-binding proteins with specificity for the SECIS element. Using mobility shift assays, we could show that a protein, present in different types of mammalian cell extracts, possesses the capacity of binding the SECIS element of the selenoprotein glutathione peroxidase (GPx) mRNA. We have termed this protein SBP, for Secis Binding Protein. Competition experiments attested that the binding is highly specific and UV cross-linking indicated that the protein has an apparent molecular weight in the range of 60-65 kDa. Finally, some data suggest that the SECIS elements in the mRNAs of GPx and another selenoprotein, type I iodothyronine 5' deiodinase, recognize the same SBP protein. This constitutes the first report of the existence of a 3' UTR binding protein possibly involved in the eukaryotic selenocysteine insertion mechanism.  相似文献   

2.
3.
Biosynthesis of selenium-containing proteins requires insertion of the unusual amino acid selenocysteine by alternative translation of a UGA codon, which ordinarily serves as a stop codon. In eukaryotes, selenoprotein translation depends upon one or more selenocysteine insertion sequence (SECIS) elements located in the 3'-untranslated region of the mRNA, as well as several SECIS-binding proteins. Our laboratory has previously identified nuclease sensitive element binding protein 1 (NSEP1) as another SECIS-binding protein, but evidence has been presented both for and against its role in SECIS binding in vivo and in selenoprotein translation. Our current studies sought to resolve this controversy, first by investigating whether NSEP1 interacts closely with SECIS elements within intact cells. After reversible in vivo cross-linking and ribonucleoprotein immunoprecipitation, mRNAs encoding two glutathione peroxidase family members co-precipitated with NSEP1 in both human and rat cell lines. Co-immunoprecipitation of an epitope-tagged GPX1 construct depended upon an intact SECIS element in its 3'-untranslated region. To test the functional importance of this interaction on selenoprotein translation, we used small inhibitory RNAs to reduce the NSEP1 content of tissue culture cells and then examined the effect of that reduction on the activity of a SECIS-dependent luciferase reporter gene for which expression depends upon readthrough of a UGA codon. Co-transfection of small inhibitory RNAs directed against NSEP1 decreased its expression by approximately 50% and significantly reduced luciferase activity. These studies demonstrate that NSEP1 is an authentic SECIS binding protein that is structurally associated with the selenoprotein translation complex and functionally involved in the translation of selenoproteins in mammalian cells.  相似文献   

4.
Selenocysteine is incorporated into proteins via "recoding" of UGA from a stop codon to a sense codon, a process that requires specific secondary structures in the 3' untranslated region, termed selenocysteine incorporation sequence (SECIS) elements, and the protein factors that they recruit. Whereas most selenoprotein mRNAs contain a single UGA codon and a single SECIS element, selenoprotein P genes encode multiple UGAs and two SECIS elements. We have identified evolutionary adaptations in selenoprotein P genes that contribute to the efficiency of incorporating multiple selenocysteine residues in this protein. The first is a conserved, inefficiently decoded UGA codon in the N-terminal region, which appears to serve both as a checkpoint for the presence of factors required for selenocysteine incorporation and as a "bottleneck," slowing down the progress of elongating ribosomes. The second adaptation involves the presence of introns downstream of this inefficiently decoded UGA which confer the potential for nonsense-mediated decay when factors required for selenocysteine incorporation are limiting. Third, the two SECIS elements in selenoprotein P mRNA function with differing efficiencies, affecting both the rate and the efficiency of decoding different UGAs. The implications for how these factors contribute to the decoding of multiple selenocysteine residues are discussed.  相似文献   

5.
In mammalian selenoprotein mRNAs, the recognition of UGA as selenocysteine requires selenocysteine insertion sequence (SECIS) elements that are contained in a stable stem-loop structure in the 3' untranslated region (UTR). In this study, we investigated the SECIS elements and cellular proteins required for selenocysteine insertion in rat phospholipid hydroperoxide glutathione peroxidase (PhGPx). We developed a translational readthrough assay for selenoprotein biosynthesis by using the gene for luciferase as a reporter. Insertion of a UGA or UAA codon into the coding region of luciferase abolished luciferase activity. However, activity was restored to the UGA mutant, but not to the UAA mutant, upon insertion of the PhGPx 3' UTR. The 3' UTR of rat glutathione peroxidase (GPx) also allowed translational readthrough, whereas the PhGPx and GPx antisense 3' UTRs did not. Deletion of two conserved SECIS elements in the PhGPx 3' UTR (AUGA in the 5' stem or AAAAC in the terminal loop) abolished readthrough activity. UV cross-linking studies identified a 120-kDa protein in rat testis that binds specifically to the sense strands of the PhGPx and GPx 3' UTRs. Direct cross-linking and competition experiments with deletion mutant RNAs demonstrated that binding of the 120-kDa protein requires the AUGA SECIS element but not AAAAC. Point mutations in the AUGA motif that abolished protein binding also prevented readthrough of the UGA codon. Our results suggest that the 120-kDa protein is a significant component of the mechanism of selenocysteine incorporation in mammalian cells.  相似文献   

6.
Expression of selenocysteine (Sec)-containing proteins requires the presence of a cis-acting mRNA structure, called selenocysteine insertion sequence (SECIS) element. In bacteria, this structure is located in the coding region immediately downstream of the Sec-encoding UGA codon, whereas in eukaryotes a completely different SECIS element has evolved in the 3'-untranslated region. Here, we report that SECIS elements in the coding regions of selenoprotein mRNAs support Sec insertion in higher eukaryotes. Comprehensive computational analysis of all available viral genomes revealed a SECIS element within the ORF of a naturally occurring selenoprotein homolog of glutathione peroxidase 4 in fowlpox virus. The fowlpox SECIS element supported Sec insertion when expressed in mammalian cells as part of the coding region of viral or mammalian selenoproteins. In addition, readthrough at UGA was observed when the viral SECIS element was located upstream of the Sec codon. We also demonstrate successful de novo design of a functional SECIS element in the coding region of a mammalian selenoprotein. Our data provide evidence that the location of the SECIS element in the untranslated region is not a functional necessity but rather is an evolutionary adaptation to enable a more efficient synthesis of selenoproteins.  相似文献   

7.
The synthesis of eukaryotic selenoproteins involves the recoding of an internal UGA codon as a site for selenocysteine incorporation. This recoding event is directed by a selenocysteine insertion sequence in the 3'-untranslated region. Because UGA also functions as a signal for peptidyl-tRNA hydrolysis, we have investigated how the rates of translational termination and selenocysteine incorporation relate to cis-acting elements in the mRNA as well as to trans-acting factors in the cytoplasm. We used cis-elements from the phospholipid glutathione peroxidase gene as the basis for this work because of its relatively high efficiency of selenocysteine incorporation. The last two codons preceding the UGA were found to exert a far greater influence on selenocysteine incorporation than nucleotides downstream of it. The efficiency of selenocysteine incorporation was generally much less than 100% but could be partially enhanced by concomitant overexpression of the tRNA(Sec) gene. The combination of two or three UGA codons in one reading frame led to a dramatic reduction in the yield of full-length protein. It is therefore unlikely that multiple incorporations of selenocysteine are processive with respect to the mode of action of the ribosomal complex binding to the UGA site. These observations are discussed in terms of the mechanism of selenoprotein synthesis and its ability to compete with termination at UGA codons.  相似文献   

8.
In mammals, most of the selenium contained in the body is present as an unusual amino acid, selenocysteine (Sec), whose codon is UGA. Because the UGA codon is typically recognized as a translation stop signal, it is intriguing how a cell recognizes and distinguishes a UGA Sec codon from a UGA stop codon. For eukaryotic selenoprotein mRNAs, it has been proposed that a conserved stem-loop structure designated the Sec insertion sequence (SECIS) in the 3'-untranslated (3'-UTR) region is required for recognition of UGA as a Sec codon. Some proteins which bind to SECIS (SBP) have been reported. However, it is not clear how the SECIS element in the 3'-UTR can mediate Sec insertion far at the in-frame UGA Sec codons. The idea that there must be a signal near the UGA Sec codon is still considered. Therefore, we searched for a protein which binds to an RNA sequence surrounding the UGA Sec codon on human glutathione peroxidase (GPx) mRNA. We found a protein which strongly bound to the RNA fragment upstream of the UGA Sec codon. However, this protein did not bind to the RNA sequence downstream of the UGA codon. This protein also bound to the SECIS sequence in the 3'-UTR of human GPx, and this binding to SECIS was competed with the RNA fragment upstream of the UGA Sec codon. Comparison of the RNA fragment with the SECIS fragment identified the conserved regions, which appeared in the region upstream of the in-frame UGA Sec codon of Se-protein mRNAs. Thus, this study proposes a novel model to understand the mechanisms of Sec incorporation at the UGA Sec codon, especially the regions upstream of the UGA codon of mRNAs of mammalian selenoproteins. This model explains that the stem-loop structure covering the UGA codon is recognized by SBP and how the UGA Sec codon escapes from attack by eRF of the peptide releasing factor.  相似文献   

9.
Co-translational insertion of selenocysteine (Sec) into proteins in response to UGA codons is directed by selenocysteine insertion sequence (SECIS) elements. In known bacterial selenoprotein genes, SECIS elements are located in the coding regions immediately downstream of UGA codons. Here, we report that a distant SECIS element can also function in Sec insertion in bacteria provided that it is spatially close to the UGA codon. We expressed a mammalian phospholipid hydroperoxide glutathione peroxidase in Escherichia coli from a construct in which a natural E.coli SECIS element was located in the 3′-untranslated region (3′-UTR) and adjacent to a sequence complementary to the region downstream of the Sec UGA codon. Although the major readthrough event at the UGA codon was insertion of tryptophan, Sec was also incorporated and its insertion was dependent on the functional SECIS element in the UTR, base-pairing potential of the SECIS flanking region and the Sec UGA codon. These data provide important implications into evolution of SECIS elements and development of a system for heterologous expression of selenoproteins and show that in addition to the primary sequence arrangement between UGA codons and SECIS elements, their proximity within the tertiary structure can support Sec insertion in bacteria.  相似文献   

10.
A selenocysteine insertion sequence (SECIS) element in the 3'-untranslated region and an in-frame UGA codon are the requisite cis-acting elements for the incorporation of selenocysteine into selenoproteins. Equally important are the trans-acting factors SBP2, Sec-tRNA[Ser]Sec, and eEFSec. Multiple in-frame UGAs and two SECIS elements make the mRNA encoding selenoprotein P (Sel P) unique. To study the role of codon context in determining the efficiency of UGA readthrough at each of the 10 rat Sel P Sec codons, we individually cloned 27-nucleotide-long fragments representing each UGA codon context into a luciferase reporter construct harboring both Sel P SECIS elements. Significant differences, spanning an 8-fold range of UGA readthrough efficiency, were observed, but these differences were dramatically reduced in the presence of excess SBP2. Mutational analysis of the "fourth base" of contexts 1 and 5 revealed that only the latter followed the established rules for hierarchy of translation termination. In addition, mutations in either or both of the Sel P SECIS elements resulted in differential effects on UGA readthrough. Interestingly, even when both SECIS elements harbored a mutation of the core region required for Sec incorporation, context 5 retained a significantly higher level of readthrough than context 1. We also show that SBP2-dependent Sec incorporation is able to repress G418-induced UGA readthrough as well as eRF1-induced stimulation of termination. We conclude that a large codon context forms a cis-element that works together with Sec incorporation factors to determine readthrough efficiency.  相似文献   

11.
The specificity parameters counteracting the heterologous expression in Escherichia coli of the Desulfomicrobium baculatum gene (hydV) coding for the large subunit of the periplasmic hydrogenase which is a selenoprotein have been studied. hydV'-'lacZ fusions were constructed, and it was shown that they do not direct the incorporation of selenocysteine in E. coli. Rather, the UGA codon is efficiently suppressed by some other aminoacyl-tRNA in an E. coli strain possessing a ribosomal ambiguity mutation. The suppression is decreased by the strA1 allele, indicating that the hydV selenocysteine UGA codon has the properties of a "normal" and suppressible nonsense codon. The SelB protein from D. baculatum was purified; in gel shift experiments, D. baculatum SelB displayed a lower affinity for the E. coli fdhF selenoprotein mRNA than E. coli SelB did and vice versa. Coexpression of the hydV'-'lacZ fusion and of the selB and tRNA(Sec) genes from D. baculatum, however, did not lead to selenocysteine insertion into the protein, although the formation of the quaternary complex between SelB, selenocysteyl-tRNA(Sec), and the hydV mRNA recognition sequence took place. The results demonstrate (i) that the selenocysteine-specific UGA codon is readily suppressed under conditions where the homologous SelB protein is absent and (ii) that apart from the specificity of the SelB-mRNA interaction, a structural compatibility of the quaternary complex with the ribosome is required.  相似文献   

12.
The expression of selenoproteins requires the translational recoding of the UGA stop codon to selenocysteine. In eukaryotes, this requires an RNA stem loop structure in the 3'-untranslated region, termed a selenocysteine insertion sequence (SECIS), and SECIS-binding protein 2 (SBP2). This study implicates SBP2 in dictating the hierarchy of selenoprotein expression, because it is the first to show that SBP2 distinguishes between SECIS elements in vitro. Using RNA electrophoretic mobility shift assays, we demonstrate that a naturally occurring mutation in SBP2, which correlates with abnormal thyroid hormone function in humans, lies within a novel, bipartite RNA-binding domain. This mutation alters the RNA binding affinity of SBP2 such that it no longer stably interacts with a subset of SECIS elements. Assays performed under competitive conditions to mimic intracellular conditions suggest that the differential affinity of SBP2 for various SECIS elements will determine the expression pattern of the selenoproteome. We hypothesize that the selective loss of a subset of selenoproteins, including some involved in thyroid hormone homeostasis, is responsible for the abnormal thyroid hormone metabolism previously observed in the affected individuals.  相似文献   

13.
The translational recoding of UGA as selenocysteine (Sec) is directed by a SECIS element in the 3' untranslated region (UTR) of eukaryotic selenoprotein mRNAs. The selenocysteine insertion sequence (SECIS) contains two essential tandem sheared G.A pairs that bind SECIS-binding protein 2 (SBP2), which recruits a selenocysteine-specific elongation factor and Sec-tRNA(Sec) to the ribosome. Here we show that ribosomal protein L30 is a component of the eukaryotic selenocysteine recoding machinery. L30 binds SECIS elements in vitro and in vivo, stimulates UGA recoding in transfected cells and competes with SBP2 for SECIS binding. Magnesium, known to induce a kink-turn in RNAs that contain two tandem G.A pairs, decreases the SBP2-SECIS complex in favor of the L30-SECIS interaction. We propose a model in which SBP2 and L30 carry out different functions in the UGA recoding mechanism, with the SECIS acting as a molecular switch upon protein binding.  相似文献   

14.
In eukaryotes, the decoding of the UGA codon as selenocysteine (Sec) requires a Sec insertion sequence (SECIS) element in the 3' untranslated region of the mRNA. We purified a SECIS binding protein, SBP2, and obtained a cDNA clone that encodes this activity. SBP2 is a novel protein containing a putative RNA binding domain found in ribosomal proteins and a yeast suppressor of translation termination. By UV cross-linking and immunoprecipitation, we show that SBP2 specifically binds selenoprotein mRNAs both in vitro and in vivo. Using (75)Se-labeled Sec-tRNA(Sec), we developed an in vitro system for analyzing Sec incorporation in which the translation of a selenoprotein mRNA was both SBP2 and SECIS element dependent. Immunodepletion of SBP2 from the lysates abolished Sec insertion, which was restored when recombinant SBP2 was added to the reaction. These results establish that SBP2 is essential for the co-translational insertion of Sec into selenoproteins. We hypothesize that the binding activity of SBP2 may be involved in preventing termination at the UGA/Sec codon.  相似文献   

15.
In mammals, most of the selenium contained in their body is present as an unusual amino acid, selenocysteine (Sec), whose codon is UGA. Because the UGA codon is normally recognized as a translational stop signal, it is intriguing how cells recognize and distinguish the UGA Sec codon from the UGA stop codon. In eukaryotic selenoprotein mRNAs, it has been proposed that a conserved stem-loop structure designated Sec insertion sequence (SECIS) located in the 3'-untranslated regions is required for recognition of UGA as a Sec codon. Although some proteins (SBPs) have been reported to bind to SECIS, it is not clear how the SECIS element can mediate Sec insertion at UGA. Eukaryotic Sec-tRNA(Sec) is not recognized by elongation factor EF-1alpha, but is recognized specifically by a Sec-tRNA(Sec) protecting factor, SePF, in bovine liver extracts. In this study, we provide evidence that SePF is distinct from SBP by chromatography. Upon UV irradiation, the SECIS RNA was cross-linked to a 47.5 kDa protein, a likely candidate of SBP, that is contained in the complex with a molecular mass of 150 kDa. These results suggest that SBP and SePF play different roles for the Sec incorporation. To our knowledge, this is the first demonstration that SBP is discriminated from the factor which directly recognizes Sec-tRNA(Sec), providing a novel clue to the mechanism of selenocysteine decoding in eukaryotes.  相似文献   

16.
Selenoproteins are a family of proteins that share the common feature of containing selenocysteine, the “twenty-first” amino acid. Selenocysteine incorporation occurs during translation of selenoprotein messages by redefinition of UGA codons, which normally specify termination of translation. Studies of the eukaryotic selenocysteine incorporation mechanism suggest that selenocysteine insertion is inefficient compared with termination. Nevertheless, selenoprotein P and several other selenoproteins are known to contain multiple selenocysteines. The production of full-length (FL) protein from these messages would seem to demand highly efficient selenocysteine incorporation due to the compounding effect of termination at each UGA codon. We present data demonstrating that efficient incorporation of multiple selenocysteines can be reconstituted in rabbit reticulocyte lysate translation reactions. Selenocysteine incorporation at the first UGA codon is inefficient but increases by approximately 10-fold at subsequent downstream UGA codons. We found that ribosomes in the “processive” phase of selenocysteine incorporation (i.e., after decoding the first UGA codon as selenocysteine) are fully competent to terminate translation at UAG and UAA codons, that ribosomes become less efficient at selenocysteine incorporation as the distance between UGA codons is increased, and that efficient selenocysteine incorporation is not dependent on cis-acting elements unique to selenoprotein P. Furthermore, we found that the percentage of ribosomes decoding a UGA codon as selenocysteine rather than termination can be increased by 3- to 5-fold by placing the murine leukemia virus UAG read-through element upstream of the first UGA codon or by providing a competing messenger RNA in trans. The mechanisms of selenocysteine incorporation and selenoprotein synthesis are discussed in light of these results.  相似文献   

17.
Incorporation of the 21st amino acid, selenocysteine, into proteins is specified in all three domains of life by dynamic translational redefinition of UGA codons. In eukarya and archaea, selenocysteine insertion requires a cis-acting selenocysteine insertion sequence (SECIS) usually located in the 3'UTR of selenoprotein mRNAs. Here we present comparative sequence analysis and experimental data supporting the presence of a second stop codon redefinition element located adjacent to a selenocysteine-encoding UGA codon in the eukaryal gene, SEPN1. This element is sufficient to stimulate high-level (6%) translational redefinition of the SEPN1 UGA codon in human cells. Readthrough levels further increased to 12% when tested in the presence of the SEPN1 3'UTR SECIS. Directed mutagenesis and phylogeny of the sequence context strongly supports the importance of a stem loop starting six nucleotides 3' of the UGA codon. Sequences capable of forming strong RNA structures were also identified 3' adjacent to, or near, selenocysteine-encoding UGA codons in the Sps2, SelH, SelO, and SelT selenoprotein genes.  相似文献   

18.
M J Berry  L Banu  J W Harney    P R Larsen 《The EMBO journal》1993,12(8):3315-3322
We investigated the requirements for selenocysteine insertion at single or multiple UGA codons in eukaryotic selenoproteins. Two functional SECIS elements were identified in the 3' untranslated region of the rat selenoprotein P mRNA, with predicted stem-loops and critical nucleotides similar to those in the SECIS elements in the type I iodothyronine 5' deiodinase (5'DI) and glutathione peroxidase selenoprotein mRNAs. Site-directed mutational analyses of three SECIS elements confirmed that conserved nucleotides in the loop and in unpaired regions of the stem are critical for activity. This indicates that multiple contact sites are required for SECIS function. Stop codon function at any of five out-of-context UGA codons in the 5'DI mRNA was suppressed by SECIS elements from the 5'DI or selenoprotein P genes linked downstream. Thus, the presence of SECIS elements in eukaryotic selenoprotein mRNAs permits complete flexibility in UGA codon position.  相似文献   

19.
Selenocysteine insertion during decoding of eukaryotic selenoprotein mRNA requires several trans-acting factors and a cis-acting selenocysteine insertion sequence (SECIS) usually located in the 3' UTR. A second cis-acting selenocysteine codon redefinition element (SRE) has recently been described that resides near the UGA-Sec codon of selenoprotein N (SEPN1). Similar phylogenetically conserved elements can be predicted in a subset of eukaryotic selenoprotein mRNAs. Previous experimental analysis of the SEPN1 SRE revealed it to have a stimulatory effect on readthrough of the UGA-Sec codon, which was not dependent upon the presence of a SECIS element in the 3' UTR; although, as expected, readthrough efficiency was further elevated by inclusion of a SECIS. In order to examine the nature of the redefinition event stimulated by the SEPN1 SRE, we have modified an experimentally tractable in vitro translation system that recapitulates efficient selenocysteine insertion. The results presented here illustrate that the SRE element has a stimulatory effect on decoding of the UGA-Sec codon by both the methylated and unmethylated isoforms of Sec tRNA([Ser]Sec), and confirm that efficient selenocysteine insertion is dependent on the presence of a 3'-UTR SECIS. The variation in recoding elements predicted near UGA-Sec codons implies that these elements may play a differential role in determining the amount of selenoprotein produced by acting as controllers of UGA decoding efficiency.  相似文献   

20.
In the genetic code, the UGA codon has a dual function as it encodes selenocysteine (Sec) and serves as a stop signal. However, only the translation terminator function is used in gene annotation programs, resulting in misannotation of selenoprotein genes. Here, we applied two independent bioinformatics approaches to characterize a selenoprotein set in prokaryotic genomes. One method searched for selenoprotein genes by identifying RNA stem-loop structures, selenocysteine insertion sequence elements; the second approach identified Sec/Cys pairs in homologous sequences. These analyses identified all or almost all selenoproteins in completely sequenced bacterial and archaeal genomes and provided a view on the distribution and composition of prokaryotic selenoproteomes. In addition, lineage-specific and core selenoproteins were detected, which provided insights into the mechanisms of selenoprotein evolution. Characterization of selenoproteomes allows interpretation of other UGA codons in completed genomes of prokaryotes as terminators, addressing the UGA dual-function problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号