首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have detected a plant β-glucuronidase activity, present in several tissues and organs of plant species belonging to different families. The fluorimetric β-glucuronidase assay was used to partially characterize this activity in post-ribosomal supernatants of tobacco leaves. The tobacco activity is very stable at low temperatures, but quickly inactivated above 45°C. It is relatively resistant to proteases and insensitive to-SH group reagents and to ionic conditions. It does not require, nor is it inhibited by, divalent cations. Although these properties are shared by theEscherichia coli β-glucuronidase, the two activities can be distinguished by: (i) their different sensitivity to the specific inhibitor saccharic acid-1,4-lactone; (ii) their different thermal stability (iii) their different pH optima (5.0 for the plant activity and close to neutral for the bacterial enzyme). Therefore, under appropriate experimental conditions, it should be possible to assay theE. coli β-glucuronidase in transgenic plants without interference from the endogenous plant activity.  相似文献   

2.
A method for early detection of T-DNA transfer   总被引:1,自引:1,他引:0  
A mannopine synthase—β-glucuronidase gene fusion,mas-uidA, was used to detect T-DNA transfer 48 hours afterA. tumefaciens infection of radish root disks. A detailed procedure for infection, tissue preparation and GUS histochemistry is given. A CaMV 35S promoter was shown to be unsuitable as it was highly expressed in the bacteria. A distinct pattern of GUS activity was found in radish roots infected with themas-uidA fusion indicating a specificity of expression in the metabolically active cambium and phloem parenchyma cells. This assay is useful for studying T-DNA transfer and host range differences amongA. tumefaciens strains.  相似文献   

3.
4.
The electrochemical detection of Escherichia coli β-d-glucuronidase activity as a means of monitoring water pollution by faecal material was investigated using separate Moraxella- and Pseudomonas putida-modified glassy carbon electrodes. The former was more sensitive and selective. The Moraxella-modified biosensor was 100 times more rapid and sensitive than the spectrophotometric detection of β-d-glucuronidase activity. The experimental limit of detection of the biosensor was two c.f.u. per 100 ml polluted water sample within 20 min. The biosensor gave a linear response to commercial β-d-glucuronidase concentration between 0.2 ng and 2 μg ml−1. The biosensor detected activity of β-d-glucuronidase from viable but non-culturable (VBNC) cells and can therefore serve as a presence or absence device for rapid water quality monitoring.  相似文献   

5.
Immature embryos have been used frequently as target tissues in the genetical transformation of wheat. However, obtaining a large number of high quality immature embryos throughout the year is a laborious and delicate process, because of the need to cultivate the plants under controlled conditions. To circumvent this, we have employed mature embryos rather than immature ones as starter explants for Agrobacterium-mediated transformation of an elite wheat (Triticum aestivum L.) cultivar EM12. The neomycin phosphotransferase ІІ (npt ІІ) and β-glucuronidase (gus) genes were used as selectable and screenable marker genes, respectively, to assess and optimize the performance of T-DNA delivery. With the aid of an orthogonal design, the effect of four factors in combination on transfer DNA (T-DNA) delivery was studied. These factors were preculture duration, different kinds of inoculation, length of inoculation and co-culture condition. Optimal conditions for T-DNA delivery were obtained for mature embryos precultured for 14 days, followed by immersing in inoculation suspension with full strength Murashige and Skoog (MS) salts in darkness at 23–25°C for 3 h, and then co-culturing with Agrobacterium under desiccating condition in the dark at 23–24°C for 2–3 days. Complete analysis of transgene insertion demonstrated that the optimized method for Agrobacterium-mediated transformation of mature embryos of wheat was efficient and practicable.  相似文献   

6.
The particle gun, cocultivation withAgrobacterium tumefaciens, and imbibition in DNA solutions were compared as methods to transfer DNA into mature and immature pollen ofNicotiana tabacum. Bombardment of mature pollen with the β-glucuronidase gene cloned behind the pollen-specific PA2 promoter of the chalcone isomerase gene ofPetunia hybrida resulted in the expression of the β-glucuronidase gene in 0.025% of the pollen grains. Bombardment of younger stages followed byin vitro maturation also resulted in the formation of mature pollen that expressed β-glucuronidase, although at a lower frequency. Cocultivation of pollen duringin vitro maturation orin vitro germination withAgrobacterium tumefaciens did not yeild β-glucuronidase-expressing pollen. In these cases, an intron-containing β-glucuronidase gene was used which effectively prevented β-glucuronidase expression in the bacteria. Imbibition of mature, dry pollen in various DNA solutions of the same constructs also did not lead to the formation of β-glucuronidase expressing pollen.  相似文献   

7.
Li ZN  Fang F  Liu GF  Bao MZ 《Plant cell reports》2007,26(5):641-650
London plane tree (Platanus acerifolia Willd.) is an important tree in urban landscaping but it suffers from a number of negative traits which genetic engineering could be used to address. As with many woody species, P. acerifolia has appeared recalcitrant to genetic transformation. However, the recent development of a method for regenerating shoots from P. acerifolia leaf explants suggests that such material could be a target for gene-transfer. Using an Agrobacterium tumefaciens strain in which the T-DNA carries the histochemically detected reporter gene β-glucuronidase (GUS), we have followed the transfer of genes from Agrobacterium to leaf explants of Platanus acerifolia. Using this system, we have identified a set of inoculation and co-cultivation conditions (notably: the pre-treatment of leaf explants with 0.4 M mannitol, an inoculation period of 10 min, a bacterial OD600 of 0.8–1.0 and a co-cultivation period of 5 days) that permit a good frequency and reliability of transient gene-transfer. Optimum levels of antibiotics for bacterial elimination and kanamycin-resistant shoot regeneration were also established. By applying these parameters, we recovered eight independent stably transformed shoots that were kanamycin-resistant and contained the nptII T-DNA gene, as confirmed by PCR analysis. Furthermore, Southern blot analysis confirmed that, in at least five of these lines, the transgene was associated with high molecular weight DNA, so indicating integration into the plant genome.  相似文献   

8.
The soil bacterium Agrobacterium tumefaciens can transfer a part of its tumour-inducing (Ti) plasmid, the T-DNA, to plant cells. The virulence (vir) genes, also located on the Ti plasmid, encode proteins involved in the transport of T-DNA into the plant cell. Once in the plant nucleus, T-DNA is able to integrate into the plant genome by an illegitimate recombination mechanism. The host range of A. tumefaciens is not restricted to plant species. A. tumefaciens is also able to transfer T-DNA to the yeast Saccharomyces cerevisiae. In this paper we demonstrate transfer of T-DNA from A. tumefaciens to the yeast Kluyveromyces lactis. Furthermore, we found that T-DNA serves as an ideal substrate for gene targeting in K. lactis. We have studied the efficiency of gene targeting at the K. lactis TRP1 locus using either direct DNA transfer (electroporation) or T-DNA transfer from Agrobacterium. We found that gene targeting using T-DNA was at least ten times more efficient than using linear double-stranded DNA introduced by electroporation. Therefore, the outcome of gene targeting experiments in some organisms may depend strongly upon the DNA substrate used. Received: 11 May 1998 / Accepted: 16 October 1998  相似文献   

9.
Our previous results demonstrated that endogenous cytokinins are involved in the shooty potential of tumors initiated on Eucalyptus globulus plantlets inoculated with Agrobacterium tumefaciens strain 82.139 [A. Azmi et al. (1997a) Plant Sci 127: 81–90]. In order to investigate whether or not these hormones are distributed homogeneously in the tumors prior to the onset of bud regeneration, decapitated hypocotyls were inoculated with the strain C58pMP90/T139 GUS-INT harboring the wild transferred DNA (T-DNA) of strain 82.139 tagged with the β-glucuronidase (gus)-reporter gene. In situ immunolocalization of zeatin, dihydrozeatin and isopentenyladenine was performed in the developing tumors and combined with the histo-enzymological β-glucuronidase assay. It was found that the expression of the T-DNA was restricted to only some small areas located deeply in the tumors. These sites were also provided with a high cytokinin signal while the untransformed parts of the tumors displayed a weaker signal, except in the early differentiating tracheary elements. The regenerated buds were untransformed and originated from superficial parts of the tumors provided with a moderate signal for cytokinins. The method of co-localization of both cytokinins and gus expression developed here might be helpful for further studies concerning the role of these hormones in controlling gene expression at cell and tissue levels. Received: 24 May 2000 / Accepted: 12 October 2000  相似文献   

10.
Chen Y  Lu L  Deng W  Yang X  McAvoy R  Zhao D  Pei Y  Luo K  Duan H  Smith W  Thammina C  Zheng X  Ellis D  Li Y 《Plant cell reports》2006,25(10):1043-1051
An in vitro plant regeneration method and an Agrobacterium tumefaciens-mediated genetic transformation protocol were developed for Euonymus alatus. More than 60% of cotyledon and 70% of hypocotyl sections from 10-day-old seedlings of E. alatus produced 2–4 shoots on woody plant medium (WPM) supplemented with 5.0 mg/l 6-benzylaminopurine (BA) plus 0.2 mg/l α-naphthalene acetic acid (NAA), and 77% of shoots produced roots on WPM medium with 0.3 mg/l NAA and 0.5 mg/l Indole-3-butyricacid (IBA). On infection with Agrobacterium tumefaciens strain EHA105 harboring a gusplus gene that contained a plant recognizable intron from the castor bean catalase gene to ensure plant-specific β-glucuronidase (GUS) expression, 16% of cotyledon and 15% of hypocotyl explants produced transgenic shoots using kanamycin as a selection agent, and 67% of these shoots rooted. Stable insertion of T-DNA into the host genome was determined with organ- and tissue-specific expression of the gusplus gene and further confirmed with a PCR-based molecular analysis.  相似文献   

11.
Two important marker proteins used in plant gene expression studies are green fluorescent protein (GFP) and β-glucuronidase (GUS). We have compared the utility of each in the analysis of a relatively weakArabidopsis thaliana promoter. The background green fluorescence of arabidopsis tissues and organs has been catalogued. This background fluorescence makes it difficult to detect weak promoter activity driving GFP, a problem compounded by the lack of amplification of the GFP signal. In the case of β-glucuronidase, due to diffusion of the enzymatic product, GUS may over-report promoter activity. However, because of the enzymatic amplification of the signal and the low β-glucuronidase activity of untransformed arabidopsis tissues, weak promoter activity is more easily and more accurately detected using GUS.  相似文献   

12.
Three methods of transformation of pea (Pisum sativum ssp. sativum L. var. medullare) were tested. The most efficient Agrobacterium tumefaciens-mediated T-DNA transfer was obtained using embryonic segments from mature pea seeds as initial explants. The transformation procedure was based on the transfer of the T-DNA region with the reporter gene uidA and selection gene bar. The expression of β-glucuronidase (GUS) in the regenerated shoots was tested using the histochemical method and the shoots were selected on a medium containing phosphinothricin (PPT). The shoots of putative transformants were rooted and transferred to non-sterile conditions. Transient expression of the uidA gene in the tissues after co-cultivation and in the course of short-term shoot cultivation (confirmed by histochemical analysis of GUS and by RT-PCR of mRNA) was achieved; however, we have not yet succeeded in proving stable incorporation of the transgene in the analysed plants.  相似文献   

13.
An efficient method for Agrobacterium-mediated genetic transformation of embryogenic cell suspension cultures of Santalum album L. is described. Embryogenic cell suspension cultures derived from stem internode callus were transformed with Agrobacterium tumefaciens harbouring pCAMBIA 1301 plant expression vector. Transformed colonies were selected on medium supplemented with hygromycin (5 mg/l). Continuously growing transformed cell suspension cultures were initiated from these colonies. Expression of β-glucuronidase in the suspension cultures was analysed by RT-PCR and GUS histochemical staining. GUS specific activity in the transformed suspension cultures was quantified using a MUG-based fluorometric assay. Expression levels of up to 105,870 pmol 4-MU/min/mg of total protein were noted in the transformed suspension cultures and 67,248 pmol 4-MU/min/mg of total protein in the spent media. Stability of GUS expression over a period of 7 months was studied. Plantlets were regenerated from the transformed embryogenic cells. Stable insertion of T-DNA into the host genome was confirmed by Southern blot analysis. This is the first report showing stable high-level expression of a foreign protein using embryogenic cell suspension cultures in S. album. U. K. S. Shekhawat and T. R. Ganapathi contributed equally to this work.  相似文献   

14.
 An endogenous β-glucuronidase that hydrolyses the chromogenic substrate 5-bromo-4-chloro-3-indolyl-β-D-glucuronide (X-gluc) in Aspergillus niger is reported. The activity was induced when the fungus was grown in media containing xylan, but was either very low, or absent, when grown on glucose. Endogenous β-glucuronidase was primarily located in newly formed hyphae, and was apparent at pH values between 3 and 6. Hydrolysis of X-gluc was sensitive to the inhibitor D-saccharic acid 1,4-lactone and was irreversibly inactivated by heating. The bacterial uidAβ-glucuronidase reporter gene was strongly expressed in the hyphae of transformed A. niger but, in contrast to the endogenous activity, the enzyme was also active at pH 7–8.5. Histochemical localization of uidA expression in A. niger, without interference from the endogenous β-glucuronidase activity, was achieved by staining at this pH. Received : 22 March 1995/Received last revision : 17 August 1995/Accepted : 22 August 1995  相似文献   

15.
To establish a procedure for Agrobacterium tumefaciens-mediated transformation of golden pothos (Epipremnum aureum) plants, the effects of selection antibiotics and the preculture period of stem explants before A. tumefaciens infection were examined. Explants were co-cultivated with A. tumefaciens EHA105, harboring the plasmid pGWB2/cGUS, on a somatic embryo-inducing medium supplemented with acetosyringone. Resulting transgenic somatic embryos were screened on an antibiotic selection medium, and the transgenic pothos plants were regenerated on a germination medium. Hygromycin was the optimum selection antibiotic tested. The preculture period significantly affected the transformation efficiency, with explants precultured for one-day showing the best efficiency (5–30%). Both transformed hygromycin-resistant embryos and regenerated plants showed β-glucuronidase activity. Southern blot analysis confirmed transgene integration into the pothos genome. This reproducible transformation system for golden pothos may enable the molecular breeding of this very common indoor plant.  相似文献   

16.
The particle gun approach was used for the quantification of promoter efficiency in a test system for transient gene expression. β-Glucuronidase was used as reporter gene for determining promotote strength. The variability inherent in this gene transfer system was considerably reduced by calculating a transformation efficiency factor given by the expression of a cotransferred second reporter gene (firefly luciferase). The calibration of β-glucuronidase activity by the transformation efficiency factor caused a lower statistical variance of the values and allowed reliable results to be obtained with a smaller set of repetitions. The CaMV 35S promoter (as a control) and the monocot-specific promoters for maize polyubiquitin1, rice actin 1 and the maize-derivedEmu were characterized and compared with respect to expression strength, as tested under identical conditions in suspension cell cultures of maize, barley and tobacco. Compared to the 35S promoter, the monocot-specific promoters show up to 15-fold higher expression in maize and barley but give only weak expression in tobacco. No expression was found for the rice actin 1 promoter in tobacco. The level of reporter gene expression is influenced by the osmotic potential in the agar medium. For theEmu promoter, the calibrated β-glucuronidase activities remained mearly constant at low sucrose concentrations. Above 8% sucrose, the calibrated activities increased steadily with increasing osmotic conditions, reaching a three-to four-fold higher level at the highest sucrose concentration (32%) as compared to the standard concentration (4% sucrose) in the medium.  相似文献   

17.
Summary A rapid regeneration system was used for studies ofAgrobacterium-mediated transformation inPisum sativum L. Cotyledonary node explants were inoculated withAgrobacterium tumefaciens strains containing binary vectors carrying genes for nopaline synthase (NOS),β-glucuronidase (GUS), and neomycin phosphotransferase (NPTII) and placed on selection medium containing either 75 or 150 mg/liter kanamycin. A GUS encoding gene (uidA) containing an intron was used to monitor gene expression from 6 to 21 days postinoculation. GUS activity could be observed 6 days after inoculation in the area of the explant in which regeneration-occurred. Regenerating tissue containing transformed cells was observed in explants on selection medium 21 days postinoculation. Using this system, a single transgenic plant was obtained. Progeny of this plant, which contained two T-DNA inserts, demonstrated segregation for the inserts and for expression of the NOS gene in the selfed R1 progeny. NPTII activity was observed in the R2 generation, indicating inheritance and expression of the foreign DNA over at least two generations. Attempts to repeat this procedure were unsuccessful.  相似文献   

18.
Phyllanthus amarus Schum & Thonn. is a source of various pharmacologically active compounds such as phyllanthin, hypophyllanthin, gallic acid, catechin, and nirurin, a flavone glycoside. A genetic transformation method using Agrobacterium tumefaciens was developed for this plant species for the first time. Shoot tips of full grown plants were used as explants for Agrobacterium-mediated transformation. Transgenic plants were obtained by co-cultivation of shoot tips explants and A. tumefaciens strain LBA4404 containing the pCAMBIA 2301 plasmid harboring neomycin phosphotransferase II (NPT II) and β-glucuronidase encoding (GUS) genes in the T-DNA region in the presence of 200 μM acetosyringone. Integration of the NPT II gene into the genome of transgenic plants was verified by PCR and Southern blot analyses. Expression of the NPT II gene was confirmed by RT-PCR analysis. An average of 25 explants was used, out of which an average of 19 explants produced kanamycin-resistant shoots, which rooted to produce 13 complete transgenic plants.  相似文献   

19.
A genetic transformation system has been developed for selected embryogenic cell lines of hybrids Abies alba × A. cephalonica (cell lines AC2, AC78) and Abies alba × A. numidica (cell line AN72) using Agrobacterium tumefaciens. The cell lines were derived from immature or mature zygotic embryos on DCR medium containing BA (1 mg l−1). The T-DNA of plant transformation vector contained the β-glucuronidase reporter gene under the control of double dCaMV 35S promoter and the neomycin phosphotransferase selection marker gene driven by the nos promoter. The regeneration of putative transformed tissues started approximately 1 week after transfer to the selection medium containing 10 mg geneticin l−1. GUS activity was detected in most of the geneticin-resistant sub-lines AN72, AC2 and AC78, and the transgenic nature of embryogenic cell lines was confirmed by PCR approach. Plantlet regeneration from PCR-positive embryogenic tissues has been obtained as well. The presence of both gus and nptII genes was confirmed in 11 out of 36 analysed emblings.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号