首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The promoter region of the rice ubiquitin2 (rubq2) gene was found to be polymorphic between japonica (T309) and indica (IR24) lines as the result of a 270-bp deletion in T309. A TTATA footprint in the T309 rubq2 promoter suggested that an excision event had occurred, and inspection of the 270-bp region present in IR24 revealed that it had all the characteristics of a miniature inverted repeat transposable element (MITE). Database searches showed that this element is a member of a new MITE family, which we have named Kiddo. Thirty-five complete Kiddo sequences were identified in existing rice genomic sequence databases. They could be arranged into four groups, within-group sequence identity was over 90%, with 65-75% identity between groups. The high sequence similarity within a group indicates that some Kiddo members were recently mobile and may still be active. An additional 24 decayed Kiddo sequences were detected. Interestingly, approximately 80% of 18 Kiddo members from annotated accessions lie within 530 bp of a coding sequence. That approximately 40% of Kiddo members present in genic regions reside in introns suggests that Kiddo transposition entails the use of both DNA and RNA intermediates, and may provide some insight into the origins of individual groups. DNA blot analysis showed that Kiddo is a rice-specific element, although one sequence with limited (72%) similarity to Kiddo group A was detected as a wheat EST. Kiddo family members may represent new molecular and phylogenetic markers, as well as representing valuable materials for studying the molecular mechanisms of MITE transposition.  相似文献   

2.
3.
4.
MITEs (miniature inverted-repeated transposable elements) are a particular class of defective DNA transposons usually present within genomes as high copy number populations of highly homogeneous elements. Although an active MITE, the mPing element, has recently been characterized in rice, the transposition mechanism of MITEs remains unknown. It has been proposed that transposases of related transposons could mobilize MITEs in trans. Moreover, it has also been proposed that the presence of conserved terminal inverted-repeated (TIR) sequences could be the only requirement of MITEs for mobilization, allowing divergent or unrelated elements to be mobilized by a particular transposase. We present here evidence for a recent mobility of the Arabidopsis Emigrant MITE and we report on the capacity of the proteins encoded by the related Lemi1 transposon, a pogo-related element, to specifically bind Emigrant elements. This suggests that Lemi1 could mobilize Emigrant elements and makes the Lemi1/Emigrant couple an ideal system to study the transposition mechanism of MITEs. Our results show that Lemi1 proteins bind Emigrant TIRs but also bind cooperatively to subterminal repeated motifs. The requirement of internal sequences for the formation of proper DNA/protein structure could affect the capacity of divergent MITEs to be mobilized by distantly related transposases.  相似文献   

5.
6.
To reveal the genome-wide aspects of Xenopus T2 family miniature inverted-repeat transposable elements (MITEs), we performed a systematic search and classification of MITEs by a newly developed procedure. A terminal sequence motif (T2-motif: TTAAAGGRR) was retrieved from the Xenopus tropicalis genome database. We then selected 51- to 1,000-bp MITE candidates framed by an inverted pair of 2 T2-motifs. The 34,398 candidates were classified into possible clusters by a novel terminal sequence (TS)-clustering method on the basis of differences in their short terminal sequences. Finally, 19,242 MITEs were classified into 16 major MITE subfamilies (TS subfamilies), 10 of which showed apparent homologies to known T2 MITE subfamilies, and the rest were novel TS subfamilies. Intra- and inter-subfamily similarities or differences were investigated by analyses of diversity in GC content, total length, and sequence alignments. Furthermore, genome-wide conservation of the inverted pair structure of subfamily-specific TS stretches and their target site sequence (TTAA) were analyzed. The results suggested that some TS subfamilies might include active or at least recently active MITEs for transposition and/or amplification, but some others might have lost such activities a long time ago. The present methodology was efficient in identifying and classifying MITEs, thereby providing information on the evolutionary dynamics of MITEs.  相似文献   

7.
Transposable elements (TEs) are a rich source of genetic variability. Among TEs, miniature inverted-repeat TEs (MITEs) are of particular interest as they are present in high copy numbers in plant genomes and are closely associated with genes. MITEs are deletion derivatives of class II transposons, and can be mobilized by the transposases encoded by the latter through a typical cut-and-paste mechanism. However, MITEs are typically present at much higher copy numbers than class II transposons. We present here an analysis of 103 109 transposon insertion polymorphisms (TIPs) in 738 Oryza sativa genomes representing the main rice population groups. We show that an important fraction of MITE insertions has been fixed in rice concomitantly with its domestication. However, another fraction of MITE insertions is present at low frequencies. We performed MITE TIP-genome-wide association studies (TIP-GWAS) to study the impact of these elements on agronomically important traits and found that these elements uncover more trait associations than single nucleotide polymorphisms (SNPs) on important phenotypes such as grain width. Finally, using SNP-GWAS and TIP-GWAS we provide evidence of the replicative amplification of MITEs.  相似文献   

8.
9.
A 128-bp insertion into the maize waxy-B2 allele led to the discovery of Tourist, a family of miniature inverted repeat transposable elements (MITEs). As a special category of nonautonomous elements, MITEs are distinguished by their high copy number, small size, and close association with plant genes. In maize, some Tourist elements (named Tourist-Zm) are present as adjacent or nested insertions. To determine whether the formation of multimers is a common feature of MITEs, we performed a more thorough survey, including an estimation of the proportion of multimers, with 30.2 Mb of publicly available rice genome sequence. Among the 6600 MITEs identified, >10% were present as multimers. The proportion of multimers differs for different MITE families. For some MITE families, a high frequency of self-insertions was found. The fact that all 340 multimers are unique indicates that the multimers are not capable of further amplification.  相似文献   

10.
Four previously undescribed families of miniature inverted repeat transposable elements (MITEs) were isolated by searching barley genomic DNA using structure-based criteria. Putative MITEs were confirmed by PCR to determine their insertional polymorphism in a panel of diverse barley germplasm. Copy numbers for all these familes are somewhat low (less than 1,000 copies per family per haploid genome). In contrast to previous studies, a higher proportion of insertions of the new MITEs are found within known transposable elements (27%) than are associated with genes (15%). Preliminary studies were conducted on two of the new MITE families to test their utility as molecular markers. Insertional polymorphism levels for both the families are high and diversity trees produced by both the families are similar and congruent with known relationships among the germplasm studied, suggesting that both the MITE families are useful markers of barley genetic diversity.  相似文献   

11.
Although mutations in the oncoprotein murine double minute 2 (MDM2) are rare, MDM2 gene overexpression has been observed in several human tumors. Given that even modest changes in MDM2 levels might influence the p53 tumor suppressor signaling pathway, we postulated that sequence variation in the promoter region of MDM2 could lead to disregulated expression and variation in gene dosage. Two promoters have been reported for MDM2; an internal promoter (P2), which is located near the end of intron 1 and is p53-responsive, and an upstream constitutive promoter (P1), which is p53-independent. Both promoter regions contain DNA variants that could influence the expression levels of MDM2, including the well-studied single nucleotide polymorphism (SNP) SNP309, which is located in the promoter P2; i.e., upstream of exon 2. In this report, we screened the promoter P1 for DNA variants and assessed the functional impact of the corresponding SNPs. Using the dbSNP database and genotyping validation in individuals of European descent, we identified three common SNPs (?1494?G?>?A; indel 40?bp; and ?182?C?>?G). Three major promoter haplotypes were inferred by using these three promoter SNPs together with rs2279744 (SNP309). Following subcloning into a gene reporter system, we found that two of the haplotypes significantly influenced MDM2 promoter activity in a haplotype-specific manner. Site-directed mutagenesis experiments indicated that the 40?bp insertion/deletion variation is causing the observed allelic promoter activity. This study suggests that part of the variability in the MDM2 expression levels could be explained by allelic p53-independent P1 promoter activity.  相似文献   

12.
Miniature inverted-repeat transposable elements (MITEs) are a special type of Class 2 non-autonomous transposable element (TE) that are abundant in the non-coding regions of the genes of many plant and animal species. The accurate identification of MITEs has been a challenge for existing programs because they lack coding sequences and, as such, evolve very rapidly. Because of their importance to gene and genome evolution, we developed MITE-Hunter, a program pipeline that can identify MITEs as well as other small Class 2 non-autonomous TEs from genomic DNA data sets. The output of MITE-Hunter is composed of consensus TE sequences grouped into families that can be used as a library file for homology-based TE detection programs such as RepeatMasker. MITE-Hunter was evaluated by searching the rice genomic database and comparing the output with known rice TEs. It discovered most of the previously reported rice MITEs (97.6%), and found sixteen new elements. MITE-Hunter was also compared with two other MITE discovery programs, FINDMITE and MUST. Unlike MITE-Hunter, neither of these programs can search large genomic data sets including whole genome sequences. More importantly, MITE-Hunter is significantly more accurate than either FINDMITE or MUST as the vast majority of their outputs are false-positives.  相似文献   

13.
The upstream sequence of pinb previously isolated from rice and confirmed to be a wound-inducible promoter by detecting GUS in T0 transgenic rice transformed via Agrobacterium tumefaciens-mediated procedures. In a transgenic line (pinb-16), the selectable marker hptII driven by CaMV35S promoter was completely silenced in T2 sublines; but the uidA gene driven by pinb promoter was expressed without being affected, though it, together with hptII, exists in the same T-DNA insertion. Analyses of methylation patterns using bisulphite-sequencing in the homozygous T1 and T2 sublines showed that cytosines in CaMV35S were gradually methylated in T1 plants and almost completely methylated in T2 plants. Interestingly, the process of methylation was accompanied by the occurrence of lesion mimic phenotype in rice leaves. The activity of hygromycin-resistance could be reestablished by treatment with 5-azacytidine. Genomic Southern and isolation of the T-DNA flanking sequences indicated that T-DNA was inserted in a retroelement of rice. These results revealed that methylation shows preference for the heterogeneity promoter fragment in the transgenic rice line and may be induced by the retroelement. Published in Russian in Fiziologiya Rastenii, 2006, Vol. 53, No. 2, pp. 266–273. The text was submitted by the authors in English.  相似文献   

14.
Abstract Numerous miniature inverted repeat transposable elements (MITEs) are present in the rice genome but their transposition mechanisms are unknown. In this report, we present evidence that two novel MITE families may have arisen from Mutator-related transposable elements and thus may use a transposition mechanism similar to that of Mutator elements. Two families of novel MITEs, namely, MDM-1 and MDM-2, were identified by searching for MITEs nested with Kiddo, a previously identified MITE family. MDM-1 and MDM-2 bear hallmarks of Mutator elements, such as long terminal inverted repeats (LTIRs), 9-bp target-site duplications (TSDs), and putative transposase binding sites. Strikingly, the MDM-1 family has a 9-bp terminus identical to that of a rice Mutator-like element (MULE-9) and the MDM-2 family has an 8-bp terminus identical to that of the maize autonomous Mutator element MuDR. A putative transposase homologous to MURA protein is identified for the MDM-2 family. Thus, these two novel MITE families, with a total copy number of several hundred in rice, are designated Mutator-derived MITEs (MDMs). Interestingly, sequence decay analysis of MDM families revealed a number of insertion site duplications (ISDs) in the alignment gaps, and widespread historical nesting events are proposed to account for the existence of these ISDs. In addition to its value for discovering new MITEs, the nesting analysis approach used in this study simultaneously identifies MITE insertion polymorphisms.  相似文献   

15.
Recent studies of rice miniature inverted repeat transposable elements (MITEs), largely fueled by the availability of genomic sequence, have provided answers to many of the outstanding questions regarding the existence of active MITEs, their source of transposases (TPases) and their chromosomal distribution. Although many questions remain about MITE origins and mode of amplification, data accumulated over the past two years have led to the formulation of testable models.  相似文献   

16.
MITEs(Miniature inverted-repeat transposable elements)转座子是一种特殊的转座子,其既有DNA转座子的转座特性——"剪切-粘贴"转座方式,又有RNA转座子的高拷贝特性。目前已被报道的MITEs种类和数量虽然很多,但是关于有转座活性的MITEs的报道却甚少。本文总结了近几年来有关活性MITEs的相关报道,发现具有转座活性的MITEs种类大都分布在Tourist家族,分别是m Ping、m Ging、Ph Tourist1、Tmi1和Ph Tst-3,另外还有Stowaway-like家族的d Tstu1和MITE-39以及Mutator家族的Ah MITE1。文中还分析了这些活性MITEs的结构(TIR和TSD)、拷贝数、进化模式以及转座特性等,为鉴定其他活性MITEs以及MITEs转座和扩增机制的研究奠定了基础。  相似文献   

17.
18.
19.
P Barret  M Brinkman  M Beckert 《Génome》2006,49(11):1399-1407
Miniature inverted-repeat transposable elements (MITEs) are nonautonomous elements that are abundant in plant genomes. The rice MITE mPing was shown to be mobilized by anther culture, and the associated transposon Pong was shown to transpose actively in an Oryza sativa 'indica' rice cell-culture line. We have identified 3 sequences in maize named ZmTPAPong-like 1, 2, and 3 that displayed homology with the transposase of Pong. Here, we show that these sequences are differentially expressed during the in vitro androgenetic process in maize. We also demonstrate that the ZmTPAPong-like 1 and 3 sequences reveal somaclonal variations among plants regenerated from the calli of a doubled haploid line. These data suggest that the ZmTPAPong-like sequences could form part of a Zea mays element related to the rice Pong element. The possible activation of this newly discovered element under stress conditions is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号