首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Novel glucocorticoid effects on acute inflammation in the CNS   总被引:10,自引:0,他引:10  
The CNS can mount an inflammatory reaction to excitotoxic insults that contributes to the emerging brain damage. Therefore, anti-inflammatory drugs should be beneficial in neurological insults. In contrast, glucocorticoids (GCs), while known for their anti-inflammatory effects, can exacerbate neurotoxicity in the hippocampus after excitotoxic insults. We investigated the effect of GCs on the inflammatory response after a neurological insult. Intact control (INT; intact stress response GC profile), adrenalectomized/GC-supplemented (ADX; low basal GC profile) and GC-treated (COR; chronically high GC profile) rats were injected with kainic acid into the hippocampal CA3 region. Lesion size was determined 8-72 h later. The inflammatory response was characterized using immunohistochemistry, RNAse protection assay and ELISA. The INT and COR rats developed larger CA3 lesions than ADX rats. We found that GCs surprisingly caused an increase in relative numbers of inflammatory cells (granulocytes, monocytes/macrophages and microglia). Additionally, mRNA and protein (IL-1beta and TNF-alpha) levels of the pro-inflammatory cytokines IL-1alpha, IL-1beta and TNF-alpha were elevated in COR rats compared with INT and ADX rats. These data strongly question the traditional view of GCs being uniformly anti-inflammatory and could further explain how GCs worsen the outcome of neurological insults.  相似文献   

2.
The present study was conducted to assess the effect of nutritional stress induced by food deprivation on expression of messenger ribonucleic acid (mRNA) for corticotropin-releasing hormone receptor type 2beta (CRH-R2beta) in the rat cardiovascular system in the presence or absence of changes in circulating corticosterone. Food deprivation for 96 h caused a robust increase in plasma corticosterone levels and a significant decrease in CRH-R2beta mRNA expression in the rat heart. Starvation for 48 and 96 h decreased CRH-R2beta mRNA expression in the atria, ventricle as well as aorta of sham-adrenalectomized (sham) rats. Surprisingly, clamping plasma glucocorticoids at low levels by adrenalectomy with corticosterone pellet replacement (ADX+B) did not completely prevent starvation-induced decreases of CRH-R2beta mRNA expression in the rat cardiovascular system. Urocortin (Ucn) mRNA expression was increased significantly by food deprivation in the heart of sham as well as ADX+B rats. We speculate that food deprivation may increase urocortin, which in turn down-regulates CRH-R2beta mRNA expression in cardiovascular system. These data indicate that food deprivation despite the presence or absence of changes in circulating corticosterone may have an inhibitory effect on CRH-R2beta mRNA expression in the rat cardiovascular system.  相似文献   

3.
The aim of the current study was to gain further insight into the implication of leptin in the regulation of hypothalamic gene expression during long-term food deprivation with emphasis on phase 3 of fasting (P3, late protein breakdown). Among plasma parameters, glucose, non-esterified fatty acids, and insulin levels tended to be decreased by leptin infusion, whilst corticosterone levels remained unchanged. From Northern blot analysis, NPY, AGRP, and MCH mRNA gene expressions were differentially regulated during prolonged fasting in leptin-perfused rats. In comparison with fed animals, NPY, AGRP, and MCH mRNA levels in P3 rats treated with leptin either remained stable or increased slightly. Regarding anorexigenic peptides (CART and POMC) and prepro-OX, fasting with leptin induced only slight changes in gene expression. Similar data have been obtained in leptin-treated fasted rats at various doses within the physiological range. We conclude that leptin and particularly low levels of plasma leptin can reasonably be considered as a constituent of a signal triggering the fasting-induced enhanced drive for refeeding in P3.  相似文献   

4.
The obese Zucker (fa/fa) rat is characterized by hyperphagia, hyperinsulinemia, an increase in fat deposition, and a hyperactivity in the hypothalamic-pituitary-adrenal (HPA) axis. The HPA axis in fa/fa rats is hypersensitive to stressful experimental conditions. Food deprivation even leads to a stress reaction in obese fa/fa rats. The present study was conducted to investigate the role of corticosterone in obese rats on the basal, fasting, and postprandial metabolic rate as well as on the central expression of the thyrotropin-releasing hormone (TRH) in these conditions. In addition, the study was aimed at clarifying whether the high levels of corticosterone in obese rats are responsible for the induction of the stress reaction to food deprivation in these animals. The present results demonstrate that whole body fat oxidation and postprandial metabolic responses in obese Zucker rats were improved by adrenalectomy (ADX). At the level of the central nervous system, ADX reversed a decrease in TRH mRNA expression in the paraventricular hypothalamus (PVH) detected in fasting animals. Considering all feeding conditions, the obese rats demonstrated lower TRH mRNA levels compared with lean animals. ADX resulted in an enhanced postprandial activation of the parvocellular PVH. In contrast, the magnocellular part of the PVH was less responsive to refeeding in ADX animals. Finally, ADX failed to prevent the stress response of obese rats to food deprivation. The present results provide evidence that the removal of adrenals resolve some of the metabolic defects encountered in obese Zucker rats. They also demonstrate that not all the abnormalities of the obese Zucker rats are attributable to the hyperactivity of the HPA axis.  相似文献   

5.
Leptin, a hormone regulating body weight, food intake, and metabolism, is associated with activation of immune cells and inflammation. In this study we analyzed levels of leptin, adrenocorticotropic hormone (ACTH), corticosterone, interleukin 1beta (IL-1beta), and nitric oxide (NO) production on days 10 and 22 of adjuvant arthritis (AA) in male Long Evans rats to ascertain possible relationship of leptin with its modulators during the early and late phases of chronic inflammation. The circulating leptin levels were significantly reduced already on day 10 of AA compared to controls (1.97+/-0.22 ng/ml vs. 3.08+/-0.25 ng/ml, p<0.05); on day 22 no significant further drop was observed (1.06+/-0.21 ng/ml). Leptin mRNA in epididymal fat tissue was reduced in arthritic animals compared to controls on day 22 (0.61+/-0.09 vs. 1.30+/-0.1 arbU/GAPDH (p<0.01). IL-1beta concentration in spleen was enhanced on day 10 of AA (24.55+/-4.67 pg/100 microg protein vs. 14.33+/-1.71 pg/100 microg protein; p<0.05); on day 22 it did not differ from controls. ACTH and corticosterone levels were significantly elevated only on day 22 of AA (ACTH: 306.17+/-42.22 pg/ml vs. 157.61+/-23.94 pg/ml; p<0.05; corticosterone: 5.24+/-1.38 microg/100 ml vs. 1.05+/-0.23 microg/100 ml; p<0.01). Nitrate levels were enhanced similarly on days 10 (49.86+/-1.83 microM) and 22 of AA (43.58+/-2.17 microM), compared to controls (23.42+/-1.39 microM, p<0.001). These results show that corticosterone does not stimulate leptin production during AA. The suppression of leptin may be a consequence of permanent activation of NO, IL-1beta, and of lower weight gain. Circulating leptin does not seem to play a key role in the progression of chronic arthritis.  相似文献   

6.
Exposure to hypoxia induces anorexia in humans and rodents, but the role of leptin remains under discussion and that of orexigenic and anorexigenic hypothalamic neuropeptides remains unknown. The present study was designed to address this issue by using obese (Lepr(fa)/Lepr(fa)) Zucker rats, a rat model of genetic leptin receptor deficiency. Homozygous lean (Lepr(FA)/Lepr(FA)) and obese (Lepr(fa)/Lepr(fa)) rats were randomly assigned to two groups, either kept at ambient pressure or exposed to hypobaric hypoxia for 1, 2, or 4 days (barometric pressure, 505 hPa). Food intake and body weight were recorded throughout the experiment. The expression of leptin and vascular endothelial growth factor (VEGF) genes was studied in adipose tissue with real-time quantitative PCR and that of selected orexigenic and anorexigenic neuropeptides was measured in the hypothalamus. Lean and obese rats exhibited a similar hypophagia (38 and 67% of initial values at day 1, respectively, P < 0.01) and initial decrease in body weight during hypoxia exposure. Hypoxia led to increased plasma leptin levels only in obese rats. This resulted from increased leptin gene expression in adipose tissue in response to hypoxia, in association with enhanced VEGF gene expression. Increased hypothalamic neuropeptide Y levels in lean rats 2 days after hypoxia exposure contributed to accounting for the enhanced food consumption. No significant changes occurred in the expression of other hypothalamic neuropeptides involved in the control of food intake. This study demonstrates unequivocally that altitude-induced anorexia cannot be ascribed to anorectic signals triggered by enhanced leptin production or alterations of hypothalamic neuropeptides involved in anabolic or catabolic pathways.  相似文献   

7.
Estradiol (E2) plays an important role in controlling the homeostasis of body fluids. Several studies have reported the involvement of the hypothalamic pituitary adrenal axis (HPA) in the homeostatic control of hydromineral balance and the influence of estrogens on the modulation of this system. Nevertheless, until now, the physiological relevance of HPA axis activity on the hydromineral balance in females has not yet been fully elucidated. Therefore, the objective of the present study was to evaluate the effects of E2 (20 μg/animal) pretreatment on neuroendocrine and hydroelectrolyte changes induced by adrenalectomy (ADX) with or without glucocorticoid hormone replacement (corticosterone, CORT; 10 mg/kg) in ovariectomized rats (OVX). The results show that sodium appetite, natriuresis and the elevated plasma angiotensin II (ANG II) concentration induced by ADX were attenuated by E2 pretreatment. Additionally, a reduction of AT1 mRNA expression in the subfornical organ (SFO) and an increase in plasma atrial natriuretic peptide (ANP) concentrations by E2 pretreatment were observed. E2 pretreatment reversed the reduction in water intake induced by ADX in ADX CORT-replaced rats. Moreover, E2 pretreatment attenuated corticotropin releasing factor (CRF) mRNA expression in the paraventricular nucleus (PVN) induced by ADX. In contrast, E2 pretreatment increased CRF mRNA expression in the PVN in ADX CORT-replaced rats. Taken together, these results suggest that E2 has an important role in the modulation of behavioral and neuroendocrine responses involved in the maintenance of body fluid homeostasis in ADX rats with or without glucocorticoid replacement therapy.  相似文献   

8.
Febrile responses to bacterial pathogens are attenuated near term of pregnancy in several mammalian species. It is unknown, however, whether this reflects a fundamental physiological adaptation of female rats or whether it is specific to pregnancy. The aims of this study therefore were 1) to determine whether febrile responses to the bacterial endotoxin lipopolysaccharide (LPS) are attenuated in female vs. male rats and, if so, to identify possible mechanisms involved in modulating this and 2) to assess whether plasma concentrations of the anti-inflammatory cytokine, interleukin-1 receptor antagonist (IL-1ra), an important regulator of fever, are dependent on the physiological state of the female and could therefore be involved in modulating febrile responses. We found febrile responses were attenuated in cycling female vs. male rats and also in near-term pregnant dams vs. cycling females after intraperitoneal injection of LPS (0.05 mg/kg). Plasma levels of IL-1ra were significantly greater in female rats after injection of LPS, particularly during pregnancy, than in males. This was accompanied by attenuated levels of hypothalamic IL-1beta and cyclooxygenase-2 mRNA, two key mediators of the febrile response, in female rats. Furthermore, increasing plasma levels of IL-1ra in male rats by intraperitoneal administration of the recombinant antagonist attenuated hypothalamic mRNA levels of these mediators after LPS. These data suggest that there is a fundamental difference in febrile response to LPS between the genders that is likely regulated by IL-1ra. This may be an important mechanism that protects the developing fetus from potentially deleterious consequences of maternal fever during pregnancy.  相似文献   

9.
10.
Intracerebroventricular (ICV) injections of interleukin-1 beta (IL-1 beta) produced a dose-dependent increase in plasma corticosterone and adrenocorticotropic hormone (ACTH) within 2 hr of injection and then declined over the next 24 hr. Using a potent steroidogenic dose of IL-1 beta (5 ng), ICV injection resulted in suppression of splenic macrophage IL-1 secretion following stimulation by LPS in vitro. Macrophage TGF-beta secretion was not affected, indicating a differential action of ICV IL-1 beta on macrophage cytokine production. Following adrenalectomy (ADX), the suppressive effect of ICV IL-1 beta was reversed and resulted in stimulation of macrophage IL-1 secretion, indicating that the suppression was mediated by adrenocorticol activation. However, surgical interruption of the splenic nerve to eliminate autonomic innervation of the spleen also prevented the macrophage suppressive signal in rats given ICV IL-1 beta. Furthermore, the combination of ADX and splenic nerve section resulted in a potent stimulatory effect of ICV IL-1 beta on splenic macrophage IL-1 secretion which was greater than either ADX or splenic nerve section alone. These results support the concept of a negative feedback on macrophage IL-1 secretion by the central action of IL-1 beta and indicate that both the hypothalamic-pituitary-adrenal axis and the sympathetic nervous system mediate this effect.  相似文献   

11.
In the present study, we have shown that IL-1beta increased BDNF mRNA expression in hypothalamic neuron-enriched cultures whereas it reduced this expression in mixed cultures, i.e. containing astrocytes and neurons. Because functional relationships between stress and immunity signals are well documented we investigated the possible interaction between BDNF and IL-1beta in hypothalamic neurons. Notably, we investigated whether IL-1beta affected BDNF expression in vitro either on hypothalamic mixed cultures or on neuron-enriched cultures. We found that the response to IL-1beta was stimulatory when directly examined in neurons but was inhibitory when astrocytes were present in the cultures. Since it has been documented that astrocytes release PGE2 in response to IL-1beta, we examined the effect of indomethacin (a PGE2 synthesis inhibitor) on mixed or neuron-enriched cultures treated with IL-1beta. Indomethacin blocked both stimulatory and inhibitory IL-1beta effects on BDNF mRNA expression whereas picrotoxin (a GABA(A) blocker) or MK-801 (a NMDA receptor blocker) had no effect on BDNF mRNA levels. About 3 and 6h treatments of cells with exogenous PGE2 reproduced the effects of IL-1beta on neuron-enriched or on mixed cultures suggesting that PGE2 was involved in BDNF mRNA regulation. Analysis of PGE2 receptors mRNA expression revealed that the PGE2 receptor pattern was changed when neuron-enriched cultures were treated with conditioned medium produced by astrocytes treated with IL-1beta. Thus, EP3 mRNA levels were increased while EP1 and EP4 messengers were unchanged. This increased expression of the inhibitory prostaglandin receptor under astrocyte influence can explain the inhibition of BDNF mRNA levels observed in mixed cultures following IL-1beta or PGE2 treatment. Finally, we demonstrated by immunocytochemistry that EP3 receptors had a neuronal localization in the hypothalamic cultures. Taken together, these data contribute to underline an emerging physiological concept postulating that a same molecule may have opposite effects as a function of the cellular context.  相似文献   

12.
Inflammatory and infectious processes evoke neuroendocrine and behavioral changes known as acute-phase response that includes activation of the hypothalamo-pituitary-adrenal (HPA) axis and reduction of food intake. Besides its action as the most important ACTH secretagogue, corticotrophin-releasing factor (CRF), synthesized in the paraventricular nucleus (PVN), is also involved in the control of food intake. Alpha-melanocyte stimulating hormone (α-MSH) in the arcuate nucleus also plays a role in the energy homeostasis, possessing anorexigenic effects. To investigate the participation of neuropeptides involved in the regulation of food intake during endotoxemia, we administrated lipopolysaccharide (LPS) in sham-operated and adrenalectomized (ADX) male Wistar rats to evaluate food intake, hormone responses and Fos-CRF and Fos-α-MSH immunoreactivity in the PVN and arcuate nucleus, as well as CRF and POMC mRNA expression in these hypothalamic nuclei. In sham-operated rats, treatment with LPS (100 µg/kg) showed lower food intake, higher plasma ACTH and corticosterone levels, as well as an increase in Fos-CRF double labeled neurons and CRF mRNA expression in the PVN, with no changes in Fos-α-MSH immunoreactivity and POMC mRNA expression in the arcuate nucleus, compared to saline treated rats. After LPS treatment, ADX rats showed further increase in plasma ACTH levels, marked decrease of food intake, higher Fos-CRF immunoreactive neurons in the PVN and CRF mRNA expression, as well as an increase in Fos-α-MSH immunoreactivity and POMC mRNA expression in the arcuate nucleus, compared to sham-operated rats treated with LPS. In conclusion, the present data indicate that the marked hypophagia during endotoxemia following ADX is associated with an increased activation of CRF and POMC neurons in the hypothalamus and an increased mRNA expression of these neuropeptides.  相似文献   

13.
Leptin and ghrelin are known to be main hormones involved in the control of food intake, with opposing effects. Here we have explored whether changes in the leptin and ghrelin system are involved in the long-term effects of high-fat (HF) diet feeding in rats and whether sex-associated differences exist. Male and female Wistar rats were fed until the age of 6 months with a normal-fat (NF) or an HF-diet. Food intake and body weight were followed. Gastric and serum levels of leptin and ghrelin, and mRNA levels of leptin (in stomach and adipose tissue), ghrelin (in stomach), and NPY, POMC, and leptin and ghrelin receptors (OB-Rb and GHS-R) (in the hypothalamus) were measured. In both males and females, total caloric intake and body weight were greater under the HF-diet feeding. In females, circulating ghrelin levels and leptin mRNA expression in the stomach were higher under HF-diet. HF-diet feeding also resulted in higher hypothalamic NPY/POMC mRNA levels, more marked in females, and in lower OB-Rb mRNA levels, more marked in males. In addition, in females, serum ghrelin levels correlated positively with hypothalamic NPY mRNA levels, and these with caloric intake. In males, hypothalamic OB-Rb mRNA levels correlated positively with POMC mRNA levels and these correlated negatively with caloric intake and with body weight. These data reflect differences between sexes in the effects of HF-diet feeding on food intake control systems, suggesting an impairment of the anorexigenic leptin-POMC system in males and an over-stimulation of the orexigenic ghrelin-NPY system in females.  相似文献   

14.

Background  

Fasting and diabetes are characterized by elevated glucocorticoids and reduced insulin, leptin, elevated hypothalamic AGRP and NPY mRNA, and reduced hypothalamic POMC mRNA. Although leptin replacement can reverse changes in hypothalamic gene expression associated with fasting and diabetes, leptin also normalizes corticosterone; therefore the extent to which the elevated corticosterone contributes to the regulation of hypothalamic gene expression in fasting and diabetes remains unclear. To address if elevated corticosterone is necessary for hypothalamic responses to fasting and diabetes, we assessed the effects of adrenalectomy on hypothalamic gene expression in 48-hour-fasted or diabetic mice. To assess if elevated corticosterone is sufficient for the hypothalamic responses to fasting and diabetes, we assessed the effect of corticosterone pellets implanted for 48 hours on hypothalamic gene expression.  相似文献   

15.
Epinephrine, norepinephrine, and corticosterone responses to hypoglycemia are impaired in diabetic rats. Recurrent hypoglycemia further diminishes epinephrine responses. This study examined the sympathoadrenal system and hypothalamo-pituitary-adrenal axis for molecular adaptations underlying these defects. Groups were normal (N) and diabetic (D) rats and diabetic rats exposed to 4 days of 2 episodes/day of hyperinsulinemic hypoglycemia (D-hypo) or hyperinsulinemic hyperglycemia (D-hyper). D-hypo and D-hyper rats differentiated effects of hypoglycemia and hyperinsulinemia. Adrenal tyrosine hydroxylase (TH) mRNA was reduced (P < 0.05 vs. N) 25% in all diabetic groups. Remarkably, mRNA for phenylethanolamine N-methyltransferase (PNMT), which converts norepinephrine to epinephrine, was reduced (P < 0.05 vs. all) 40% only in D-hypo rats. Paradoxically, dopamine beta-hydroxylase mRNA was elevated (P < 0.05 vs. D, D-hyper) in D-hypo rats. Hippocampal mineralocorticoid receptor (MR) mRNA was increased (P < 0.05 vs. N) in all diabetic groups. Hippocampal glucocorticoid receptor (GR), hypothalamic paraventricular nucleus (PVN) GR and corticotropin-releasing hormone (CRH), and pituitary GR and proopiomelanocortin (POMC) mRNA levels did not differ. We conclude that blunted corticosterone responses to hypoglycemia in diabetic rats are not due to altered basal expression of GR, CRH, and POMC in the hippocampus, PVN, and pituitary. The corticosterone defect also does not appear to be due to increased hippocampal MR, since we have reported normalized corticosterone responses in D-hypo and D-hyper rats. Furthermore, impaired epinephrine counterregulation in diabetes is associated with reduced adrenal TH mRNA, whereas the additional epinephrine defect after recurrent hypoglycemia is associated with decreases in both TH and PNMT mRNA.  相似文献   

16.
Glucocorticoids (GCs) are commonly reported to be immunosuppressive. Studies that support this involve the administration of synthetic GCs such as dexamethasone at high pharmacological doses and using in vitro assay systems that may have limited relevance to the role of GCs during normal in vivo immune responses. Therefore, the following experiments tested the conclusion that GCs are generally immunosuppressive. Adult male Sprague Dawley rats received adrenalectomy (ADX) or sham surgery. ADX rats were given either basal corticosterone (CORT) replacement in their drinking water (25 microg/ml) or no CORT. Rats were immunized with keyhole limpet hemocyanin (KLH), and blood samples were taken. ADX rats with no CORT replacement had reduced anti-KLH IgM and IgG responses compared with sham-operated controls. ADX rats that received basal CORT replacement had partially restored anti-KLH IgM, but still had suppressed anti-KLH IgG. Administration of GC receptor type I (RU28318) and type II (RU40555) receptor antagonists also reduced the anti-KLH IgM and IgG responses. ADX rats that received both basal CORT replacement and low dose injections of CORT on days 5 and 7 after KLH had anti-KLH IgG levels equal to those of sham-operated controls. Finally, the GC elevation 4-7 days after immunization may play a role in stimulating the IgM to IgG2a switch. GC receptor blockade reduced the anti-KLH IgG2a and splenic IFN-gamma, but not the anti-KLH IgG1, response. Given that IFN-gamma is an important regulator of the IgM to IgG2a switch, it is possible that the small rise in GC found 4-7 days after KLH facilitates IgG2a isotype switching.  相似文献   

17.
The aim of the present study was to determine whether the anorexic and thermogenic effects of leptin were attenuated in overweight aged rats following intracerebroventricular (i.c.v.) injection of murine leptin. Male F344/BN rats of two ages (6 months: young (n=20) and 24 months: old (n=18)) were divided into three groups (control, pair-fed and leptin) and were treated with either vehicle (artificial cerebrospinal fluid) or leptin (15.6 microgram/day) for 3 days. There was an age-related increase in basal food intake (20+/-2%), serum leptin levels (363+/-106%) and leptin (OB) mRNA (72+/-16%) in perirenal white adipose tissue (PWAT). In contrast, basal expression of hypothalamic NPY mRNA and brown adipose tissue (BAT) uncoupling protein 1 (UCP1) mRNA was reduced significantly (-35+/-4% and -51+/-5%, respectively) with age. I.c.v. leptin treatment had a significantly greater effect in reducing food intake (-42+/-5% vs. -23+/-4%), serum leptin levels (-55+/-7% vs. 10+/-2%) and PWAT OB mRNA (-46+/-2% vs. 10+/-5%) in young than in old rats. Similarly, central leptin treatment also had a greater effect in suppressing hypothalamic NPY mRNA expression in young (-23+/-4%) than in old (-8+/-4%) rats compared with their age-matched pair-fed treated rats. The stimulatory effect of i.c.v. leptin treatment on BAT UCP1 mRNA expression was also significantly greater in young rats (45+/-8%) than in old rats (10+/-6%) compared with age-matched pair-fed rats. Our previous report indicated that these overweight aged rats were resistant to peripheral administered leptin. The present data extend those findings and demonstrate that the impaired anorexic and metabolic effects of leptin are centrally mediated. This leptin resistance may be due to either the elevated obesity and serum leptin with age or due to age itself or both. The development of leptin resistance with age may contribute to the hyperphagia, hyperleptinemia and impaired energy balance with age.  相似文献   

18.
We examined the expressions of the prepro-orexin gene in the lateral hypothalamic area (LHA), the genes of the neuropeptide Y (NPY) and proopiomelanocortin (POMC) in the arcuate nucleus (ARC), the orexin type 1 receptor (OX1R) gene in the ventromedial hypothalamic nucleus (VMH) and the orexin type 2 receptor (OX2R) gene in the paraventricular nucleus (PVN) in 6-, 12- and 18-week-old male lean (Fa/?) and obese (fa/fa) Zucker rats, using in situ hybridization histochemistry. The fa/fa rats showed hyperglycemia at 12- and 18-week-old. The prepro-orexin mRNA level in fa/fa rats at 18-week-old and the OX2R mRNA level in fa/fa rats at 12- and 18-week-old were significantly decreased compared to controls. The NPY mRNA levels in fa/fa rats at each time point were significantly increased compared to controls, but the POMC mRNA levels were decreased. Prepro-orexin and OX2R mRNA levels in fa/fa rats pretreated with insulin normalized to the levels found in Fa/? rats. These results suggest that the regulation of prepro-orexin gene expression might be independent of the regulation of the NPY and POMC genes in the ARC in fa/fa rats.  相似文献   

19.
Phosphatidylinositol 3-OH-kinase (PI3K) and STAT3 are signal transduction molecules activated by leptin in brain areas controlling food intake. To investigate their role in leptin-mediated inhibition of hypothalamic neuropeptide Y (Npy) and agouti-related peptide (Agrp) gene expression, male Sprague-Dawley rats (n = 5/group) were either fed ad libitum or subjected to a 52-h fast. At 12-h intervals, the PI3K inhibitor LY-294002 (LY, 1 nmol) or vehicle was injected intracerebroventricularly (ICV) as a pretreatment, followed 1 h later by leptin (3 microg icv) or vehicle. Fasting increased hypothalamic Npy and Agrp mRNA levels (P < 0.05), and ICV leptin administration prevented this increase. As predicted, LY pretreatment blocked this inhibitory effect of leptin, such that Npy and Agrp levels in LY-leptin-treated animals were similar to fasted controls. By comparison, leptin-mediated activation of hypothalamic STAT3 signaling, as measured by induction of both phospho-STAT3 immunohistochemistry and suppressor of cytokine signaling-3 (Socs3) mRNA, was not significantly attenuated by ICV LY pretreatment. Because NPY/AgRP neurons project to the hypothalamic paraventricular nucleus (PVN), we next investigated whether leptin activation of PVN neurons is similarly PI3K dependent. Compared with vehicle, leptin increased the number of c-Fos positive cells within the parvocellular PVN (P = 0.001), and LY pretreatment attenuated this effect by 35% (P = 0.043). We conclude that leptin requires intact PI3K signaling both to inhibit hypothalamic Npy and Agrp gene expression and activate neurons within the PVN. In addition, these data suggest that leptin activation of STAT3 is insufficient to inhibit expression of Npy or Agrp in the absence of PI3K signaling.  相似文献   

20.
We investigated the effect of a single bout of exercise on leptin mRNA levels in rat white adipose tissue. Male Sprague-Dawley rats were randomly assigned to an exercise or control group. Acute exercise was performed on a rodent treadmill and was carried out to exhaustion, lasting an average of 85.5 +/- 1.5 min. At the end of exercise, soleus muscle and liver glycogen were reduced by 88% (P < 0.001). Acutely exercised animals had lower (P < 0.05) leptin mRNA levels in retroperitoneal but not epididymal fat, and this was independent of fat pad weight. To test the hypothesis that beta(3)-adrenergic-receptor stimulation was involved in the downregulation of leptin mRNA in retroperitoneal fat, a second experiment was performed in which rats were randomized into one of four groups: control, control + beta(3)-antagonist, exercise, and exercise + beta(3)-antagonist. A highly selective beta(3)-antagonist (SR-59230A) or vehicle was given by gavage 30 min before exercise or control experiment. Exercise consisted of 55 min of treadmill running, sufficient to reduce liver and muscle glycogen by 70 and 80%, respectively (both P < 0.0001). Again, acute exercise reduced leptin mRNA in retroperitoneal fat (exercise vs. control; P < 0.05), but beta(3)-antagonism blocked this effect (exercise + beta(3)-antagonist vs. control + beta(3)-antagonist; P = 0.42). Unexpectedly, exercise increased serum leptin. This would be consistent with the idea that there are releasable, preformed pools of leptin within adipocytes. We conclude that beta(3)-receptor stimulation is a mechanism by which acute exercise downregulates retroperitoneal adipose tissue leptin mRNA in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号