首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Impact by pulsed laser irradiations from an Nd:YAG laser on the marine biofilm-forming bacterium Pseudoalteromonas carrageenovora has been studied using a flow cytometric system. The biofilm-forming bacteria in the planktonic state have been irradiated while flowing, and the mortality and bacterial attachment have been determined by exposing TiN coupons in the system. Coupons suspended in the non-irradiated bacterial flow were treated as the control. The fluence used in the study was 0.1 J/cm(2). Three flow rates (14, 28, and 42 cm/min) and two exposure durations (15 and 30 min) were tested. The results showed the increase in bacterial mortality with the decrease in flow rate. The maximum mortality of 27.5% was observed when the flow rate was 14 cm/min. The bacterial attachment increased with the increase in flow rate and exposure duration. The area of bacterial attachment on the experimental coupons exposed to the irradiated sample was significantly lesser than that for the nonirradiated sample. The results thus show in a flowing system, low power pulsed laser irradiations could reduce the bacterial attachment even though it did not cause significant mortality.  相似文献   

2.
The mechanisms of laser action on bacteria are not adequately understood. Here, an attempt has been made to study the fluctuation in ATP (adenosine triphosphate) concentration following laser irradiation from a pulsed Nd:YAG laser on a marine biofilm-forming bacterium Pseudoalteromonas carrageenovora. A stationary phase bacterial suspension (density 10(7-8) ml-1) was exposed to pulsed laser irradiations at a fluence of 0.1 J cm-2 (pulse width 5 ns, repetition rate 10 Hz) for different durations, ranging from 2 s to 15 min. The total viable count (TVC) and ATP concentration of the irradiated samples were determined immediately after the laser irradiation. While the maximum reduction in the TVC observed with respect to the control was 59% immediately after 15 min irradiation, the ATP concentration showed a reduction of about 86% for the same duration. The ATP concentration showed an abrupt reduction from 3 min of laser irradiation and continued to reduce significantly with increasing duration of irradiation. Thus, 3 min irradiation at a fluence of 0.1 J cm-2 is considered as an approximate threshold for ATP production in this bacterium. As the decreased level of ATP production continued, bacterial mortality resulted. The reduction in ATP production could be due to damage caused by the laser irradiations on bacterial metabolic processes such as cellular respiration.  相似文献   

3.

The mechanisms of laser action on bacteria are not adequately understood. Here, an attempt has been made to study the fluctuation in ATP (adenosine triphosphate) concentration following laser irradiation from a pulsed Nd:YAG laser on a marine biofilm-forming bacterium Pseudoalteromonas carrageenovora. A stationary phase bacterial suspension (density 107-8 mlm 1) was exposed to pulsed laser irradiations at a fluence of 0.1 J cmm 2 (pulse width 5 ns, repetition rate 10 Hz) for different durations, ranging from 2 s to 15 min. The total viable count (TVC) and ATP concentration of the irradiated samples were determined immediately after the laser irradiation. While the maximum reduction in the TVC observed with respect to the control was 59% immediately after 15 min irradiation, the ATP concentration showed a reduction of about 86% for the same duration. The ATP concentration showed an abrupt reduction from 3 min of laser irradiation and continued to reduce significantly with increasing duration of irradiation. Thus, 3 min irradiation at a fluence of 0.1 J cmm 2 is considered as an approximate threshold for ATP production in this bacterium. As the decreased level of ATP production continued, bacterial mortality resulted. The reduction in ATP production could be due to damage caused by the laser irradiations on bacterial metabolic processes such as cellular respiration.  相似文献   

4.

The impact of pulsed laser irradiation on the marine biofilm forming bacterium Pseudoalteromonas carrageenovora was investigated in the laboratory by monitoring mortality and the post-irradiation growth pattern. The impact of laser irradiation on bacterial mortality increased with the duration of irradiation. Laser irradiation at 532 nm (0.1 J cm m 2 ) for 15 min resulted in a 53% cell mortality immediately after irradiation. However, the impact after a period of 5 h (delayed impact) was more severe. The growth pattern of irradiated samples showed a prolonged lag phase compared to the reference, due to a reduction in total viable counts (TVC) in the irradiated samples. Nucleic acid staining is suggested to be a promising technique for monitoring laser inflicted bacterial mortality. Thus, the results suggest that laser irradiation could be considered as an alternative technique to reduce the number of biofilm forming bacteria and thereby biofilm formation on hard surfaces.  相似文献   

5.
The recolonization of laser-ablated bacterial monoculture biofilm was studied in the laboratory by using a flow-cytometer system. The marine biofilm-forming bacterium Pseudoalteromonas carrageenovora was used to develop biofilms on titanium coupons. Upon exposure to a low-power pulsed irradiation from an Nd:YAG laser, the coupons with biofilm were significantly reduced both in terms of total viable count (TVC) and area cover. The energy density used for a pulse of 5 ns was 0.1 J/cm(2) and the durations of irradiation exposure were 5 and 10 min. When placed in a flow of dilute ZoBell marine broth medium (10%) the laser-destructed bacterial film in a flow-cytometer showed significant recovery over a period of time. The flow of medium was regulated at 3.2 ml/min. The increase in area cover and TVC, however, was significantly less than that observed for nonirradiated control (t-test, P< 0.05). The coupons were observed for biofilm area cover and TVC at different intervals (3, 6, and 9 h) after irradiation. While the biofilm in the control coupon at the end of 9 h of exposure showed 95.6 +/- 4.1% cover, the 5- and 10-min irradiated samples after 9 h showed 60.3 +/- 6.5 and 37.4 +/- 12.1% area cover, respectively. The reduced rate of recolonization compared to control was thought be due to the lethal and sublethal impacts of laser irradiation on bacteria. This observation thus provided data on the online recolonization speed of biofilm, which is important when considering pulsed laser irradiation as an ablating technique of biofilm formation and removal in natural systems.  相似文献   

6.
Laboratory experiments were conducted to study the impact of laser irradiation on the larvae of the fouling barnacle Balanus amphitrite. Research pertaining to fouling invertebrate larvae-laser interaction is sparse and, hence, data on this aspect were thought significant in order to consider pulsed low power laser irradiations as a possible future antifouling tool. Lethal and sub-lethal impacts of four very low laser fluences, viz. 0.013, 0.025, 0.05 and 0.1 J cm-2 for three different durations, viz. 2, 10 and 30 s were investigated. Three growth stages of barnacle larvae, viz. nauplii stage II, nauplii stage IV and cyprids were exposed to the mentioned laser fluences for different durations. While lethal impact was assessed immediately after and 1 d after irradiation, sub-lethal impacts were studied by monitoring the success rate of the irradiated nauplii in reaching the cyprid stage. In addition, the swimming speed of VIth stage nauplii after irradiation was studied. In the case of cyprids, in addition to the mortality measurement immediately after and 1 d after irradiation, the settlement rate was investigated. In all the above experiments, non-irradiated larvae served as controls. The results showed an increase in mortality with increasing laser fluence and duration of irradiation. Irradiation for 2 s resulted in significant mortality in nauplii, while it was less in the case of cyprids. In IInd stage nauplii, the mortality immediately after irradiation for 2 s varied from 14.8 +/- 2.12 to 97.1 +/- 4.1% for laser fluences of 0.013 and 0.1 J cm-2, respectively. However, in cyprids, the mortality immediately after irradiation for 2 s varied from 12.2 +/- 3 to 13.4 +/- 1.2% for fluences of 0.013 and 0.1 J cm-2, respectively. The mortality in IVth stage nauplii was less than that for IInd stage nauplii but more than that for cyprids. There was a significant increase in mortality with time after irradiation. The formation of cyprids from the irradiated larvae was significantly less than that observed for non-irradiated larvae. Also, the irradiated larvae showed a significantly slower swimming speed compared to the control samples. The settlement rate in cyprids was reduced significantly by the laser irradiation. This was true even for the lowest fluence and shortest period of irradiation tested. Thus, the results of the experiment showed that even a low power pulsed laser irradiation of 0.013 J cm-2 for 2 s can cause significant damage to fouling barnacle larvae.  相似文献   

7.
The impact of pulsed Nd:YAG (neodymium-doped yttrium/aluminium garnet) laser irradiation on the marine biofilm-forming bacteria Pseudoalteromonas carrageenovora during two growth stages (log phase and stationary phase) and under two stresses (reduced temperature and nutrient limitation) was investigated. Bacteria were exposed to a laser fluence of 0.1 J x cm(-2) for 5, 10, and 15 min with a peak power of 20 MW x cm(-2), a pulse width of 5 ns, and an average power of 1 W x cm(-2) with a repetition rate of 10 Hz. The mortality of bacteria immediately after the irradiation as well as after a set period of time was determined. Mortality was higher among log-phase bacteria (72%) than bacteria in the stationary phase (51%) and those grown under nutrient limitation (51%). Bacteria grown at reduced temperature had a mortality of 49%. However, the differences in cell density of log-phase, stationary-phase, nutrient-limited, and low-temperature irradiated samples compared with controls after 5 h of incubation were 96, 93, 94, and 86%, respectively. The mortality values suggest that the same laser fluence has different degrees of effectiveness, depending on the physiological state of the bacteria.  相似文献   

8.
Laboratory experiments were conducted to study the impact of laser irradiation on the larvae of the fouling barnacle Balanus amphitrite. Research pertaining to fouling invertebrate larvae‐laser interaction is sparse and, hence, data on this aspect were thought significant in order to consider pulsed low power laser irradiations as a possible future antifouling tool. Lethal and sub‐lethal impacts of four very low laser fluences, viz. 0.013, 0.025, 0.05 and 0.1 J cm‐2 for three different durations, viz. 2, 10 and 30 s were investigated. Three growth stages of barnacle larvae, viz. nauplii stage II, nauplii stage IV and cyprids were exposed to the mentioned laser fluences for different durations. While lethal impact was assessed immediately after and 1 d after irradiation, sub‐lethal impacts were studied by monitoring the success rate of the irradiated nauplii in reaching the cyprid stage. In addition, the swimming speed of VIth stage nauplii after irradiation was studied. In the case of cyprids, in addition to the mortality measurement immediately after and 1 d after irradiation, the settlement rate was investigated. In all the above experiments, non‐irradiated larvae served as controls. The results showed an increase in mortality with increasing laser fluence and duration of irradiation. Irradiation for 2 s resulted in significant mortality in nauplii, while it was less in the case of cyprids. In IInd stage nauplii, the mortality immediately after irradiation for 2 s varied from 14.8±2.12 to 97.1±4.1% for laser fluences of 0.013 and 0.1 J cm‐2, respectively. However, in cyprids, the mortality immediately after irradiation for 2 s varied from 12.2±3 to 13.4±1.2% for fluences of 0.013 and 0.1 J cm‐2, respectively. The mortality in IVth stage nauplii was less than that for IInd stage nauplii but more than that for cyprids. There was a significant increase in mortality with time after irradiation. The formation of cyprids from the irradiated larvae was significantly less than that observed for non‐irradiated larvae. Also, the irradiated larvae showed a significantly slower swimming speed compared to the control samples. The settlement rate in cyprids was reduced significantly by the laser irradiation. This was true even for the lowest fluence and shortest period of irradiation tested. Thus, the results of the experiment showed that even a low power pulsed laser irradiation of 0.013 J cm‐2 for 2 s can cause significant damage to fouling barnacle larvae.  相似文献   

9.
By means of the histochemical and morphometric methods the reaction of the tissue basophils of the brain dura mater has been studied to the one-time and varying-duration (0.5 sec.-3 hr.) irradiation by a helium-neon laser of the wave length 632.8 nm, power density 0.76 mvt/sm2. It has been found, that the laser irradiation had a biostimulating effect upon the tissue basophils; the first peak of activity is in the case of a 3-second continuous irradiation; the second--from 15 min. to 1 hr. In symmetrical parts of the right (irradiated) and left (nonirradiated) regions of the dura very similar changes of the functional activity of the tissue basophils activity were seen.  相似文献   

10.
The immune response of guinea pigs to Q fever vaccine following 75 to 250 R (60 to 180 rads) of acute whole-body irradiations was investigated. Complement-fixing (CF) antibody titers and protection against febrile response to challenge with virulent Coxiella burnetii were studied. Exposures ranging from 75 to 250 R, 24 hours prior to inoculation, did not detectably alter the CF antibody response. Similar results were observed with 175 R delivered 48 or 72 hours before immunization. Protection against febrile response to challenge with 10(3) median fever doses of C. burnetii was seen in animals irradiated with 175 R, 24 or 72 hours before immunization. Significant protection was detectable at 14, 21, and 42 days after immunization in both irradiated and nonirradiated animals. Acute irradiation of the degree studied increases the mortality in normal animals infected 15 to 17 days later with virulent C. burnetii. The lethal effect could be prevented by use of Q fever vaccine.  相似文献   

11.
Hypogonadal (hpg/hpg) mice deficient in gonadotropin-releasing hormone were used to study gonadotropin involvement in ovarian tumorigenesis following gamma irradiation. In the first experiment, 30-day-old hpg/hpg and normal (+/-) littermate mice were irradiated. The same mice were killed 10-15 mo later, and autopsies were performed. Ovaries of irradiated hpg/hpg mice were devoid of oocytes, but retained follicular structures. Neither mesothelial adenomas nor granulosa cell tumors were observed. In contrast, all irradiated +/- mice formed mesothelial adenomas or granulosa cell tumors, or both. Therefore, oocyte death in the absence of gonadotropins did not initiate ovarian tumorigenesis. In the second experiment, irradiated and nonirradiated hpg/hpg and +/- mice were injected 3 times weekly for 180 days with either low or high doses of pregnant mare serum gonadotropin (PMSG) and human chorionic gonadotropin (hCG) in combination. Irradiation reduced ovarian mass and markedly reduced ovarian weight increase in response to exogenous gonadotropins. Follicular dissolution and stromal cell hypertrophy were observed in saline-treated and gonadotropin-treated +/- mice that had been irradiated, and in hpg/hpg mice given the high gonadotropin dose. Mesothelial adenoma formation was observed in 100% of saline-treated, 14% of low dose-treated, and 11% of high dose-treated +/- mice. No mesothelial adenomas developed in any hpg/hpg or nonirradiated +/- mice, despite gonadotropin-induced stromal luteinization. These results indicate that, in the absence of gonadotropins, irradiation leads only to the loss of oocytes. The presence of gonadotropins was necessary to promote follicular dissolution and stromal luteinization, but was insufficient to stimulate mesothelial adenoma formation.  相似文献   

12.
Aims: The aim of this work was to clarify the effects of electromagnetic wave irradiation (EMWI) on oral bacterial pathogens. Methods and Results: A Gram‐negative (Porphyromonas gingivalis) or Gram‐positive (Streptococcus mutans, S. intermedius, Enterococcus faecalis) bacterial suspension was irradiated by EMW apparatus (500–1000 kHz, 5–15 times, 1 s time?1). Quantification of survival bacteria by CFU counting revealed that EMWI exhibited marked bactericidal activity against all tested bacteria and bactericidal activity at 500 kHz increased in an irradiation number‐dependent manner. After EMWI at 500 kHz, scanning electron microscopic observations showed that the chain of S. mutans cells was shortened after 5 irradiations and the outlines of bacterial cells (S. mutans and P. gingivalis) were unclear after 5–10 irradiations. EMWI inhibited the inductive effect of S. mutans on pro‐inflammatory cytokine production in human monocytes and this inhibitory effect was comparable with that of heat‐killed bacteria. Furthermore, using an enzyme activity assay, EMWI partially inactivated the activities of gingipains from P. gingivalis. Conclusions: These findings demonstrated that EMWI has inactivation and bactericidal activities against single microbial species among four kinds of oral pathogens. Significance and Impact of the Study: Electromagnetic wave irradiation may be applicable for medical disinfection and sterilization, such as refractory periapical periodontitis.  相似文献   

13.
The role of stationary phase sigma factor gene (rpoS) in the stress response of Moraxella strain when exposed to radiation was determined by comparing the stress responses of the wild-type (WT) and its rpoS knockout (KO) mutant. The rpoS was turned on by starving the WT cultures for 24 h in minimal salt medium. Under non-starved condition, both WT and KO planktonic Moraxella cells showed an increase in mortality with the increase in duration of irradiation. In the planktonic non-starved Moraxella, for the power intensity tested, UV radiation caused a substantially higher mortality rate than did by the visible laser light (the mortality rate observed for 15-min laser radiation was 53.4 +/- 10.5 and 48.7 +/- 8.9 for WT and KO, respectively, and 97.6 +/- 0 and 98.5 +/- 0 for 25 s of UV irradiation in WT and KO, respectively). However, the mortality rate decreased significantly in the starved WT when exposed to these two radiations. In comparison, rpoS protected the WT against the visible laser light more effectively than it did for the UV radiation. The WT and KO strains of Moraxella formed distinctly different types of biofilms on stainless steel coupons. The KO strain formed a denser biofilm than did the WT. Visible laser light removed biofilms from the surfaces more effectively than did the UV. This was true when comparing the mortality of bacteria in the biofilms as well. The inability of UV radiation to penetrate biofilms due to greater rates of surface absorption is considered to be the major reason for the weaker removal of biofilms in comparison to that of the visible laser light. This result suggests that high power visible laser light might be an effective tool for the removal of biofilms.  相似文献   

14.
During mitosis in Ptk1 cells anaphase is not initiated until, on average, 23 +/- 1 min after the last monooriented chromosome acquires a bipolar attachment to the spindle--an event that may require 3 h (Rieder, C. L., A. Schultz, R. W. Cole, and G. Sluder. 1994. J. Cell Biol. 127:1301-1310). To determine the nature of this cell-cycle checkpoint signal, and its site of production, we followed PtK1 cells by video microscopy prior to and after destroying specific chromosomal regions by laser irradiation. The checkpoint was relieved, and cells entered anaphase, 17 +/- 1 min after the centromere (and both of its associated sister kinetochores) was destroyed on the last monooriented chromosome. Thus, the checkpoint mechanism monitors an inhibitor of anaphase produced in the centromere of monooriented chromosomes. Next, in the presence of one monooriented chromosome, we destroyed one kinetochore on a bioriented chromosome to create a second monooriented chromosome lacking an unattached kinetochore. Under this condition anaphase began in the presence of the experimentally created monooriented chromosome 24 +/- 1.5 min after the nonirradiated monooriented chromosome bioriented. This result reveals that the checkpoint signal is not generated by the attached kinetochore of a monooriented chromosome or throughout the centromere volume. Finally, we selectively destroyed the unattached kinetochore on the last monooriented chromosome. Under this condition cells entered anaphase 20 +/- 2.5 min after the operation, without congressing the irradiated chromosome. Correlative light microscopy/elctron microscopy of these cells in anaphase confirmed the absence of a kinetochore on the unattached chromatid. Together, our data reveal that molecules in or near the unattached kinetochore of a monooriented PtK1 chromosome inhibit the metaphase-anaphase transition.  相似文献   

15.
UV-C induced chemiluminescence of human skin was investigated in vivo by means of an image-producing system using photon-counting camera and computer PERICOLOR-1000. Luminescence after UV-C application is shown to decline nonexponentially, the parameters of the decline depending on irradiation dose, skin specimen and previous irradiations. If the same skin specimen is irradiated second time 3-36 hours after the first irradiation, the luminescence decline time increases from one-two minutes to more than half an hour. During the time when the decline is slow the images produced by irradiation through the diaphragm do not sustain distinct contours due to the luminescence of nonirradiated skin. The luminescence is shown to be under the organisms' control and to diminish significantly after the application of acetylsalicylic acid.  相似文献   

16.
AIM: To study the molecular level damages in a marine bacterium, Pseudoalteromonas carrageenovora, exposed to low power pulsed laser radiation from an Nd:YAG laser. METHODS AND RESULTS: The laser damages in bacterial DNA were monitored by studying the formation of apurinic/apyrimidinic (AP) sites. Molecular probe kits were used for this purpose. Occurrence of lesions in the cell walls was monitored under a transmission electron microscope (TEM). The results showed that laser radiation significantly increased the number of AP sites in the bacterial DNA. This increase corresponded to the laser fluence (J cm(-2)) and to the duration of laser irradiation. TEM observation showed the occurrence of lesions in bacterial cell walls upon laser irradiation. CONCLUSIONS: It is concluded that bacteria exposed to laser irradiation suffers DNA damages and resulted in broken cell walls. These events led to bacterial mortality. These are in addition to the mechanisms reported earlier such as the photochemical reactions occurring inside the cells upon exposure to low power laser. SIGNIFICANCE AND IMPACT OF THE STUDY: These results help us to understand the mechanisms of bacterial mortality on exposure to low power pulsed laser irradiation and are useful in formulating a laser treatment strategy to kill bacteria.  相似文献   

17.
We studied the laser ablation of laboratory-developed biofilm on titanium and glass surfaces. Specifically, Pseudoalteromonas carrageenovora, a marine biofilm forming bacterium was used to generate laboratory biofilm. Two fluences, 0.05 and 0.1 J/cm(2) and three durations of irradiation, 30 s, 5 min, and 10 min were tested using an Nd;YAG laser of 532 nm wavelength (in the green light area). Nonirradiated coupons with biofilm served as control. The biofilm removal efficiency increased with the increase in laser fluence and duration of irradiation. The maximum biofilm area cover on control coupons of glass and titanium was 62.5 and 76.0%, respectively. Upon irradiation with fluence 0.1 J/cm(2) for the very short duration of 30 s, this reduced to 5.6 and 12.4% and at 10 min to 2.17 and 0.7% on glass and titanium coupons, respectively, while the controls did not show any reductions (62.5 and 76.0% respectively, for glass and titanium coupons). The biofilm TRC (Total Resuscitated Cells) reduction during this period was even more prominent than the area cover, indicating that the remaining biofilm portions on coupons after irradiation were largely composed of dead bacterial cells. The TRC in the irradiation chamber medium for short durations of irradiation showed a significant increase, indicating that the laser irradiation removed live bacteria from the biofilm. The re-growth of the resuscitated cells showed they could grow like the control cells but with a significant lag. The laser's efficiency in the removal of biofilm was better seen on titanium coupons than on glass. Our results showed that a low-power pulsed laser irradiation could be used to remove biofilm formed on hard surfaces.  相似文献   

18.
The RBE for neutrons was assessed in a head-to-head experiment in which cultures of lymphocytes from the same male donor were irradiated simultaneously with 144 keV neutrons and with 60Co gamma rays as the reference radiation and evaluated using matched time, culture conditions, and the end point of chromosomal aberrations to avoid potential confounding factors that would influence the outcome of the experiment. In addition, the irradiation time was held constant at 2 h for the high-dose groups for both radiation types, which resulted in rather low dose rates. For the induction of dicentric chromosomes, the exposure to the 144 keV neutrons was found to be almost equally as effective (yield coefficient alpha(dic) = 0.786 +/- 0.066 dicentrics per cell per gray) as that found previously for irradiation with monoenergetic neutrons at 565 keV (alpha(dic) = 0.813 +/- 0.052 dicentrics per cell per gray) under comparable exposure and culture conditions (Radiat. Res. 154, 307-312, 2000). However, the values of the maximum low-dose RBE (RBE(m)) relative to 60Co gamma rays that were determined in the present and previous studies show an insignificant but conspicuous difference: 57.0 +/- 18.8 and 76.0 +/- 29.5, respectively. This difference is mainly due to the difference in the alpha(dic) value of the 60Co gamma rays, the reference radiation, which was 0.0138 +/- 0.0044 Gy(-1) in the present study and 0.0107 +/- 0.0041 Gy(-1) in the previous study. In the present experiment, irradiations with 144 keV neutrons and 60Co gamma rays were both performed at 21 degrees C, while in the earlier experiment irradiations with 565 keV neutrons were performed at 21 degrees C and the corresponding reference irradiation with gamma rays was performed at 37 degrees C. However, the temperature difference between 21 degrees C and 37 degrees C has a minor influence on the yield of chromosomal alterations and hence RBE values. The large cubic PMMA phantom that was used for the gamma irradiations in the present study results in a larger dose contribution from Compton-scattered photons compared to the mini-phantom used in the earlier experiments. The contribution of these scattered photons may explain the large value of alpha(dic) for gamma irradiation in the present study. These results indicate that the yield coefficient alpha(dic) for 144 keV neutrons is similar to the one for 565 keV neutrons, and that modification of the alpha(dic) value of the low-LET reference radiation, due to changes in the experimental conditions, can influence the RBE(m). Consequently, alpha(dic) values cannot be shared between cytogenetic laboratories for the purpose of assessment of RBM(m) without verification of the comparability of the experimental conditions.  相似文献   

19.
Studies on the effects of gamma radiation on the infectivity of Trypanosoma rangeli (strain H14) for the vector Rhodnius prolixus revealed that (i) the LD(50) (lethal dose for 50% of bugs) for uninfected insects was 4147 rads; (ii) irradiated insects with a dose of 1200 rads subsequently infected with the flagellates exhibited a mortality of 45%, while uninfected irradiated insects showed a mortality of 5%, and infected nonirradiated insects exhibited 10% mortality; (iii) flagellates were present in the hemolymph of irradiated insects 7 days postinfection (p.i.), while in nonirradiated insects the parasites appeared in the hemocoel 18 days p.i.; (iv) T. rangeli infection decreased the number of hemocytes significantly and induced the formation of nodules in the hemolymph of both irradiated and nonirradiated insects; and (v) gamma irradiation affected the ultrastructural organization of the epithelial cells of the small intestine, principally the perimicrovillar membranes and microvilli. In this paper, we discuss the significance of the intestinal microenvironment of R. prolixus with regard to its interaction with T. rangeli.  相似文献   

20.
A flow cytometry system was used to evaluate the impact of pulsed laser irradiations from an Nd:YAG laser on two marine coastal water diatoms, Chaetoceros gracilis and Skeletonema costatum. Three flow speeds, i.e. 9, 18 and 27 ml min-1 and three laser fluences, i.e. 0.025, 0.05 and 0.1 J cm-2 pulse-1 were tested during this study. The reduction in cell density and chlorophyll a (chl a) concentrations were monitored by reference to non-irradiated samples as controls. Upon irradiation, the cell density and the chl a concentrations became reduced significantly compared to the control (one way ANOVA p < 0.001 for the cell density in both the species and p < 0.05 for chl a concentrations in both species). A maximum mortality of 0.77 log10 (about 83%) for C. gracilis and 0.68 log10 (about 78%) for S. costatum was observed at 9 ml min-1 flow speed and 0.1 J cm-2 laser fluence. The maximum reduction observed in the chl a concentration was about 26% (control 0.413 and sample 0.306 mg ml-1) for C. gracilis and 27% (control 0.222 and sample 0.16 mg ml-1) for S. costatum, when the flow rate was 9 ml min-1 and the fluence 0.1 J cm-2. In general, mortality increased with an increase in the laser fluence. The results thus show if the cooling water is laser-irradiated to mitigate biofouling, this could result in significant damage to the planktonic flora of the flowing seawater system, which in turn might reduce algal biofilm formation on industrially important structures. The reduction in the chl a concentration showed that the laser irradiations also could result in a significant reduction in the primary productivity of the cooling water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号