首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence for a specific glutamate/h cotransport in isolated mesophyll cells   总被引:1,自引:1,他引:0  
Mechanically isolated Asparagus sprengeri Regel mesophyll cells were suspended in 1 millimolar CaSO4. Immediate alkalinization of the medium occured on the addition of 1 millimolar concentrations of l-glutamate (Glu) and its analog l-methionine-d,l-sulfoximine (l-MSO). d-Glu and the l isomers of the protein amino acids did not elicit alkalinization. l-Glu dependent alkalinization was transient and acidification resumed after approximately 30 to 45 minutes. At pH 6.0, 5 millimolar l-Glu stimulated initial rates of alkalinization that varied between 1.3 to 4.1 nmol H+/106 cells·minute. l-Glu dependent alkalinization was saturable, increased with decreasing pH, was inhibited by carbonyl cyanide-p-trichloromethoxyphenyl hydrazone (CCCP), and was not stimulated by light. Uptake of l-[U-14C]glutamate increased as the pH decreased from 6.5 to 5.5, and was inhibited by l-MSO. l-Glu had no influence on K+ efflux. Although evidence for multiple amino acid/proton cotransport systems has been found in other tissues, the present report indicates that a highly specific l-Glu/proton uptake process is present in Asparagus mesophyll cells.  相似文献   

2.
Mechanically isolated Asparagus sprengeri Regel mesophyll cells cause alkalinization of the suspension medium on the addition of l-glutamate or its analog l-methionine-d,l-sulfoximine. Using a radiolabeled pH probe, it was found that both compounds caused internal acidification whereas l-aspartate did not. Fusicoccin stimulated H+ efflux from the cells by 111% and the uptake of l-[U-14C]glutamate by 55%. Manometric experiments demonstrated that, unlike l-methionine-d,l-sulfoximine, l-glutamate stimulated CO2 evolution from nonilluminated cells. Simultaneous measurements of medium alkalinization and 14CO2 evolution upon the addition of labeled l-glutamate showed that alkalinization was immediate and reached a maximum value after 45 minutes whereas 14CO2 evolution exhibited a lag before its appearance and continued in a linear manner for at least 100 minutes. Rates of alkalinization and uptake of l-[U-14C]glutamate were higher in the light while rates of 14CO2 evolution were higher in the dark. The major labeled product of glutamate decarboxylation, γ-aminobutyric acid, was found in the cells and the suspension medium. Its addition to the cell suspension did not result in medium alkalinization and evidence indicates that it is lost from the cell to the medium. The data suggest that the origin of medium alkalinization is co-transport not metabolism, and that the loss of labeled CO2 and γ-aminobutyric acid from the cell result in an overestimation of the stoichiometry of the H+/l-glutamate uptake process.  相似文献   

3.
Addition of l-[U-14C]glutamate to a suspension of mechanically isolated asparagus (Asparagus sprengeri Regel) mesophyll cells results in (a) alkalinization of the medium, (b) uptake of l-[U-14C]glutamate, and (c) efflux of [14C]4-aminobutyrate, a product of glutamate decarboxylation. All three phenomena were eliminated by treatment with 1 millimolar aminooxyacetate. In vitro glutamate decarboxylase (GAD) assays showed that (a) 2 millimolar aminooxyacetate eliminated enzyme activity, (b) activity was pyridoxal phosphate-dependent, and (c) activity exhibited a sharp pH optimum at 6.0 that decreased to 20% of optimal activity at pH 5.0 and 7.0. Addition of 1.5 millimolar sodium butyrate or sodium acetate to cell suspensions caused immediate alkalinization of the medium followed by a resumption of acidification of the medium at a rate approximately double the initial rate. The data indicate that (a) continued H+/l-glutamate contransport is dependent upon GAD activity, (b) the pH-dependent properties of GAD are consistent with a role in a metabolic pH-stat, and (c) the regulation of intracellular pH during H+/l-Glu symport may involve both H+ consumption during 4-aminobutyrate production and ATP-driven H+ efflux.  相似文献   

4.
Zhu Y  Shearer G  Kohl DH 《Plant physiology》1992,98(3):1020-1028
Supplying l-proline to the root system of intact soybean (Glycine max [L.] Merr.) plants stimulated acetylene reducing activity to the same extent as did supplying succinate. Feeding l-proline also caused an increase in bacteroid proline dehydrogenase activity that was highly correlated with the increase in acetylene-reducing activity. Twenty-four hours after irrigating with l-proline, endogenous proline content had increased in host cell cytoplasm and bacteroids, about three- and eightfold, respectively. In bacteroids, proline concentration was calculated to be at least 3.5 millimolar. In experiments in which [U-14C]l-proline was supplied to uprooted, intact plants incubated in aerated solution, 14C-labeled products of proline metabolism, as well as [14C]proline itself, accumulated in both host cells and bacteroids. When plants were incubated in aerated solutions containing [5-3H]l-proline, 3H-labeled proline was found in host cells and bacteroids. [3H] Pyrroline-5-carboxylate was found in bacteroids, but not host cells, after a 2-hour incubation in [5-3H]l-proline. When [U-14C]l-proline was supplied for 24 hours, a significant amount of [14C] pyrroline-5-carboxylate was found in the host cells, in contrast with the results from the shorter incubation in [5-3H]proline, although the amount in the host cells was only about half the quantity found in the bacteroids. Taken as a whole, these results indicate that proline crosses both plant and bacterial membranes under the in vivo experimental conditions utilized and are consistent with a significant role for proline as an energy source in support of bacteroid functioning. In spite of the increase in acetylene-reducing activity when proline was supplied to the root system of intact plants, proline application did not rescue stemgirdled plants from loss of acetylene-reducing activity, although succinate application did. This suggests a nonphloem route for succinate, but not proline, from roots to nodules.  相似文献   

5.
Saito K  Nick JA  Loewus FA 《Plant physiology》1990,94(3):1496-1500
d-[6-14C]Glucosone that had been prepared enzymically from d-[6-14C]glucose was used to compare relative efficiencies of these two sugars for l-ascorbic acid (AA) biosynthesis in detached bean (Phaseolus vulgaris L., cv California small white) apices and 4-week-old spinach (Spinacia oleracea L., cv Giant Noble) leaves. At tracer concentration, 14C from glucosone was utilized by spinach leaves for AA biosynthesis much more effectively than glucose. Carbon-14 from [6-14C]glucose underwent considerable redistribution during AA formation, whereas 14C from [6-14C]glucosone remained almost totally in carbon 6 of AA. In other experiments with spinach leaves, l-[U-14C]sorbosone was found to be equivalent to [6-14C]glucose as a source of 14C for AA. In the presence of 0.1% d-glucosone, conversion of [6-14C] glucose into labeled AA was greatly repressed. In a comparable experiment with l-sorbosone replacing d-glucosone, the effect was much less. The experiments described here give substance to the proposal that d-glucosone and l-sorbosone are putative intermediates in the conversion of d-glucose to AA in higher plants.  相似文献   

6.
Thermotoga maritima is a Gram-negative, hyperthermophilic bacterium whose peptidoglycan contains comparable amounts of l- and d-lysine. We have determined the fine structure of this cell-wall polymer. The muropeptides resulting from the digestion of peptidoglycan by mutanolysin were separated by high-performance liquid chromatography and identified by amino acid analysis after acid hydrolysis, dinitrophenylation, enzymatic determination of the configuration of the chiral amino acids, and mass spectrometry. The high-performance liquid chromatography profile contained four main peaks, two monomers, and two dimers, plus a few minor peaks corresponding to anhydro forms. The first monomer was the d-lysine-containing disaccharide-tripeptide in which the d-Glu-d-Lys bond had the unusual γ→ϵ arrangement (GlcNAc-MurNAc-l-Ala-γ-d-Glu-ϵ-d-Lys). The second monomer was the conventional disaccharide-tetrapeptide (GlcNAc-MurNAc-l-Ala-γ-d-Glu-l-Lys-d-Ala). The first dimer contained a disaccharide-l-Ala as the acyl donor cross-linked to the α-amine of d-Lys in a tripeptide acceptor stem with the sequence of the first monomer. In the second dimer, donor and acceptor stems with the sequences of the second and first monomers, respectively, were connected by a d-Ala4-α-d-Lys3 cross-link. The cross-linking index was 10 with an average chain length of 30 disaccharide units. The structure of the peptidoglycan of T. maritima revealed for the first time the key role of d-Lys in peptidoglycan synthesis, both as a surrogate of l-Lys or meso-diaminopimelic acid at the third position of peptide stems and in the formation of novel cross-links of the l-Ala1(α→α)d-Lys3 and d-Ala4(α→α)d-Lys3 types.Peptidoglycan (or murein) is a giant macromolecule whose main function is the protection of the cytoplasmic membrane against the internal osmotic pressure. It is composed of alternating residues of N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc)2 cross-linked by short peptides (1). The composition of the peptide stem in nascent peptidoglycan is l-Ala1-γ-d-Glu2-X3-d-Ala4-d-Ala5, where X is most often meso-diaminopimelic acid (meso-A2pm) or l-lysine in Gram-negative and Gram-positive species, respectively (2, 3). In the mature macromolecule, the last d-Ala residue is removed. Cross-linking of the glycan chains generally occurs between the carboxyl group of d-Ala at position 4 of a donor peptide stem and the side-chain amino group of the diamino acid at position 3 of an acceptor peptide stem (4→3 cross-links). Cross-linking is either direct or through a short peptide bridge such as pentaglycine in Staphylococcus aureus (2, 3). The enzymes for the formation of the 4→3 cross-links are active-site serine dd- transpeptidases that belong to the penicillin-binding protein (PBP) family and are the essential targets of β-lactam antibiotics in pathogenic bacteria (4). Catalysis involves the cleavage of the d-Ala4-d-Ala5 bond of a donor peptide stem and the formation of an amide bond between the carboxyl of d-Ala4 and the side chain amine at the third position of an acceptor stem. Transpeptidases of the ld specificity are active-site cysteine enzymes that were shown to act as surrogates of the PBPs in mutants of Enterococcus faecium resistant to β-lactam antibiotics (5). They cleave the X3-d-Ala4 bond of a donor stem peptide to form 3→3 cross-links. This alternate mode of cross-linking is usually marginal, although it has recently been shown to predominate in non-replicative “dormant” forms of Mycobacterium tuberculosis (6).Thermotoga maritima is a Gram-negative, extremely thermophilic bacterium isolated from geothermally heated sea floors by Huber et al. (7). A morphological characteristic is the presence of an outer sheath-like envelope called “toga.” Although the organism has received considerable attention for its biotechnological potential, studies about its peptidoglycan are scarce (811), and in particular the fine structure of the macromolecule is still unknown. In their initial work, Huber et al. (7) showed that the composition of its peptidoglycan was unusual for a Gram-negative species, because it contained both isomers of lysine and no A2pm. Recently, we purified and studied the properties of T. maritima MurE (12); this enzyme is responsible for the addition of the amino acid residue at position 3 of the peptide stem (13, 14). We demonstrated that T. maritima MurE added in vitro l- and d-Lys to UDP-MurNAc-l-Ala-d-Glu. Although l-Lys was added in the usual way, yielding the conventional nucleotide UDP-MurNAc-l-Ala-γ-d-Glu-l-Lys containing a d-Glu(γ→α)l-Lys amide bond, the d-isomer was added in an “upside-down” manner, yielding the novel nucleotide UDP-MurNAc-l-Ala-d-Glu(γ→ϵ)d-Lys. We also showed that the d-Lys-containing nucleotide was not a substrate for T. maritima MurF, the subsequent enzyme in the biosynthetic pathway, whereas this ligase catalyzed the addition of dipeptide d-Ala-d-Ala to the l-Lys-containing tripeptide, yielding the conventional UDP-MurNAc-pentapeptide (12).However, both the l-Lys-containing UDP-MurNAc-pentapeptide and d-Lys-containing UDP-MurNAc-tripeptide were used as substrates by T. maritima MraY with comparable efficiencies in vitro (12). This observation implies that the unusual d-Lys-containing peptide stems are likely to be translocated to the periplasmic face of the cytoplasmic membrane and to participate in peptidoglycan polymerization. Therefore, we have determined here the fine structure of T. maritima peptidoglycan and we have shown that l-Lys- and d-Lys-containing peptide stems are both present in the polymer, the latter being involved in the formation of two novel types of peptidoglycan cross-link.  相似文献   

7.
1. The influence of cations on the active transport into cells of rat-brain-cortex slices of l-histidine, an amino acid that is not metabolized by this tissue, has been studied. 2. Like other amino acids, l-histidine accumulated in the cells in the presence of glucose in concentrations up to over double that in the incubation medium. 3. The active transport of l-histidine was highest in a medium containing Ca2+ (3mm). The addition of K+ (27mm) led to a marked decrease in the intracellular concentration of l-histidine, though the oxygen uptake of the slices was higher. 4. The active l-histidine transport was inhibited by NH4+. The inhibitory effect increased with the NH4+ concentration, being about 25% at 8mm, 65% at 20mm, and 90% at 27 and 50mm. The oxygen uptake of the brain slices was depressed by only 25% by the highest NH4+ concentration used, and less by lower concentrations.  相似文献   

8.
Peptidoglycan hydrolases (PGHs) are responsible for bacterial cell lysis. Most PGHs have a modular structure comprising a catalytic domain and a cell wall-binding domain (CWBD). PGHs of bacteriophage origin, called endolysins, are involved in bacterial lysis at the end of the infection cycle. We have characterized two endolysins, Lc-Lys and Lc-Lys-2, identified in prophages present in the genome of Lactobacillus casei BL23. These two enzymes have different catalytic domains but similar putative C-terminal CWBDs. By analyzing purified peptidoglycan (PG) degradation products, we showed that Lc-Lys is an N-acetylmuramoyl-l-alanine amidase, whereas Lc-Lys-2 is a γ-d-glutamyl-l-lysyl endopeptidase. Remarkably, both lysins were able to lyse only Gram-positive bacterial strains that possess PG with d-Ala4d-Asx-l-Lys3 in their cross-bridge, such as Lactococcus casei, Lactococcus lactis, and Enterococcus faecium. By testing a panel of L. lactis cell wall mutants, we observed that Lc-Lys and Lc-Lys-2 were not able to lyse mutants with a modified PG cross-bridge, constituting d-Ala4l-Ala-(l-Ala/l-Ser)-l-Lys3; moreover, they do not lyse the L. lactis mutant containing only the nonamidated d-Asp cross-bridge, i.e. d-Ala4d-Asp-l-Lys3. In contrast, Lc-Lys could lyse the ampicillin-resistant E. faecium mutant with 3→3 l-Lys3-d-Asn-l-Lys3 bridges replacing the wild-type 4→3 d-Ala4-d-Asn-l-Lys3 bridges. We showed that the C-terminal CWBD of Lc-Lys binds PG containing mainly d-Asn but not PG with only the nonamidated d-Asp-containing cross-bridge, indicating that the CWBD confers to Lc-Lys its narrow specificity. In conclusion, the CWBD characterized in this study is a novel type of PG-binding domain targeting specifically the d-Asn interpeptide bridge of PG.  相似文献   

9.
1. all-trans-Retinoic acid at concentrations greater than 10−7m stimulated the incorporation of d-[3H]glucosamine into 8m-urea/5% (w/v) sodium dodecyl sulphate extracts of 1m-CaCl2-separated epidermis from pig ear skin slices cultured for 18h. The incorporation of 35SO42−, l-[14C]fucose and U-14C-labelled l-amino acids was not significantly affected. 2. Electrophoresis of the solubilized epidermis showed increased incorporation of d-[3H]glucosamine into a high-molecular-weight glycosaminoglycan-containing peak when skin slices were cultured in the presence of 10−5m-all-trans-retinoic acid. The labelling of other epidermal components with d-[3H]glucosamine, 35SO42−, l-[14C]fucose and U-14C-labelled l-amino acids was not significantly affected by 10−5m-all-trans-retinoic acid. 3. Trypsinization dispersed the epidermal cells and released 75–85% of the total d-[3H]glucosamine-labelled material in the glycosaminoglycan peak. Thus most of this material was extracellular in both control and 10−5m-all-trans-retinoic acid-treated epidermis. 4. Increased labelling of extracellular epidermal glycosaminoglycans was also observed when human skin slices were treated with all-trans-retinoic acid, indicating a similar mechanism in both tissues. Increased labelling was also found when the epidermis was cultured in the absence of the dermis, suggesting a direct effect of all-trans-retinoic acid on the epidermis. 5. Increased incorporation of d-[3H]-glucosamine into extracellular epidermal glycosaminoglycans in 10−5m-all-trans-retinoic acid-treated skin slices was apparent after 4–8h in culture and continued up to 48h. all-trans-Retinoic acid (10−5m) did not affect the rate of degradation of this material in cultures `chased' with 5mm-unlabelled glucosamine after 4 or 18h. 6. Cellulose acetate electrophoresis at pH7.2 revealed that hyaluronic acid was the major labelled glycosaminoglycan (80–90%) in both control and 10−5m-all-trans-retinoic acid-treated epidermis. 7. The labelling of epidermal plasma membranes isolated from d-[3H]glucosamine-labelled skin slices by sucrose density gradient centrifugation was similar in control and 10−5m-all-trans-retinoic acid-treated tissue. 8. The results indicate that increased synthesis of mainly extracellular glycosaminoglycans (largely hyaluronic acid) may be the first response of the epidermis to excess all-trans-retinoic acid.  相似文献   

10.
Degradation of phenylalanine and tyrosine by Sporobolomyces roseus   总被引:3,自引:2,他引:1  
Ammonia-lyase activity for l-phenylalanine, m-hydroxyphenylalanine and l-tyrosine was demonstrated in cell-free extracts of Sporobolomyces roseus. Cultures of this organism converted dl-[ring-14C]phenylalanine and l-[U-14C]tyrosine into the corresponding cinnamic acid. Tracer studies showed that these compounds were further metabolized to [14C]protocatechuic acid. Benzoic acid and p-hydroxybenzoic acid were intermediates in this pathway. Washed cells of the organism readily utilized cinnamic acid, p-coumaric acid, caffeic acid, benzoic acid and p-hydroxybenzoic acid. Protocatechuic acid was the terminal aromatic compound formed during the metabolism of these compounds. The cells of S. roseus were able to convert m-coumaric acid into m-hydroxybenzoic acid, but the latter compound, which accumulated in the medium, was not further metabolized. 4-Hydroxycoumarin was identified as the product of o-coumaric acid metabolism by this organism.  相似文献   

11.
Hart JW  Filner P 《Plant physiology》1969,44(9):1253-1259
The sulfur requirements of tobacco (Nicotiana tabacum L. var. Xanthi) XD cells grown in chemically defined liquid media can be satisfied by sulfate, thiosulfate, l-cyst(e)ine, l-methionine or glutathione, and somewhat less effectively by d-cyst (e) ine, d-methionine or dl-homocyst (e)ine. Sulfate uptake is inhibited after a 2 hr lag by l-cyst (e)ine, l-methionine, l-homocyst(e)ine or l-isoleucine, but not by any of the other protein amino acids, nor by d-cyst(e)ine. l-cyst(e)ine is neither a competitive nor a non-competitive inhibitor of sulfate uptake. Its action most closely resembles apparent uncompetitive inhibition. Inhibition of sulfate uptake by l-cyst(e)ine can be partially prevented by equimolar l-arginine, l-lysine, l-leucine, l-phenylalanine, l-tyrosine or l-tryptophan, but is little affected by any of the other protein amino acids. The effective amino acids are apparent competitive inhibitors of l-cyst(e)ine uptake after a 2 hr lag. Inhibition of sulfate uptake by l-methionine cannot be prevented, nor can uptake of l-methionine be inhibited by any single protein amino acid. The results suggest the occurrence of negative feedback control of sulfate assimilation by the end products, the sulfur amino acids, in cultured tobacco cells.  相似文献   

12.
Renal transport of four different categories of organic solutes, namely sugars, neutral amino acids, monocarboxylic acids and dicarboxylic acids, was studied by using the potential-sensitive dye 3,3′-diethyloxadicarbocyanine iodide in purified luminal-membrane and basolateral-membrane vesicles isolated from rabbit kidney cortex. Valinomycin-induced K+ diffusion potentials resulted in concomitant changes in dye–membrane-vesicle absorption spectra. Linear relationships were obtained between these changes and depolarization and hyperpolarization of the vesicles. Addition of d-glucose, l-phenylalanine, succinate or l-lactate to luminal-membrane vesicles, in the presence of an extravesicular>intravesicular Na+ gradient, resulted in rapid transient depolarization. With basolateral-membrane vesicles no electrogenic transport of d-glucose or l-phenylalanine was observed. Spectrophotometric competition studies revealed that d-galactose is electrogenically taken up by the same transport system as that for d-glucose, whereas l-phenylalanine, succinate and l-lactate are transported by different systems in luminal-membrane vesicles. The absorbance changes associated with simultaneous addition of d-glucose and l-phenylalanine were additive. The uptake of these solutes was influenced by the presence of Na+-salt anions of different permeabilities in the order: Cl>SO42−>gluconate. Addition of valinomycin to K+-loaded vesicles enhanced uptake of d-glucose and l-phenylalanine in the presence of an extravesicular>intravesicular Na+ gradient. Gramicidin or valinomycin plus nigericin diminished/abolished electrogenic solute uptake by Na+- or Na++K+-loaded vesicles respectively. These results strongly support the presence of Na+-dependent renal electrogenic transport of d-glucose, l-phenylalanine, succinate and l-lactate in luminal-membrane vesicles.  相似文献   

13.
Two enzymes, l-arabinose isomerase and mannose-6-phosphate isomerase, from Geobacillus thermodenitrificans produced 118 g/liter l-ribose from 500 g/liter l-arabinose at pH 7.0, 70°C, and 1 mM Co2+ for 3 h, with a conversion yield of 23.6% and a volumetric productivity of 39.3 g liter−1 h−1.l-Ribose, a potential starting material for the synthesis of many l-nucleoside-based pharmaceutical compounds, is not abundant in nature (4, 15, 20). l-Ribose has been synthesized primarily from l-arabinose, l-xylose, d-glucose, d-galactose, d-ribose, and d-mannono-1,4-lactone (1, 13, 20). Recombinant cells containing a NAD-dependent mannitol-1-dehydrogenase produced 52 g/liter l-ribose from 100 g/liter ribitol after fermentation for 72 h (14). However, the volumetric productivity of l-ribose was 26-fold lower than that of the chemical synthetic method starting from l-arabinose (6). l-Ribose isomerase from an Acinetobacter sp., which is most active with l-ribose, showed poor efficiency in the conversion of l-ribulose to l-ribose (9). Recently, l-ribulose was produced with a conversion yield of 19% from the inexpensive sugar l-arabinose using l-arabinose isomerase (AI) from Geobacillus thermodenitrificans (18). l-Ribose has been produced from l-ribulose using mannose-6-phosphate isomerase (MPI) from Bacillus subtilis with a conversion yield of 70% (17). In this study, the production of l-ribose from l-arabinose was demonstrated via a two-enzyme system from G. thermodenitrificans, in which l-ribulose was first produced from l-arabinose by AI and subsequently converted to l-ribose by MPI.The analysis of monosaccharides and the purification and thermostability of AI and MPI from G. thermodenitrificans (2) isolated from compost were performed as described previously (7, 18, 19). The cross-linked enzymes were obtained from the treatment of 0.5% glutaraldehyde (10, 16). The reaction was performed by replacing the reaction solution with 100 g/liter l-arabinose and 1 mM Co2+ every 6 h at 70°C and pH 7.0. The reaction volume of 10 ml contained 5 g of the cross-linked enzymes with 8 U/ml AI and 20 U/ml MPI. One unit of AI or MPI activity, which corresponded to 0.0625 or 2.5 mg protein, respectively, was defined as the amount of enzyme required to produce 1 μmol of l-ribulose or l-ribose, respectively, per min at 70°C, pH 7.0, and 1 mM Co2+. Unless otherwise stated, the reaction was carried out in 50 mM piperazine-N,N′-bis(2-ethanesulfonic acid) (PIPES) buffer (pH 7.0) in the presence of 1 mM Co2+ at 70°C for 4 h. All experiments were performed in triplicate.The recombinant Escherichia coli ER2566 (New England Biolabs, Ipswich, MA) containing pTrc99A plasmid (Pharmacia Biotech, Piscataway, NJ) and the AI or MPI gene was cultivated in a 7-liter fermentor containing 3 liters of chemically defined medium (11). When the cell mass reached 2 g/liter, 10 g/liter lactose was added for enzyme induction. After 14 h, 40 g/liter cells with 13,400 U/liter of AI or 34 g/liter cells with 630 U/liter of MPI was obtained. The enzyme was purified by heat treatment and Hi-Trap anion-exchange chromatography. The purification yields of AI and MPI were 21 and 78%, respectively, and the levels of purity for the concentrated AI and MPI by gene scanning were 48 and 92%, respectively. Maximum l-ribose production from l-arabinose by AI and by MPI in 10 ml of total volume was observed at pH 7.0, 70°C, and 1 mM Co2+ (data not shown). Half-lives for the two-enzyme system containing 10 mM l-arabinose, 0.2 U/ml AI, and 0.5 U/ml MPI at 60, 65, 70, 75, and 80°C were 1,216, 235, 48, 26, and 12 h, respectively. The use of Co2+ may be disadvantageous, as it is fairly toxic. This problem can be solved by using Mn2+ instead of Co2+. When Mn2+ was used in the reaction with the same amounts of enzymes, the conversion yield was the same as that obtained with Co2+, even though the volumetric productivity was lower than that with Co2+ (data not shown).The effect of the ratio of AI to MPI in the two-step enzymatic production of l-ribose from l-arabinose was investigated by mixing the enzyme solutions (8 U/ml AI and 20 U/ml MPI) to obtain AI/MPI ratios ranging from 10:90 to 90:10 (vol/vol) (Fig. (Fig.1).1). The reactions were run with 300 g/liter l-arabinose. Maximum l-ribose production was observed at a volume ratio of 50:50 of the enzyme solutions. The effects of enzyme concentration on l-ribose production were investigated at the optimal unit ratio (AI/MPI ratio, 1:2.5) with 500 g/liter l-arabinose and AI and MPI concentrations from 0.4 and 1.0 U/ml, respectively, to 9.2 and 23.0 U/ml, respectively (Fig. (Fig.2A).2A). l-Ribose production increased with increasing amounts of enzymes until reaching a plateau at 8 U/ml AI and 20 U/ml MPI. The effect of substrate concentration on l-ribose production was evaluated at l-arabinose concentrations ranging from 15 to 500 g/liter with 8 U/ml AI and 20 U/ml MPI (Fig. (Fig.2B).2B). The production of both l-ribose and l-ribulose, an intermediate, increased with increasing substrate level. The results suggest that concentrations of substrate above 500 g/liter l-arabinose might cause the increased production. The conversion yields of l-ribose and l-ribulose from l-arabinose were constant at 32% and 14%, respectively, within an initial concentration of 100 g/liter l-arabinose, indicating that the reactions reached equilibrium at an l-arabinose/l-ribulose/l-ribose ratio of 54:14:32, which was in agreement with the calculated equilibrium (17). However, at l-arabinose concentrations above 100 g/liter, the conversion yields of l-ribose and l-ribulose from l-arabinose decreased with increasing l-arabinose concentration. The l-arabinose/l-ribulose/l-ribose ratio, with an initial l-arabinose concentration of 300 g/liter, was 71:6:23 after 4 h of reaction. To obtain near-equilibrium (54:14:32) at this high concentration of l-arabinose, more effective enzymes are required.Open in a separate windowFIG. 1.Effect of the ratio of AI to MPI on l-ribose production from l-arabinose by the purified AI and MPI from G. thermodenitrificans. Data are the means for three separate experiments, and error bars represent standard deviations. Symbols: •, l-ribose; ▪, l-ribulose.Open in a separate windowFIG. 2.(A) Effect of enzyme concentration on l-ribose production from l-arabinose at the optimal unit ratio (AI/MPI ratio, 1:2.5). Symbols: •, l-ribose; ▪, l-ribulose; ○, l-arabinose. (B) Effect of l-arabinose concentration on l-ribose production. Symbols: •, l-ribose; ▪, l-ribulose. Data are the means for three separate experiments, and error bars represent standard deviations.A time course reaction of l-ribose production from l-arabinose was monitored for 3 h with 8 U/ml AI and 20 U/ml MPI (Fig. (Fig.3).3). As a result, 118 g/liter l-ribose was obtained from an initial l-arabinose concentration of 500 g/liter after 3 h, with a conversion yield of 23.6% and a productivity of 39.3 g liter−1 h−1. Recombinant E. coli containing MDH yielded 52 g/liter l-ribose from an initial ribitol concentration of 100 g/liter after 72 h, with a productivity of 0.72 g liter−1 h−1 (14). The production and productivity obtained in the current study using AI and MPI from G. thermodenitrificans were 2.3- and 55-fold higher, respectively, than those obtained from ribitol and 17- and 21-fold higher than those obtained with the production of l-ribose from l-arabinose using resting cells of recombinant Lactobacillus plantarum (5). The chemical synthetic method is capable of producing 56.5 g/liter l-ribose from 250 g/liter l-arabinose after 3 h, corresponding to a productivity of 18.8 g liter−1 h−1 (6). Still, both the production and productivity of l-ribose using the method described herein were 2.1-fold higher. Thus, the method of production of l-ribose in the present study exhibited the highest productivity and production, compared to other fermentation methods and chemical syntheses.Open in a separate windowFIG. 3.Time course of l-ribose production from l-arabinose by purified AI and MPI from G. thermodenitrificans. Data are the means for three separate experiments, and error bars represent standard deviations. Symbols: •, l-ribose; ▪, l-ribulose; ○, l-arabinose.Several rounds of conversion reusing the cross-linked enzymes were performed (Fig. (Fig.4).4). The immobilized enzymes showed more than 20% conversion of l-ribose from l-arabinose for the 9th batch, and the concentration of l-ribose was reduced to 43% after the 20th batch. These results suggest that the immobilization of enzyme facilitates separation of product and enzyme, and it enables the enzyme to function continuously, as reported previously (3, 8, 12). Thus, the reuse of enzyme by immobilization improves the economic viability of this enzymatic process.Open in a separate windowFIG. 4.Reuse of immobilized AI and MPI from G. thermodenitrificans for l-ribose production from 100 g/liter l-arabinose. Data are the means for three separate experiments, and error bars represent standard deviations.  相似文献   

14.
Early studies revealed that chicken embryos incubated with a rare analog of l-proline, 4-oxo-l-proline, showed increased levels of the metabolite 4-hydroxy-l-proline. In 1962, 4-oxo-l-proline reductase, an enzyme responsible for the reduction of 4-oxo-l-proline, was partially purified from rabbit kidneys and characterized biochemically. However, only recently was the molecular identity of this enzyme solved. Here, we report the purification from rat kidneys, identification, and biochemical characterization of 4-oxo-l-proline reductase. Following mass spectrometry analysis of the purified protein preparation, the previously annotated mammalian cytosolic type 2 (R)-β-hydroxybutyrate dehydrogenase (BDH2) emerged as the only candidate for the reductase. We subsequently expressed rat and human BDH2 in Escherichia coli, then purified it, and showed that it catalyzed the reversible reduction of 4-oxo-l-proline to cis-4-hydroxy-l-proline via chromatographic and tandem mass spectrometry analysis. Specificity studies with an array of compounds carried out on both enzymes showed that 4-oxo-l-proline was the best substrate, and the human enzyme acted with 12,500-fold higher catalytic efficiency on 4-oxo-l-proline than on (R)-β-hydroxybutyrate. In addition, human embryonic kidney 293T (HEK293T) cells efficiently metabolized 4-oxo-l-proline to cis-4-hydroxy-l-proline, whereas HEK293T BDH2 KO cells were incapable of producing cis-4-hydroxy-l-proline. Both WT and KO HEK293T cells also produced trans-4-hydroxy-l-proline in the presence of 4-oxo-l-proline, suggesting that the latter compound might interfere with the trans-4-hydroxy-l-proline breakdown in human cells. We conclude that BDH2 is a mammalian 4-oxo-l-proline reductase that converts 4-oxo-l-proline to cis-4-hydroxy-l-proline and not to trans-4-hydroxy-l-proline, as originally thought. We also hypothesize that this enzyme may be a potential source of cis-4-hydroxy-l-proline in mammalian tissues.  相似文献   

15.
The uptake of phenylalanine was studied with vacuole isolated from barley mesophyll protoplasts. The phenylalanine transport exhibited saturation kinetics with apparent Km-values of 1.2 to 1.4 millimolar for ATP- or PPi-driven uptake; Vmax app was 120 to 140 nanomoles Phe per milligram of chlorophyll per hour (1 milligram of chlorophyll corresponds to 5 × 106 vacuoles). Half-maximal transport rates driven with ATP or PPi were reached at 0.5 millimolar ATP or 0.25 millimolar PPi. ATP-driven transport showed a distinct pH optimum at 7.3 while PPi-driven transport reached maximum rates at pH 7.8. Direct measurement of the H+-translocating enzyme activities revealed Km app values of 0.45 millimolar for ATPase (EC 3.6.1.3) and 23 micromolar for pyrophosphatase (PPase) (EC 3.6.1.1). In contrast to the coupled amino acid transport, ATPase and PPase activities had relative broad pH optima between 7 to 8 for ATPase and 8 to 9 for PPase. ATPase as well as ATP-driven transport was markedly inhibited by nitrate while PPase and PPi-coupled transport was not affected. The addition of ionophores inhibited phenylalanine transport suggesting the destruction of the electrochemical proton potential difference Δ μH+ while the rate of ATP and PPi hydrolysis was stimulated. The uptake of other lipophilic amino acids like l-Trp, l-Leu, and l-Tyr was also stimulated by ATP. They seem to compete for the same carrier system. l-Ala, l-Val, d-Phe, and d-Leu did not influence phenylalanine transport suggesting a stereospecificity of the carrier system for l-amino acids having a relatively high hydrophobicity.  相似文献   

16.
The uncharacterized gene previously proposed as a mannose-6-phosphate isomerase from Bacillus subtilis was cloned and expressed in Escherichia coli. The maximal activity of the recombinant enzyme was observed at pH 7.5 and 40°C in the presence of 0.5 mM Co2+. The isomerization activity was specific for aldose substrates possessing hydroxyl groups oriented in the same direction at the C-2 and C-3 positions, such as the d and l forms of ribose, lyxose, talose, mannose, and allose. The enzyme exhibited the highest activity for l-ribulose among all pentoses and hexoses. Thus, l-ribose, as a potential starting material for many l-nucleoside-based pharmaceutical compounds, was produced at 213 g/liter from 300-g/liter l-ribulose by mannose-6-phosphate isomerase at 40°C for 3 h, with a conversion yield of 71% and a volumetric productivity of 71 g liter−1 h−1.l-Ribose is a potential starting material for the synthesis of many l-nucleoside-based pharmaceutical compounds, and it is not abundant in nature (5, 19). l-Ribose has been produced mainly by chemical synthesis from l-arabinose, l-xylose, d-glucose, d-galactose, d-ribose, or d-mannono-1,4-lactone (2, 17, 23). Biological l-ribose manufacture has been investigated using ribitol or l-ribulose. Recently, l-ribose was produced from ribitol by a recombinant Escherichia coli containing an NAD-dependent mannitol-1-dehydrogenase (MDH) with a 55% conversion yield when 100 g/liter ribitol was used in a 72-h fermentation (18). However, the volumetric productivity of l-ribose in the fermentation is 28-fold lower than that of the chemical method synthesized from l-arabinose (8). l-Ribulose has been biochemically converted from l-ribose using an l-ribose isomerase from an Acinetobacter sp. (9), an l-arabinose isomerase mutant from Escherichia coli (4), a d-xylose isomerase mutant from Actinoplanes missouriensis (14), and a d-lyxose isomerase from Cohnella laeviribosi (3), indicating that l-ribose can be produced from l-ribulose by these enzymes. However, the enzymatic production of l-ribulose is slow, and the enzymatic production of l-ribose from l-ribulose has been not reported.Sugar phosphate isomerases, such as ribose-5-phosphate isomerase, glucose-6-phosphate isomerase, and galactose-6-phosphate isomerase, work as general aldose-ketose isomerases and are useful tools for producing rare sugars, because they convert the substrate sugar phosphates and the substrate sugars without phosphate to have a similar configuration (11, 12, 21, 22). l-Ribose isomerase from an Acinetobacter sp. (9) and d-lyxose isomerase from C. laeviribosi (3) had activity with l-ribose, d-lyxose, and d-mannose. Thus, we can apply mannose-6-phosphate (EC 5.3.1.8) isomerase to the production of l-ribose, because there are no sugar phosphate isomerases relating to l-ribose and d-lyxose. The production of the expensive sugar l-ribose (bulk price, $1,000/kg) from the rare sugar l-ribulose by mannose-6-phosphate isomerase may prove to be a valuable industrial process, because we have produced l-ribulose from the cheap sugar l-arabinose (bulk price, $50/kg) using the l-arabinose isomerase from Geobacillus thermodenitrificans (20) (Fig. (Fig.11).Open in a separate windowFIG. 1.Schematic representation for the production of l-ribulose from l-arabinose by G. thermodenitrificans l-arabinose isomerase and the production of l-ribose from l-ribulose by B. subtilis mannose-6-phosphate isomerase.In this study, the gene encoding mannose-6-phosphate isomerase from Bacillus subtilis was cloned and expressed in E. coli. The substrate specificity of the recombinant enzyme for various aldoses and ketoses was investigated, and l-ribulose exhibited the highest activity among all pentoses and hexoses. Therefore, mannose-6-phosphate isomerase was applied to the production of l-ribose from l-ribulose.  相似文献   

17.
l-Serine is required to synthesize membrane lipids such as phosphatidylserine and sphingolipids. Nevertheless, it remains largely unknown how a diminished capacity to synthesize l-serine affects lipid homeostasis in cells and tissues. Here, we show that deprivation of external l-serine leads to the generation of 1-deoxysphingolipids (doxSLs), including 1-deoxysphinganine, in mouse embryonic fibroblasts (KO-MEFs) lacking d-3-phosphoglycerate dehydrogenase (Phgdh), which catalyzes the first step in the de novo synthesis of l-serine. A novel mass spectrometry-based lipidomic approach demonstrated that 1-deoxydihydroceramide was the most abundant species of doxSLs accumulated in l-serine-deprived KO-MEFs. Among normal sphingolipid species in KO-MEFs, levels of sphinganine, dihydroceramide, ceramide, and hexosylceramide were significantly reduced after deprivation of external l-serine, whereas those of sphingomyelin, sphingosine, and sphingosine 1-phosphate were retained. The synthesis of doxSLs was suppressed by supplementing the culture medium with l-serine but was potentiated by increasing the ratio of l-alanine to l-serine in the medium. Unlike with l-serine, depriving cells of external l-leucine did not promote the occurrence of doxSLs. Consistent with results obtained from KO-MEFs, brain-specific deletion of Phgdh in mice also resulted in accumulation of doxSLs in the brain. Furthermore, l-serine-deprived KO-MEFs exhibited increased formation of cytosolic lipid bodies containing doxSLs and other sphingolipids. These in vitro and in vivo studies indicate that doxSLs are generated in the presence of a high ratio of l-alanine to l-serine in cells and tissues lacking Phgdh, and de novo synthesis of l-serine is necessary to maintain normal sphingolipid homeostasis when the external supply of this amino acid is limited.  相似文献   

18.
The metabolic fate of l-[4-14C]ascorbic acid has been examined in the grape (Vitis labrusca L.) and lemon geranium (Pelargonium crispum L. L'Hér. cv. Prince Rupert) under conditions comparable to data from l-[1-14C]ascorbic acid and l-[6-14C]ascorbic acid experiments. In detached grape leaves and immature berries, l-[4-14C]ascorbic acid and l-[1-14C]ascorbic acid were equivalent precursors to carboxyl labeled (+)-tartaric acid. In geranium apices, l-[4-14C]ascorbic acid yielded internal labeled (+)-tartaric acid while l-[6-14C]ascorbic acid gave an equivalent conversion to carboxyl labeled (+)-tartaric acid. These findings clearly show that two distinct processes for the synthesis of (+)-tartaric acid from l-ascorbic acid exist in plants identified as (+)-tartaric acid accumulators. In grape leaves and immature berries, (+)-tartaric acid synthesis proceeds via preservation of a four-carbon fragment derived from carbons 1 through 4 of l-ascorbic acid while carbons 3 through 6 yield (+)-tartaric acid in geranium apices.  相似文献   

19.
1. Suspensions of isolated chick jejunal columnar absorptive (brush-border) cells respired on endogenous substrates at a rate 40% higher than that shown by rat brush-border cells. 2. Added d-glucose (5 or 10mm), l-glutamine (2.5mm) and l-glutamate (2.5mm) were the only individual substrates which stimulated respiration by chick cells; l-aspartate (2.5 or 6.7mm), glutamate (6.7mm), glutamine (6.7mm), l-alanine (1 or 10mm), pyruvate (1 or 2mm), l-lactate (5 or 10mm), butyrate (10mm) and oleate (1mm) did not stimulate chick cell respiration; l-asparagine (6.7mm) inhibited slightly; glucose (5mm) stimulated more than did 10mm-glucose. 3. Acetoacetate (10mm) and d-3-hydroxybutyrate (10mm) were rapidly consumed but, in contrast to rat brush-border cells, did not stimulate respiration. 4. Glucose (10mm) was consumed more slowly than 5mm-glucose; the dominant product of glucose metabolism during vigorous respiration was lactate; the proportion of glucose converted to lactate was greater with 10mm- than with 5mm-glucose. 5. Glutamate and aspartate consumption rates decreased, and alanine and glutamine consumption rates increased when their initial concentrations were raised from 2.5 to 6.7 or 10mm. 6. The metabolic fate of glucose was little affected by concomitant metabolism of any one of aspartate, glutamate or glutamine except for an increased production of alanine; the glucose-stimulated respiration rate was unaffected by concomitant metabolism of these individual amino acids. 7. Chick cells produced very little alanine from aspartate and, in contrast to rat cells, likewise produced very little alanine from glutamate or glutamine; in chick cells alanine appeared to be predominantly a product of transmination of pyruvate derived from glucose metabolism. 8. In chick cells, glutamate and glutamine were formed from aspartate (2.5 or 6.7mm); aspartate and glutamine were formed from glutamate (2.5mm) but only aspartate from 6.7mm-glutamate; glutamate was the dominant product formed from glutamine (6.7mm) but aspartate only was formed from 2.5mm-glutamine. 9. Chick brush-border cells can thus both catabolize and synthesize glutamine; glutamine synthesis is always diminished by concomitant metabolism of glucose, presumably by allosteric inhibition of glutamine synthetase by alanine. 10. Proline was formed from glutamine (2.5mm) but not from glutamine (2.5mm)+glucose (5mm) and not from 2.5mm-glutamate; ornithine was formed from glutamine (2.5mm)+glucose (5.0mm) but not from glutamine alone; serine was formed from glutamine (2.5mm)+glucose (5mm) and from these two substrates plus aspartate (2.5mm). 11. Total intracellular adenine nucleotides (22μmol/g dry wt.) remained unchanged during incubation of chick cells with glucose. 12. Intracellular glutathione (0.7–0.8mm) was depleted by 40% during incubation of respiring chick cells without added substrates for 75min at 37°C; partial restoration of the lost glutathione was achieved by incubating cells with l-glutamate+l-cysteine+glycine.  相似文献   

20.
Endogenous l-tri-iodothyronine content in an hepatic nuclear extract was measured by a new unextracted-sample radioimmunoassay method using 8-anilinonaphthalene-1-sulphonic acid to inhibit the l-[125I]tri-iodothyronine binding to the nuclear l-tri-iodothyronine receptor within the extract. For this method, the lower sensitivity limit was 3.125 pg/tube, the recovery of added l-tri-iodothyronine was 90–120%, and the between-assay coefficient of variation was 10%. The amount of endogenous l-tri-iodothyronine was 10–40 pg/0.2 ml of hepatic nuclear extract from euthyroid rats, compared with less than 3.125 pg/0.2 ml from thyroidectomized rats. The results obtained by this new method were compared with a Sephadex G-25 column extracted-sample radioimmunoassay method and showed a good agreement. The values for the endogenous l-tri-iodothyronine content were utilized to correct for the l-tri-iodothyronine concentration within the binding assay mixture in order to accurately determine by Scatchard analysis the binding characteristics of the nuclear l-tri-iodothyronine receptor. The validity of the correction for endogeneous l-tri-iodothyronine was demonstrated by using a nuclear extract from a thyroidectomized rat which was preincubated with a small known amount of l-tri-iodothyronine before determining the nuclear l-tri-iodothyronine receptor binding characteristics. When the Scatchard plots were corrected for the preincubated dose, the results obtained were similar to true values, but they were falsely lower when not corrected. It is concluded that the necessity and validity of using endogenous l-tri-iodothyronine corrections in the Scatchard analytical computations of the nuclear l-tri-iodothyronine receptor binding characteristics has been demonstrated, being particularly more important for affinity constant than maximum binding capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号