首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rec8 syndrome (also known as "recombinant 8 syndrome" and "San Luis Valley syndrome") is a chromosomal disorder found in individuals of Hispanic descent with ancestry from the San Luis Valley of southern Colorado and northern New Mexico. Affected individuals typically have mental retardation, congenital heart defects, seizures, a characteristic facial appearance, and other manifestations. The recombinant chromosome is rec(8)dup(8q)inv(8)(p23.1q22.1), and is derived from a parental pericentric inversion, inv(8)(p23.1q22.1). Here we report on the cloning, sequencing, and characterization of the 8p23.1 and 8q22 breakpoints from the inversion 8 chromosome associated with Rec8 syndrome. Analysis of the breakpoint regions indicates that they are highly repetitive. Of 6 kb surrounding the 8p23.1 breakpoint, 75% consists of repetitive gene family members-including Alu, LINE, and LTR elements-and the inversion took place in a small single-copy region flanked by repetitive elements. Analysis of 3.7 kb surrounding the 8q22 breakpoint region reveals that it is 99% repetitive and contains multiple LTR elements, and that the 8q inversion site is within one of the LTR elements.  相似文献   

2.
The ablepharon-macrostomia (AMS) and Barber-Say syndromes (BSS) are rare disorders characterized by absence of the eyelids or ectropion, macrostomia, ambiguous genitalia, abnormal ears, rudimentary nipples, and dry, redundant skin. Patients with Barber-Say syndrome also have hypertrichosis. We present a patient with a phenotype similar to AMS who has a complex rearrangement of chromosome 18, involving both an inversion and interstitial deletion. Our patient lacks the typical features of the 18q deletion syndrome. We review AMS and BSS as compared with our patient, and recognize cutis laxa as a feature shared by all. We propose that the gene(s) for this phenotype may lie on chromosome 18 in the region of the deletion or inversion breakpoints. Received: 1 March 1995 / Revised: 20 May 1995  相似文献   

3.
Tourette syndrome is a neuropsychiatric disorder characterized by the presence of multiple, involuntary motor and vocal tics. Associated pathologies include attention deficit disorder and obsessive-compulsive disorder (OCD). Extensive linkage analysis based on an autosomal dominant mode of transmission with reduced penetrance has failed to show linkage with polymorphic markers, suggesting either locus heterogeneity or a polygenic origin for Tourette syndrome. An individual diagnosed with Tourette syndrome has been described carrying a constitutional (7;18) chromosome translocation (Comings et al. 1986). Other family members carrying the translocation exhibit features seen in Tourette syndrome including motor tics, vocal tics, and OCD. Since the disruption of specific genes by a chromosomal rearrangement can elicit a particular phenotype, we have undertaken the physical mapping of the 7;18 translocation such that genes mapping at the site of the breakpoint can be identified and evaluated for a possible involvement in Tourette syndrome. Using somatic cell hybrids retaining either the der(7) or the der(18), a more precise localization of the breakpoints on chromosomes 7 and 18 have been determined. Furthermore, physical mapping has identified two YAC clones that span the translocation breakpoint on chromosome 18 as determined by FISH. These YAC clones will be useful for the eventual identification of genes that map to chromosomes 7 and 18 at the site of the translocation.  相似文献   

4.
Interstitial deletions of the short arm of chromosome 9 are associated with glioma, acute lymphoblastic leukemia, melanoma, mesothelioma, lung cancer, and bladder cancer. The distal breakpoints of the deletions (in relation to the centromere) in 14 glioma and leukemia cell lines have been mapped within the 400 kb IFN gene cluster located at band 9p21. To obtain information about the mechanism of these deletions, we have isolated and analyzed the nucleotide sequences at the breakpoint junctions in two glioma-derived cell lines. The A1235 cell line has a complex rearrangement of chromosome 9, including a deletion and an inversion that results in two breakpoint junctions. Both breakpoints of the distal inversion junction occurred within AT-rich regions. In the A172 cell line, a tandem heptamer repeat was found on either side of the deletion breakpoint junction. The distal breakpoint occurred 5' of IFNA2; the 256 bp sequenced from the proximal side of the breakpoint revealed 95% homology to long interspersed nuclear elements. One- and two-base-pair overlaps were observed at these junctions. The possible role of sequence overlaps, and repetitive sequences, in the rearrangement is discussed.  相似文献   

5.
6.
M Gessler  G A Bruns 《Genomics》1988,3(2):117-123
Chromosome 11p13 is frequently rearranged in individuals with the WAGR syndrome (Wilms tumor, aniridia, genitourinary anomalies, and mental retardation) or parts of this syndrome. To map the cytogenetic aberrations molecularly, we screened DNA from cell lines with known WAGR-related chromosome abnormalities for rearrangements with pulsed field gel (PFG) analysis using probes deleted from one chromosome 11 homolog of a WAGR patient. The first alteration was detected in a cell line from an individual with aniridia, genitourinary anomalies, mental retardation, and a deletion described as 11p14.1-p13. We have located one breakpoint close to probe HU11-164B and we have cloned both breakpoint sites as well as the junctional fragment. The breakpoints subdivide current intervals on the genetic map, and the probes for both sides will serve as important additional markers for a long-range restriction map of this region. Further characterization and sequencing of the breakpoints may yield insight into the mechanisms by which these deletions occur.  相似文献   

7.
The mechanism of chromosome 14 inversion in a human T cell lymphoma   总被引:16,自引:0,他引:16  
R Baer  A Forster  T H Rabbitts 《Cell》1987,50(1):97-105
  相似文献   

8.
9.
Campomelic dysplasia (CD) is a semilethal skeletal malformation syndrome with or without XY sex reversal. In addition to the multiple mutations found within the sex-determining region Y-related high-mobility group box gene (SOX9) on 17q24.3, several chromosome anomalies (translocations, inversions, and deletions) with breakpoints scattered over 1 Mb upstream of SOX9 have been described. Here, we present a balanced translocation, t(4;17)(q28.3;q24.3), segregating in a family with a mild acampomelic CD with Robin sequence. Both chromosome breakpoints have been identified by fluorescence in situ hybridization and have been sequenced using a somatic cell hybrid. The 17q24.3 breakpoint maps approximately 900 kb upstream of SOX9, which is within the same bacterial artificial chromosome clone as the breakpoints of two other reported patients with mild CD. We also report a prenatal identification of acampomelic CD with male-to-female sex reversal in a fetus with a de novo balanced complex karyotype, 46,XY,t(4;7;8;17)(4qter-->4p15.1::17q25.1-->17qter;7qter-->7p15.3::4p15.1-->4pter;8pter-->8q12.1::7p15.3-->7pter;17pter-->17q25.1::8q12.1-->8qter). Surprisingly, the 17q breakpoint maps approximately 1.3 Mb downstream of SOX9, making this the longest-range position effect found in the field of human genetics and the first report of a patient with CD with the chromosome breakpoint mapping 3' of SOX9. By using the Regulatory Potential score in conjunction with analysis of the rearrangement breakpoints, we identified a candidate upstream cis-regulatory element, SOX9cre1. We provide evidence that this 1.1-kb evolutionarily conserved element and the downstream breakpoint region colocalize with SOX9 in the interphase nucleus, despite being located 1.1 Mb upstream and 1.3 Mb downstream of it, respectively. The potential molecular mechanism responsible for the position effect is discussed.  相似文献   

10.
Chromosome rearrangement has been considered to be important in the evolutionary process. Here, we demonstrate the evolutionary relationship of the rearranged human chromosome 12 and the corresponding chromosome XII in apes (chimpanzee, bonobo, gorilla, orangutan, and gibbon) by examining PCR products derived from the breakpoints of inversions and by conducting shotgun sequencing of a gorilla fosmid clone containing the breakpoint and a "duplicated segment" (duplicon). We confirmed that a pair of 23-kb duplicons flank the breakpoints of inversions on the long and short arms of chimpanzee chromosome XII. Although only the 23-kb duplicon on the long arm of chimpanzee chromosome XII and its telomeric flanking sequence are found to be conserved among the hominoids (human, great apes, and gibbons), the duplicon on the short arm of chimpanzee chromosome XII is suggested to be the result of a duplication from that on the long arm. Furthermore, the shotgun sequencing of a gorilla fosmid indicated that the breakpoint on the long arm of the gorilla is located at a different position 1.9 kb from that of chimpanzee. The region is flanked by a sequence homologous to that of human chromosome 6q22. Our findings and sequence analysis suggest a close relationship between segmental duplication and chromosome rearrangement (or breakpoint of inversion) in Hominoidea. The role of the chromosome rearrangement in speciation is also discussed based on our new results.  相似文献   

11.
12.
Somatic mosaicism in a patient with bilateral retinoblastoma.   总被引:1,自引:3,他引:1       下载免费PDF全文
We describe two cell lines with different deletions of the retinoblastoma gene in a patient with bilateral retinoblastoma. This patient has transmitted the mutation less frequent in his lymphocytes to two affected children. We cloned, mapped, and sequenced the junction fragments of the two deletions and found that they share one breakpoint but extend into opposite directions. An insertion of 4 bp of unknown origin is present between the breakpoints in one of the deletions. The second deletion shows a more complex rearrangement, including an inversion at the 5' end. Short regions of homology were found at the breakpoints and flanking the inversion. These results support the notion that bilateral retinoblastoma may not only be due to a germ-line mutation but also to a postzygotic mutation leading to somatic mosaicism.  相似文献   

13.
Breakpoints on chromosome 22 in the translocation t(9;22) found in Philadelphia positive acute lymphoblastic leukaemia patients fall within two categories. In the first the breakpoint is localized within the breakpoint cluster region of the BCR gene, analogous to the chromosome 22 breakpoint in chronic myeloid leukaemia. The second category has a breakpoint 5' of this area, but still within the BCR gene. We have previously shown that these breakpoints occur within the first intron of the BCR gene and cloned the 9q+ junction from such a patient. We have now determined the sequences around the breakpoints on both translocation partners from this patient as well as the germline regions. The chromosome 9 ABL sequence around the breakpoint shows homology to the consensus Alu sequence whereas the chromosome 22 BCR sequence does not. At the junction there is a 6 bp duplication of the chromosome 22 sequence which is present both in the 9q+ and in the 22q- translocation products. Possible mechanisms for the generation of the translocation are discussed.  相似文献   

14.
Precise breakpoint definition of chromosomal rearrangements using conventional banding techniques often fails, especially when more than two breakpoints are involved. The classic banding procedure results in a pattern of alternating light and dark bands. Hence, in banded chromosomes a specific chromosomal band is rather identified by the surrounding banding pattern than by its own specific morphology. In chromosomal rearrangements the original pattern is altered and therefore the unequivocal determination of breakpoints is not obvious. The multicolor banding technique (mBAND, see Chudoba et al., 1999) is able to identify breakpoints unambiguously, even in highly complex chromosomal aberrations. The mBAND technique is presented and illustrated in a case of intrachromosomal rearrangement with seven breakpoints all having occurred on one chromosome 16, emphasizing the unique analyzing power of mBAND as compared to conventional banding techniques.  相似文献   

15.
16.
Pericentric inversions of the human Y chromosome (inv(Y)) are the result of breakpoints in Yp and Yq. Whether these breakpoints occur recurrently on specific hotspots or appear at different locations along the repeat structure of the human Y chromosome is an open question. Employing FISH for a better definition and refinement of the inversion breakpoints in 9 cases of inv(Y) chromosomes, with seemingly unvarying metacentric appearance after banding analysis, unequivocally resulted in heterogeneity of the pericentric inversions of the human Y chromosome. While in all 9 inv(Y) cases the inversion breakpoints in the short arm fall in a gene-poor region of X-transposed sequences proximal to PAR1 and SRY in Yp11.2, there are clearly 3 different inversion breakpoints in the long arm. Inv(Y)-types I and II are familial cases showing inversion breakpoints that map in Yq11.23 or in Yq11.223, outside the ampliconic fertility gene cluster of DAZ and CDY in AZFc. Inv(Y)-type III shows an inversion breakpoint in Yq11.223 that splits the DAZ and CDY fertility gene-cluster in AZFc. This inversion type is representative of both familial cases and cases with spermatogenetic impairment. In a further familial case of inv(Y), with almost acrocentric morphology, the breakpoints are within the TSPY and RBMY repeat in Yp and within the heterochromatin in Yq. Therefore, the presence of specific inversion breakpoints leading to impaired fertility in certain inv(Y) cases remains an open question.  相似文献   

17.
18.
The tricho-rhino-phalangeal syndrome type II (TRPS II, or Langer-Giedion syndrome) is an example of contiguous gene syndromes, as it comprises the clinical features of two autosomal dominant diseases, TRPS I and a form of multiple cartilaginous exostoses caused by mutations in the EXT1 gene. We have constructed a contig of cosmid, lambda-phage, PAC, and YAC clones, which covers the entire TRPS I critical region. Using these clones we identified a novel submicroscopic deletion in a TRPS I patient and refined the proximal border of the minimal TRPS1 gene region by precisely mapping the inversion breakpoint of another patient. As a first step towards a complete inventory of genes in the Langer-Giedion syndrome chromosome region (LGCR) with the ultimate aim to identify the TRPS1 gene, we analyzed 23 human expressed sequence tags (ESTs) and four genes (EIF3S3, RAD21, OPG, CXIV) which had been assigned to human 8q24.1. Our analyses indicate that the LGCR is gene-poor, because none of the ESTs and genes map to the minimal TRPS1 gene region and only two of these genes, RAD21 and EIF3S3, are located within the shortest region of deletion overlap of TRPS II patients. Two genes, OPG and CXIV, which are deleted only in some patients with TRPS II may contribute to the clinical variability of this syndrome.  相似文献   

19.
Sporadic childhood tumors associated with Beckwith-Wiedemann syndrome (BWS) all show abnormalities of the same region on chromosome 11. In addition to chromosome 11, other chromosome regions are affected in some of these tumor types. In this study we analyzed the region on chromosome 1p involved in the etiology of BWS-associated tumors, Wilms tumor, rhabdomyosarcoma, and hepatoblastoma. For this purpose we determined the location of two novel translocation breakpoints in this chromosome region in cells from a Wilms tumor and cells from a rhabdomyosarcoma. We constructed a map of the region and found that both breakpoints are separated by at least 875 kb. We identified a PAC clone which crosses the rhabdomyosarcoma breakpoint and found several exons within this clone. We established that this breakpoint is located proximal to the PAX7 gene and, therefore, identified a new region involved in the etiology of rhabdomyosarcomas.  相似文献   

20.
A gene for Holt-Oram syndrome (HOS) has been previously mapped to chromosome 12q2 and designated HOS1. We have identified a HOS patient with a de novo chromosomal rearrangement involving 12q. Detailed cytogenetic analysis of this case reveals three breaks on 12q, and two of these are within the HOS1 interval. By using a combination of chromosome painting and FISH with YACs and cosmids, it has been possible to map these breakpoints within the critical HOS1 interval and thus provide a focus for HOS gene-identification efforts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号