首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Evaluation of formaldehyde and fifteen biocides in formaldehyde sensitive (S) and resistant (R) strains ofPseudomonas aeruginosa revealed a pattern of response that allowed a comparison of the mode of action of these biocides. The response of these strains to the various biocides, as well as the induction of transient resistance or cross-resistance in the (S) strain, allowed a grouping of biocides based on this pattern of response. Group 1 biocides acted in a manner indistinguishable from formaldehyde for both the (S) and (R) strains. Group 2 biocides were not effective against either the (S) or (R) strains at concentrations calculated to release equimolar concentrations of formaldehyde. However, treatment of the (S) strain with formaldehyde or Group 2 biocides resulted in the development of cross-resistance. Group 3 biocides were equally effective against the (S) and (R) strain, but the (S) strain survivors of treatment with Group 3 biocides were resistant to formaldehyde. Group 4 biocides (controls) had no presumed connection to formaldehyde mode of action. These four groupings, based on pattern of response, also resulted in groupings of biocides based on chemical structure.  相似文献   

2.
The ribulose monophosphate cycle methylotroph Methylobacillus flagellatum was grown under oxyturbidostat conditions on mixtures of methanol and formaldehyde. Formaldehyde when added at low concentration (50 mg/l) increased the methanol consumption and the yield of biomass. The presence of 150–300 mg/l of formaldehyde resulted in an increase of the growth rate from 0.74 to about 0.79–0.82 h-1. The presence of 500 mg/l of formaldehyde in the inflow decreased culture growth characteristics. Activities of methanol dehydrogenase and enzymes participating in formaldehyde oxidation and assimilation were measured. The enzymological profiles obtained are discussed.Abbreviations MDH methanol dehydrogenase - NAD-linked FDDH NAD-linked formaldehyde dehydrogenase - DLFDDH dye-linked formaldehyde dehydrogenase - DLFDH dye-linked formate dehydrogenase - GPDH glucose-6-phosphate dehydrogenase - PGDH 6-phosphogluconate dehydrogenase - RuMP cycle ribulose monophosphate cycle  相似文献   

3.
An NAD+-linked, reduced glutathione-dependent formaldehyde dehydrogenase was purified to homogeneity from soluble extracts of methanol-grown yeast, Pichia sp. Formaldehyde and methylglyoxal are oxidized in the presence of NAD+ as an electron acceptor. NADP+ could not replace NAD+. Other straight chain aldehydes (C2–C6 tested), branched-chain aldehydes (e.g., isobutyaldehyde), aromatic aldehydes (e.g., salicylal-dehyde, benzaldehyde), glutyraldehyde, glyceraldehyde, glycoaldehyde, and glyoxal-dehyde tested were not oxidized by the purified formaldehyde dehydrogenase. The product of formaldehyde oxidation by purified enzyme was demonstrated to be S-for-mylglutathione by measuring the absorption at 240 nm due to the formation of thioester of formaldehyde and reduced glutathione. The Km values for NAD+, formaldehyde, and reduced glutathione were 0.12, 0.31, and 0.16 mm, respectively, for the forward reaction at pH 8.0. The purified formaldehyde dehydrogenase also catalyzed the reduction of S-formylglutathione in the presence of NADH. Formate was not reduced by the purified enzyme. The Km values for S-formylglutathione and NADH were 0.60 and 0.25 mm, respectively, for the reverse reaction at pH 6.0. Formaldehyde dehydrogenase has a molecular weight of 84,000 as determined by gel filtration and subunit molecular weight of 41,000 as determined by sodium dodecyl sulfate-gel electrophoresis. S-Formylglutathione, a product of formaldehyde oxidation, was oxidized by the partially purified formate dehydrogenase from Pichia sp. Formate dehydrogenase has a higher affinity toward S-formylglutathione (Km value 1.8 mm) than toward formate (Km value 25 mm). Antiserum prepared against the purified formaldehyde dehydrogenase from Pichia sp. NRRL-Y-11328 forms strong precipitin bands with isofunctional enzymes from methanol-grown Pichia pastoris NRRL-Y-7556 and Torulopsis candida Y-11419 and weak precipitin bands with Hansenula polymorpha NRRL-Y-2214. No cross-reaction was observed with isofunctional enzyme derived from methanol-grown Kloeckera sp.  相似文献   

4.
NAD+-linked primary and secondary alcohol dehydrogenase activity was detected in cell-free extracts of propane-grown Rhodococcus rhodochrous PNKb1. One enzyme was purified to homogeneity using a two-step procedure involving DEAE-cellulose and NAD-agarose chromatography and this exhibited both primary and secondary NAD+-linked alcohol dehydrogenase activity. The Mr of the enzyme was approximately 86,000 with subunits of Mr 42,000. The enzyme exhibited broad substrate specificity, oxidizing a range of short-chain primary and secondary alcohols (C2–C8) and representative cyclic and aromatic alcohols. The pH optimum was 10. At pH 6.5, in the presence of NADH, the enzyme catalysed the reduction of ketones to alcohols. The K m values for propan-1-ol, propan-2-ol and NAD were 12 mM, 18 mM and 0.057 mM respectively. The enzyme was inhibited by metal-complexing agents and iodoacetate. The properties of this enzyme were compared with similar enzymes in the current literature, and were found to be significantly different from those thus far described. It is likely that this enzyme plays a major role in the assimilation of propane by R. rhodochrous PNKb1.Abbreviations HPLC high performance liquid chromatography - DEAE diethyl amino ethyl - IEF isoelectrofocusing - NTG nitrosoguanidine - SDS-PAGE sodium dodecylsulphate polyacrylamide gel electrophoresis - pI isoelectric point  相似文献   

5.
WhenArthrobacter P1 is grown on choline, betaine, dimethylglycine or sarcosine, an NAD+-dependent formaldehyde dehydrogenase is induced. This formaldehyde dehydrogenase has been purified using ammonium sulphate fractionation, anion exchange- and hydrophobic interaction chromatography. The molecular mass of the native enzyme was 115 kDa±10 kDa. Gel electrophoresis in the presence of sodium dodecyl sulphate indicated that the molecular mass of the subunit was 56 kDa±3 kDa, which is consistent with a dimeric enzyme structure. After ammonium sulphate fractionation the partially purified enzyme required the addition of a reducing reagent in the assay mixture for maximum activity. The enzyme was highly specific for its substrates and the Km values were 0.10 and 0.80 mM for formaldehyde and NAD+, respectively. The enzyme was heat-stable at 50° C for at least 10 min and showed a broad pH optimum of 8.1 to 8.5. The addition of some metal-binding compounds and thiol reagents inhibited the enzyme activity.Abbreviation RuMP Ribulose monophosphate  相似文献   

6.
Extracts of Pseudomonas C grown on methanol as sole carbon and energy source contain a methanol dehydrogenase activity which can be coupled to phenazine methosulfate. This enzyme catalyzes two reactions namely the conversion of methanol to formaldehyde (phenazine methosulfate coupled) and the oxidation of formaldehyde to formate (2,6-dichloroindophenol-coupled). Activities of glutathione-dependent formaldehyde dehydrogenase (NAD+) and formate dehydrogenase (NAD+) were also detected in the extracts.The addition of d-ribulose 5-phosphate to the reaction mixtures caused a marked increase in the formaldehyde-dependent reduction of NAD+ or NADP+. In addition, the oxidation of [14C]formaldehyde to CO2, by extracts of Pseudomonas C, increased when d-ribulose 5-phosphate was present in the assay mixtures.The amount of radioactivity found in CO2, was 6.8-times higher when extracts of methanol-grown Pseudomona C were incubated for a short period of time with [1-14C]glucose 6-phosphate than with [U-14C]glucose 6-phosphate.These data, and the presence of high specific activities of hexulose phosphate synthase, phosphoglucoisomerase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase indicate that in methanol-grown Pseudomonas C, formaldehyde carbon is oxidized to CO2 both via a cyclic pathway which includes the enzymes mentioned and via formate as an oxidation intermediate, with the former predominant.  相似文献   

7.
Polyol dehydrogenases of Acetobacter melanogenum were investigated. Three polyol dehydrogenases, i. e. NAD+-linked d-mannitol dehydrogenase, NAD+-linked sorbitol dehydrogenase and NADP+-linked d-mannitol dehydrogenase, in the soluble fraction of the organism were purified 12-fold, 8-fold and 88-fold, respectively, by fractionation with ammonium sulfate and DEAE-cellulose column chromatography. NAD+-linked sorbitol dehydrogenase reduced 5-keto-d-fructose (5KF) to l-sorbose in the presence of NADH, whereas NADP+-linked d-mannitol dehydrogenase reduced the same substrate to d-fructose in the presence of NADPH. It was also shown that NAD+-linked d-mannitol dehydrogenase was specific for the interconversion between d-mannitol and d-fructose and that this enzyme was very unstable in alkaline conditions.  相似文献   

8.
Activities of the enzymes of formaldehyde (FA) catabolism in recombinant strains of the methylotrophic yeast Hansenula polymorpha overproducing NAD+- and glutathione-dependent formaldehyde dehydrogenase (FADH) were studied under different cultivation conditions and at elevated FA content. Southern dot-blot analysis confirmed the presence of six to eight copies of the target FLD1 gene in stable recombinant clones of H. polymorpha. Under certain cultivation conditions, the transformants resistant to elevated FA concentrations were shown to produce FADH and other bioanalytically important enzymes: formate dehydrogenase, alcohol dehydrogenase, alcohol oxidase, and formaldehyde reductase. The optimal cultivation conditions for recombinants were determined, resulting in maximum synthesis of FADH: methanol as a carbon source, methylamine as a nitrogen source, FA as an inducer, temperature of 37°C, and cells in the early exponential phase of growth.  相似文献   

9.
This study is concerned with further development of the kinetic locking-on strategy for bioaffinity purification of NAD+-dependent dehydrogenases. Specifically, the synthesis of highly substituted N6-linked immobilized NAD+ derivatives is described using a rapid solid-phase modular approach. Other modifications of the N6-linked immobilized NAD+ derivative include substitution of the hydrophobic diaminohexane spacer arm with polar spacer arms (9 and 19.5 Å) in an attempt to minimize nonbiospecific interactions. Analysis of the N6-linked NAD+ derivatives confirm (i) retention of cofactor activity upon immobilization (up to 97%); (ii) high total substitution levels and high percentage accessibility levels when compared to S6-linked immobilized NAD+ derivatives (also synthesized with polar spacer arms); (iii) short production times when compared to the preassembly approach to synthesis. Model locking-on bioaffinity chromatographic studies were carried out with bovine heart -lactate dehydrogenase ( -LDH, EC 1.1.1.27), bakers yeast alcohol dehydrogenase (YADH, EC 1.1.1.1) and Sporosarcinia sp. -phenylalanine dehydrogenase ( -PheDH, EC 1.4.1.20), using oxalate, hydroxylamine, and -phenylalanine, respectively, as locking-on ligands. Surprisingly, two of these test NAD+-dependent dehydrogenases (lactate and alcohol dehydrogenase) were found to have a greater affinity for the more lowly substituted S6-linked immobilized cofactor derivatives than for the new N6-linked derivatives. In contrast, the NAD+-dependent phenylalanine dehydrogenase showed no affinity for the S6-linked immobilized NAD+ derivative, but was locked-on strongly to the N6-linked immobilized derivative. That this locking-on is biospecific is confirmed by the observation that the enzyme failed to lock-on to an analogous N6-linked immobilized NADP+ derivative in the presence of -phenylalanine. This differential locking-on of NAD+-dependent dehydrogenases to N6-linked and S6-linked immobilized NAD+ derivatives cannot be explained in terms of final accessible substitutions levels, but suggests fundamental differences in affinity of the three test enzymes for NAD+ immobilized via N6-linkage as compared to thiol-linkage.  相似文献   

10.
A sensitive isotope exchange method was developed to assess the requirements for and compartmentation of pyruvate and oxalacetate production from malate in proliferating and nonproliferating human fibroblasts. Malatedependent pyruvate production (malic enzyme activity) in the particulate fraction containing the mitochondria was dependent on either NAD+ or NADP+. The production of pyruvate from malate in the soluble, cytosolic fraction was strictly dependent on NADP+. Oxalacetate production from malate (malate dehydrogenase, EC 1.1.1.37) in both the particulate and soluble fraction was strictly dependent on NAD+. Relative to nonproliferating cells, NAD+-linked malic enzyme activity was slightly reduced and the NADP+-linked activity was unchanged in the particulate fraction of serum-stimulated, exponentially proliferating cells. However, a reduced activity of particulate malate dehydrogenase resulted in a two-fold increase in the ratio of NAD(P)+-linked malic enzyme to NAD+-linked malate dehydrogenase activity in the particulate fraction of proliferating fibroblasts. An increase in soluble NADP+-dependent malic enzyme activity and a decrease in NAD+-linked malate dehydrogenase indictated an increase in the ratio of pyruvate-producing to oxalacetate-producing malate oxidase activity in the cytosol of proliterating cells. These coordinate changes may affect the relative amount of malate that is oxidized to oxalacetate and pyruvate in proliferating cells and, therefore, the efficient utilization of glutamine as a respiratory fuel during cell proliferation.  相似文献   

11.
Michel Neuburger  Roland Douce 《BBA》1980,589(2):176-189
Mitochondria isolated from spinach leaves oxidized malate by both a NAD+-linked malic enzyme and malate dehydrogenase. In the presence of sodium arsenite the accumulation of oxaloacetate and pyruvate during malate oxidation was strongly dependent on the malate concentration, the pH in the reaction medium and the metabolic state condition.Bicarbonate, especially at alkaline pH, inhibited the decarboxylation of malate by the NAD+-linked malic enzyme in vitro and in vivo. Analysis of the reaction products showed that with 15 mM bicarbonate, spinach leaf mitochondria excreted almost exclusively oxaloacetate.The inhibition by oxaloacetate of malate oxidation by spinach leaf mitochondria was strongly dependent on malate concentration, the pH in the reaction medium and on the metabolic state condition.The data were interpreted as indicating that: (a) the concentration of oxaloacetate on both sides of the inner mitochondrial membrane governed the efflux and influx of oxaloacetate; (b) the NAD+/NADH ratio played an important role in regulating malate oxidation in plant mitochondria; (c) both enzymes (malate dehydrogenase and NAD+-linked malic enzyme) were competing at the level of the pyridine nucleotide pool, and (d) the NAD+-linked malic enzyme provided NADH for the reversal of the reaction catalyzed by the malate dehydrogenase.  相似文献   

12.
In this article we compare the kinetic behavior toward pyridine nucleotides (NAD+, NADH) of NAD+-malic enzyme, pyruvate dehydrogenase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, and glycine decarboxylase extracted from pea (Pisum sativum) leaf and potato (Solanum tuberosum) tuber mitochondria. NADH competitively inhibited all the studied dehydrogenases when NAD+ was the varied substrate. However, the NAD+-linked malic enzyme exhibited the weakest affinity for NAD+ and the lowest sensitivity for NADH. It is suggested that NAD+-linked malic enzyme, when fully activated, is able to raise the matricial NADH level up to the required concentration to fully engage the rotenone-resistant internal NADH-dehydrogenase, whose affinity for NADH is weaker than complex I.  相似文献   

13.
We detected dye-linked D-mannitol dehydrogenase activity in the crude extract of Acetobacter xylinum KU-1. The enzyme activity was specific for D-mannitol, and not pyridine nucleotide (NAD+, NADP+)-dependent. The optimal pH was found to be 5.0, while the optimal temperature was at 50°C. The enzyme activity was inhibited by p-quinone noncompetitively.  相似文献   

14.
An NAD+-dependent alcohol dehydrogenase of a psychrotorelant from Antarctic seawater, Flavobacterium frigidimaris KUC-1 was purified to homogeneity with an overall yield of about 20% and characterized enzymologically. The enzyme has an apparent molecular weight of 160k and consists of four identical subunits with a molecular weight of 40k. The pI value of the enzyme and its optimum pH for the oxidation reaction were determined to be 6.7 and 7.0, respectively. The enzyme contains 2 gram-atoms Zn per subunit. The enzyme exclusively requires NAD+ as a coenzyme and shows the pro-R stereospecificity for hydrogen transfer at the C4 position of the nicotinamide moiety of NAD+. F. frigidimaris KUC-1 alcohol dehydrogenase shows as high thermal stability as the enzymes from thermophilic microorganisms. The enzyme is active at 0 to over 85°C and the most active at 70°C. The half-life time and k cat value at 60°C were calculated to be 50 min and 27,400 min−1, respectively. The enzyme also shows high catalytic efficiency at low temperatures (0–20°C) (k cat/K m at 10°C; 12,600 mM−1 min−1) similar to other cold-active enzymes from psychrophiles. The alcohol dehydrogenase gene is composed of 1,035 bp and codes 344 amino acid residues with an estimated molecular weight of 36,823. The sequence identities were found with the amino acid sequences of alcohol dehydrogenases from Moraxella sp. TAE123 (67%), Pseudomonas aeruginosa (65%) and Geobacillus stearothermophilus LLD-R (56%). This is the first example of a cold-active and thermostable alcohol dehydrogenase.  相似文献   

15.
Glucose-6-phosphate dehydrogenase (d-glucose-6-phosphate: NADP+ l-oxidoreductase EC 1.1.1.49) isolated from Paracoccus denitrificans grown on glucose/nitrate exhibits both NAD+-and NADP+-linked activities. Both activities have a pH optimum of pH 9.6 (Glycine/NaOH buffer) and neither demonstrates a Mg2+ requirement. Kinetics for both NAD(P)+ and glucose-6-phosphate were investigated. Phosphoenolpyruvate inhibits both activities in a competitive manner with respect to glucose-6-phosphate. ATP inhibits the NAD+-linked activity competitively with respect to glucose-6-phosphate but has no effect on the NADP+-linked activity. Neither of the two activities are inhibited by 100 M NADH but both are inhibited by NADPH. The NAD+-linked activity is far more sensitive to inhibition by NADPH than the NADP+-linked activity.  相似文献   

16.
The formaldehyde dehydrogenase (EC 1.2.1.1) from the yeast Pichia pastoris IFP 206 was purified to homogeneity. The enzyme had a molecular weight of 84,000 daltons and was composed of two identical subunits of a molecular weight of 39,000 daltons. The N-terminal end of the subunits is blocked. The protein showed 6,3 free -SH groups per mole and 12,5 in the presence of NAD+. Enzyme stability was increased by addition of glycerol during the purification.

The enzyme activity is NAD+ and glutathione dependent. The reaction product is S formylglutathione. The presence of an S-formylglutathione hydrolase (EC 3.1.2.12) in the cell free extract was detected. The formaldehyde dehydrogenase showed an optimum pH of 7.9 and an optimum temperature of 47°C. The activation energy was 3.2 kcal/mol. The Michaelis constants for NAD+ and S-hydroxymethyl glutathione were respectively 0.24 mM and 0.26 mM.  相似文献   

17.
Summary Four strains ofPseudomonas putida and two unidentifiedPseudomonas species that were resistant to hexahydro-1,3,5-triethyl-s-triazine (HHTT) were shown to be resistant to formaldehyde as well. Conjugation experiments revealed that: (a) HHTT and formaldehyde resistance was cotransferred in every case where exconjugants were recovered; (b) in every case HHTT resistance and formaldehyde resistance were expressed to the same level in the exconjugant as in the donor; (c) resistance to either HHTT or formaldehyde alone was never observed; and (d) in instances where HHTT and formaldehyde resistance in the exconjugants was unstable, the exconjugants lost resistance to both agents simultaneously and never to one agent alone. Resistant organisms (e.g.P. putida 3-T-152) had high levels of formaldehyde dehydrogenase and this enzyme appeared to be constitutively expressed. It was concluded that resistance to HHTT was due to resistance to its degradation product, formaldehyde, via detoxification of formaldehyde by formaldehyde dehydrogenase. HHTT- and formaldehyde-sensitive organisms had barely detectable levels (most likely repressed levels) of formaldehyde dehydrogenase. Although speculative, it is possible that formaldehyde resistance may be due to a mutation resulting in derepression of the gene coding for formaldehyde dehydrogenase. While it could not be discerned whether HHTT resistance and formaldehyde resistance were carried on two separate but closely linked genes or if only one gene was involved, the evidence suggested that only one gene was involved. Similarly, it could not be determined whether HHTT and formaldehyde resistance was encoded by chromosomal or plasmid genes.  相似文献   

18.
Although the facultatively autotrophic acidophile Thiobacillus acidophilus is unable to grow on formate and formaldehyde in batch cultures, cells from glucose-limited chemostat cultures exhibited substrate-dependent oxygen uptake with these C1-compounds. Oxidation of formate and formaldehyde was uncoupler-sensitive, suggesting that active transport was involved in the metabolism of these compounds. Formate- and formaldehyde-dependent oxygen uptake was strongly inhibited at substrate concentrations above 150 and 400 M, respectively. However, autotrophic formate-limited chemostat cultures were obtained by carefully increasing the formate to glucose ratio in the reservoir medium of mixotrophic chemostat cultures. The molar growth yield on formate (Y=2.5 g ·mol-1 at a dilution rate of 0.05 h-1) and RuBPCase activities in cell-free extracts suggested that T. acidophilus employs the Calvin cycle for carbon assimilation during growth on formate. T. acidophilus was unable to utilize the C1-compounds methanol and methylamine. Formate-dependent oxygen uptake was expressed constitutively under a variety of growth conditions. Cell-free extracts contained both dye-linked and NAD-dependent formate dehydrogenase activities. NAD-dependent oxidation of formaldehyde required reduced glutathione. In addition, cell-free extracts contained a dye-linked formaldehyde dehydrogenase activity. Mixotrophic growth yields were higher than the sum of the heterotrophic and autotrophic yields. A quantitative analysis of the mixotrophic growth studies revealed that formaldehyde was a more effective energy source than formate.  相似文献   

19.
20.
Investigation of the stereochemistry of the hydride transfer in reactions catalyzed by the recently isolated NAD+-linked alcohol dehydrogenase from the Antarctic psychrophile Moraxella sp. TAE123 was accomplished by using 1H NMR spectroscopy of the deuterated coenzyme. It was found that this new psychrophilic enzyme is a type A dehydrogenase. Moraxella sp. ADH reduces stereospecifically 2-butanone to produce (S)-2-butanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号