首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Penicillium chrysogenum exo-arabinanase (Abnx), which releases arabinobiose from the nonreducing terminus of alpha-1,5-L-arabinan, was found to possess trans-arabinobiosylation activity on various acceptors, such as aliphatic alcohols, sugars, and sugar alcohols. Abnx was found to prefer primary hydroxyl groups in polyhydric alcohols as acceptors over primary hydroxyl groups in monohydric alcohols. Among the 21 different compounds tested, glycerol was the best acceptor for the enzyme. The transfer product of glycerol was identified as O-alpha-L-arabinosyl-(1-->5)-O-alpha-L-arabinosyl-(1-->1)-glycerol on the basis of the spectral data, fast atom bombardment-mass and 1H- and 13C-NMR. Unlike endo-arabinanases, Abnx catalyzed the hydrolysis of linear arabinan without inverting the anomeric configuration.  相似文献   

2.
The nucleotide sequence of the abnx cDNA gene, which encodes an exo-arabinanase (Abnx) of Penicillium chrysogenum 31B, was determined. Abnx was found to be structurally distinct from known arabinan-degrading enzymes based on its amino acid sequence and a hydrophobic cluster analysis. The protein in the protein database with the highest similarity to Abnx was the Neurospora crassa conserved hypothetical protein. The abnx cDNA gene product expressed in Escherichia coli catalyzed the release of arabinobiose from alpha-1,5-L-arabinan. The activity of the recombinant Abnx towards a series of arabino-oligosaccharides, as expressed by k(cat)/K(m) value, was greatest with arabinohexaose.  相似文献   

3.
alpha-1,4-Glucan lyase cleaves alpha-1,4-linkages of nonreducing termini of alpha-1,4-glucans to produce 1,5-anhydrofructose (1,5-AnFru). The enzymes isolated from fungi and algae show high homology with glycoside hydrolase family 31. Purification of alpha-1,4-glucan lyase from rat liver using DEAE Cellulose chromatography resulted in separation of two enzymatic active fractions, one was bound to the column and the other was in the flow-through. Partial amino acid sequence determined from the lyase, retained on the anion exchange column, were identical with that of the N:-linked oligosaccharide processing enzyme glucosidase II. The lyase showed similar enzymatic properties as the microsomal glucosidase such as inhibition by 1-deoxynojirimycin and castanospermine. On the other hand, glucosidase II purified from rat liver microsomes produced not only glucose but also a small amount of 1,5-AnFru using maltose as substrate. Furthermore, CHO cells overexpressing pig liver glucosidase II showed a 1.5- to 2-fold higher lyase activity compared to the nontransfected CHO cells. Conversely, no lyase activity was detectable either in PHAR2.7, the glucosidase II-deficient mutant from a mouse lymphoma cell line, or in Saccharomyces cerevisiae strain YG427 having the glucosidase II gene disrupted. These data demonstrate that glucosidase II possesses an additional enzymatic activity of releasing 1,5-AnFru from maltose.  相似文献   

4.
5.
Methyl 2-azido-2-deoxy-hexodialdo-1,5-pyranosides of the alpha-, beta-D-gluco and alpha-D-manno configuration as well as methyl 2-acetamido-2-deoxy-hexodialdo-1,5-pyranosides of the alpha- and beta-D-gluco configuration, protected at positions 3 and 4 with O-benzyl groups were reacted with an excess of allyloxymethylmagnesium or (phenyldimethylsilyl)methylmagnesium chlorides to afford mixtures of C-6 stereoisomeric heptopyranosides. Configuration of the products separated by column chromatography was assigned by 1H NMR data.  相似文献   

6.
The digestion of the plant cell wall requires the concerted action of a diverse repertoire of enzyme activities. An important component of these hydrolase consortia are arabinofuranosidases, which release L-arabinofuranose moieties from a range of plant structural polysaccharides. The anaerobic bacterium Clostridium thermocellum, a highly efficient plant cell wall degrader, possesses a single alpha-L-arabinofuranosidase (EC 3.2.1.55), CtAraf51A, located in GH51 (glycoside hydrolase family 51). The crystal structure of the enzyme has been solved in native form and in 'Michaelis' complexes with both alpha-1,5-linked arabinotriose and alpha-1,3 arabinoxylobiose, both forming a hexamer in the asymmetric unit. Kinetic studies reveal that CtAraf51A, in contrast with well-characterized GH51 enzymes including the Cellvibrio japonicus enzyme [Beylot, McKie, Voragen, Doeswijk-Voragen and Gilbert (2001) Biochem. J. 358, 607-614], catalyses the hydrolysis of alpha-1,5-linked arabino-oligosaccharides and the alpha-1,3 arabinosyl side chain decorations of xylan with equal efficiency. The paucity of direct hydrogen bonds with the aglycone moiety and the flexible conformation adopted by Trp(178), which stacks against the sugar at the +1 subsite, provide a structural explanation for the plasticity in substrate specificity displayed by the clostridial arabinofuranosidase.  相似文献   

7.
There is a steadily increasing need to expand sustainable resources, and carbohydrates are anticipated to play an important role in this respect, both for bulk and fine chemical preparation. The enzyme alpha-(1-->4)-glucan lyase degrades starch to 1,5-anhydro-D-fructose. This compound, which has three different functional properties, a prochiral center together with a permanent pyran ring, renders it a potential chiral building block for the synthesis of valuable and potentially biologically active compounds. 1,5-Anhydro-D-fructose is found in natural materials as a degradation product of alpha-(1-->4)-glucans. The occurrence of lyases and the metabolism of 1,5-anhydro-D-fructose are reviewed in the biological part of this article. In the chemical part, the elucidated structure of 1,5-anhydro-D-fructose will be presented together with simple stereoselective conversions into hydroxy/amino 1,5-anhydro hexitols and a nojirimycin analogue. Synthesis of 6-O-acylated derivatives of 1,5-anhydro-D-fructose substituted with long fatty acid residues is carried out using commercially available enzymes. Those reactions lead to compounds with potential emulsifying properties. The use of protected derivatives of 1,5-anhydro-D-fructose for the synthesis of natural products is likewise reviewed. The potential utilization of this chemical building block is far from being exhausted. Since 1,5-anhydro-D-fructose now is accessible in larger amounts through a simple-enzyme catalyzed degradation of starch by alpha-(1-->4)-glucan lyase, the application of 1,5-anhydro-D-fructose may be considered a valuable contribution to the utilization of carbohydrates as the most abundant resource of sustainable raw materials.  相似文献   

8.
The method of affinity chromatography on sepharose with immobilized tRNA in the presence of urea was developed for separating the subunits of phenylalanyl-tRNA synthetase from E. coli MRE-600 (subunit structure alpha 2 beta 2). Specific binding of large beta-subunits of the enzyme on immobilized tRNA testifies the localization of the tRNA-binding center on the beta-subunit of phenylalanyl-tRNA synthetase. Separately alpha- and beta-subunits of the enzyme exhibit no catalytic activity. Incubation of the mixture of alpha- and beta-subunits in conditions leading to reassociation of the oligomeric structure results in restoration of catalytic activity of the enzyme. In the presence of urea resin with immobilised analogs of ATP binds alpha- and beta-subunits of the enzyme. This testifies the presence of nucleotide-binding sites on both subunits. The possibility of using the affinity chromatography method to separate non-identical subunits of different enzymes is discussed.  相似文献   

9.
Deoxyfuconojirimycin (1,5-dideoxy-1,5-imino-L-fucitol) is a potent, specific and competitive inhibitor (Ki 1 x 10(-8) M) of human liver alpha-L-fucosidase (EC 3.2.1.51). Six structural analogues of this compound were synthesized and tested for their ability to inhibit alpha-L-fucosidase and other human liver glycosidases. It is concluded that the minimum structural requirement for inhibition of alpha-L-fucosidase is the correct configuration of the hydroxy groups at the piperidine ring carbon atoms 2, 3 and 4. Different substituents in either configuration at carbon atom 1 (i.e. 1 alpha- and beta-homofuconojirimycins) and at carbon atom 5 may alter the potency but do not destroy the inhibition of alpha-L-fucosidase. The pH-dependency of the inhibition by these amino sugars suggests very strongly that inhibition results from the formation of an ion-pair between the protonated inhibitor and a carboxylate group in the active site of the enzyme. Deoxymannojirimycin (1,5-dideoxy-1,5-imino-D-mannitol) is also a more potent inhibitor of alpha-L-fucosidase than of alpha-D-mannosidase. This can be explained by viewing deoxymannojirimycin as beta-L-homofuconojirimycin lacking the 5-methyl group. Conversely, beta-L-homo analogues of fuconojirimycin can also be regarded as derivatives of deoxymannojirimycin. This has permitted deductions to be made about the structural requirements of inhibitors of alpha- and beta-D-mannosidases.  相似文献   

10.
The alpha- and beta-anomers of arabinose 1,5-bisphosphate and ribose 1,5-bisphosphate were tested as effectors of rat liver 6-phosphofructo-1-kinase and fructose-1,6-bisphosphatase. Both anomers of arabinose 1,5-bisphosphate activated the kinase and inhibited the bisphosphatase. The alpha-anomer was the more effective kinase activator while the beta-anomer was the more potent inhibitor of the bisphosphatase. Inhibition of the bisphosphatase by both anomers was competitive, and both potentiated allosteric inhibition by AMP. beta-Arabinose 1,5-bisphosphate was also more effective in decreasing fructose 2,6-bisphosphate binding to the enzyme. Neither anomer of ribose 1,5-bisphosphate affected 6-phosphofructo-1-kinase or fructose-1,6-bisphosphatase, indicating that the configuration of the C-2 (C-3 in Fru 2,6-P2) hydroxyl group is important for biological activity. These results are also consistent with arabinose 1,5-bisphosphate binding to the active site and thereby enhancing the interaction of AMP with the allosteric site.  相似文献   

11.
Trehalose supports the growth of Thermus thermophilus strain HB27, but the absence of obvious genes for the hydrolysis of this disaccharide in the genome led us to search for enzymes for such a purpose. We expressed a putative alpha-glucosidase gene (TTC0107), characterized the recombinant enzyme, and found that the preferred substrate was alpha,alpha-1,1-trehalose, a new feature among alpha-glucosidases. The enzyme could also hydrolyze the disaccharides kojibiose and sucrose (alpha-1,2 linkage), nigerose and turanose (alpha-1,3), leucrose (alpha-1,5), isomaltose and palatinose (alpha-1,6), and maltose (alpha-1,4) to a lesser extent. Trehalose was not, however, a substrate for the highly homologous alpha-glucosidase from T. thermophilus strain GK24. The reciprocal replacement of a peptide containing eight amino acids in the alpha-glucosidases from strains HB27 (LGEHNLPP) and GK24 (EPTAYHTL) reduced the ability of the former to hydrolyze trehalose and provided trehalose-hydrolytic activity to the latter, showing that LGEHNLPP is necessary for trehalose recognition. Furthermore, disruption of the alpha-glucosidase gene significantly affected the growth of T. thermophilus HB27 in minimal medium supplemented with trehalose, isomaltose, sucrose, or palatinose, to a lesser extent with maltose, but not with cellobiose (not a substrate for the alpha-glucosidase), indicating that the alpha-glucosidase is important for the assimilation of those four disaccharides but that it is also implicated in maltose catabolism.  相似文献   

12.
Microsomal and cytosolic alpha-mannosidase activities, which hydrolyze alpha-1,2-mannosyl-mannose linkages in the Man5GlcNAc2 oligosaccharide, have been isolated from homogenates of mung bean hypocotyls. The alpha-1,2-mannosidase activities were readily distinguished from previously described aryl alpha-mannosidases by several criteria. They were optimally active in the presence of Ca2+ between pH 5.5 and 6, they were inhibited by Zn2+, and they had essentially no activity with p-nitrophenyl-alpha-mannoside. The microsomal and cytosolic alpha-1,2-mannosidases demonstrated specificity for oligosaccharides with terminal nonreducing alpha-1,2-mannosyl linkages, and they were inhibited by mannosyl-mannose disaccharides, with the inhibition decreasing in the order of alpha-1,2-greater than alpha-1,3-greater than alpha-1,6-mannosyl-mannose. The cytosolic alpha-1,2-mannosidase activity, which was present in the 100,000 g supernatant, was separated from the aryl alpha-mannosidase by ammonium sulfate precipitation. The microsomal alpha-1,2-mannosidase, which was tightly associated with the particulate fraction, was solubilized with Triton X-100 and 0.2 M KCl. The two alpha-1,2-mannosidase activities were readily differentiated by gel-filtration chromatography. The solubilized microsomal enzyme chromatographed in approximately the same position as a Mr 460,000 globular protein whereas the cytosolic enzyme was eluted in a retarded position, indicating a much smaller protein.  相似文献   

13.
A gene encoding an alpha-L: -arabinofuranosidase, designated SaAraf43A, was cloned from Streptomyces avermitilis. The deduced amino acid sequence implies a modular structure consisting of an N-terminal glycoside hydrolase family 43 module and a C-terminal family 42 carbohydrate-binding module (CBM42). The recombinant enzyme showed optimal activity at pH 6.0 and 45 degrees C and was stable over the pH range of 5.0-6.5 at 30 degrees C. The enzyme hydrolyzed p-nitrophenol (PNP)-alpha-L: -arabinofuranoside but did not hydrolyze PNP-alpha-L: -arabinopyranoside, PNP-beta-D: -xylopyranoside, or PNP-beta-D: -galactopyranoside. Debranched 1,5-arabinan was hydrolyzed by the enzyme but arabinoxylan, arabinogalactan, gum arabic, and arabinan were not. Among the synthetic regioisomers of arabinofuranobiosides, only methyl 5-O-alpha-L: -arabinofuranosyl-alpha-L: -arabinofuranoside was hydrolyzed by the enzyme, while methyl 2-O-alpha-L: -arabinofuranosyl-alpha-L: -arabinofuranoside and methyl 3-O-alpha-L: -arabinofuranosyl-alpha-L: -arabinofuranoside were not. These data suggested that the enzyme only cleaves alpha-1,5-linked arabinofuranosyl linkages. The analysis of the hydrolysis product of arabinofuranopentaose suggested that the enzyme releases arabinose in exo-acting manner. These results indicate that the enzyme is definitely an exo-1,5-alpha-L: -arabinofuranosidase. The C-terminal CBM42 did not show any affinity for arabinogalactan and debranched arabinan, although it bound arabinan and arabinoxylan, suggesting that the CBM42 bound to branched arabinofuranosyl residues. Removal of the module decreased the activity of the enzyme with regard to debranched arabinan. The CBM42 plays a role in enhancing the debranched arabinan hydrolytic action of the catalytic module in spite of its preference for binding arabinofuranosyl side chains.  相似文献   

14.
A rapid procedure was developed for purifying ribulose 1,5-diphosphate carboxylase from barley leaves. After (NH4)2SO4 fractionation, the unique sedimentation properties of the enzyme were exploited to effect a single step purification to 90% homogeneity. High speed centrifugation pelleted the enzyme with complete recovery of activity. Residual impurities were then removed by diethylaminoethyl cellulose chromatography and density gradient centrifugation. The purified protein exhibited size heterogeneity due to polymerization. The polymerization products were enzymatically active aggregates of ribulose 1,5-diphosphate carboxylase and were precipitated by an antibody specific for the enzyme.  相似文献   

15.
An alpha-L-fucosidase which hydrolyzes fucose from alpha-(1----6)-linkage to N-acetylglucosamine was found in Aspergillus niger. The enzyme was purified by affinity chromatography with bovine IgG glycopeptide-Sepharose 4B. The enzyme preparation released fucose from bovine IgG glycopeptide and fucosylated asialoagalactofetuin, but failed to cleave 1----2, 1----3 or 1----4 linkages of alpha-L-fucosides.  相似文献   

16.
Potatoes are a cheap and easily available source for the preparation of beta 1,2-xylosidase. The soluble enzyme was purified from potato tubers by ammonium sulfate precipitation, hydrophobic interaction chromatography, affinity gel blue chromatography, ion exchange and size exclusion chromatography yielding a glycoprotein with a molecular weight of 39-40 kDa, an isoelectric point of 5.1 and a typical plant N-glycosylation pattern. The enzyme releases xylose residues beta1,2-linked to the beta-mannose of an N-glycan core, if the 3-position of this mannose is not occupied. It showed an optimal enzymatic activity at pH 4.0-4.5 and at a temperature of 50 degrees C. The activity was reduced in the presence of Ni(2+) and Cu (2+) and slightly increased by the addition of Mn(2+) or Ca(2+). At 37 degrees C the cleavage of xylose from p-nitrophenyl-beta-xylopyranoside or appropriate pyridylaminated N-glycans was proportional to the time of incubation over a period of 8 h and increased with time for at least 24 h. N-Methoxycarbonylpentyl-1,5-dideoxy-1,5-iminoxylitol inhibits the enzyme effectively. Sequencing of the N-terminus showed a high homology to a number of isoforms of patatin, the main protein of potato tubers. This enzyme will be an important tool for the analysis of N-glycans and in the modification of N-glycans for immunological studies.  相似文献   

17.
When a crude extract of Pseudomonas testosteroni induced with testosterone was subjected to polyacrylamide gel electrophoresis, six bands that stained for 17 beta-hydroxysteroid dehydrogenase activity was observed. A protein fraction containing the enzyme corresponding to the fastest migrating band and devoid of the other hydroxysteroid dehydrogenase activities has been obtained. This preparation appears to be distinct from the previously isolated 3(17) beta-hydroxysteroid dehydrogenase (EC 1.1.1.51) in its chromatography properties on DEAE-cellulose, substrate and cofactor specificity, immunological properties and heat stability. The preparation appears devoid of 3alpha-, 3beta-, 11beta-, 17alpha-, 20alpha-, and 20beta-hydroxysteroid dehydrogenase activities. The enzyme transfers th 4-pro-S-hydrogen of NADH from estradiol-17beta (1,3,5(10)estratriene-3,17beta-diol) to estrone (3-hydroxy-1,3,5(10)-estratriene-17-one).  相似文献   

18.
The equivalence of aminomethylene groups in selected diamine substrates of diamine oxidase was exploited for the determination of intramolecular isotope effects. In the series of substrates, [1,1-2H2]-1,3-diaminopropane, [1,1-2H2]-1,5-diaminopentane, [1,1-2H2]-1,6-diaminohexane, [1,1-2H2]-1,7-diaminoheptane and [alpha,alpha-2H2]-4-(aminomethyl)benzylamine, the preference of the enzyme for reaction at the unlabeled methylene was found to vary from 1.45 to 10.5-fold. The observed partitioning ratios go through a minimum value with 1,5-diaminopentane, the best substrate of diamine oxidase of the compounds tested. The results suggest that fast substrates have less opportunity to reorient into alternate binding conformations while bound to the active site of the enzyme. On the other hand, diamine substrates tested that cannot exist in energetically favorable conformations with internitrogen distances of about 7-8 A showed larger intramolecular isotope effects.  相似文献   

19.
1. Assay of the activity of alpha-1,2-glucosidase was completed within 10 min using reversed-phase high performance liquid chromatography and purified dansylated glucosyl galactosyl hydroxylysine as the substrate. 2. A comparative study was made on the enzyme activity of liver homogenate from eight animal species, mouse, frog, chicken, rabbit, pig, rat, human, bovine and that of a spinach leaf homogenate. alpha-1,2-glucosidase activity in human and bovine liver was very low, and that of alpha-1,2-glucosidase could not be detected in the spinach homogenate as expected. 3. 1-deoxynojirimycin, a well known potent inhibitor of alpha-1,2-glucosidases which act on the N-glycosidic type carbohydrate chain, also inhibited alpha-1,2-glucosidase acting specificity on glucosyl galactosyl hydroxylysine derived from the collagen molecule.  相似文献   

20.
A crude chloroplast preparation of primary leaves of Phaseolus vulgaris was allowed to incorporate 14C-leucine into protein. A chloroplast extract was prepared and purified for ribulose 1,5-diphosphate carboxylase by ammonium sulfate precipitation, chromatography on Sephadex G-200, and chromatography on Sepharose 4B. The distribution of radioactive protein and enzyme in fractions eluted from Sepharose 4B was nearly the same. The radioactivity in the product was in peptide linkage, since it was digested to a trichloroacetic acid-soluble product by Pronase. Whole cells in the plastid preparation were not involved in the incorporation of amino acid into the fraction containing ribulose 1,5-diphosphate carboxylase, since incorporation still occurred after removal of cells. The incorporation into the fraction containing ribulose 1,5-diphosphate carboxylase occurs on ribosomes of plastids, since this incorporation is inhibited by chloramphenicol. These plastid preparations may be incorporating amino acid into ribulose 1,5-diphosphate carboxylase, but the results are not conclusive on this point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号