首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
During the course of their life cycle, African trypanosomes encounter many differing environments and respond to these by dramatic changes in cell shape, metabolism and patterns of gene expression. Many of these life cycle transitions can now be carried out in vitro, allowing their underlying controls to be studied. Here, Keith Matthews presents an overview of recent advances in the understanding of the regulation of these complex differentiation events.  相似文献   

3.
The chlamydial developmental cycle   总被引:1,自引:0,他引:1  
  相似文献   

4.
DNA microarrays and cell cycle synchronization experiments have made possible the study of the mechanisms of cell cycle regulation of Saccharomyces cerevisiae by simultaneously monitoring the expression levels of thousands of genes at specific time points. On the other hand, pattern recognition techniques can contribute to the analysis of such massive measurements, providing a model of gene expression level evolution through the cell cycle process. In this paper, we propose the use of one of such techniques –an unsupervised artificial neural network called a Self-Organizing Map (SOM)–which has been successfully applied to processes involving very noisy signals, classifying and organizing them, and assisting in the discovery of behavior patterns without requiring prior knowledge about the process under analysis. As a test bed for the use of SOMs in finding possible relationships among genes and their possible contribution in some biological processes, we selected 282 S. cerevisiae genes that have been shown through biological experiments to have an activity during the cell cycle. The expression level of these genes was analyzed in five of the most cited time series DNA microarray databases used in the study of the cell cycle of this organism. With the use of SOM, it was possible to find clusters of genes with similar behavior in the five databases along two cell cycles. This result suggested that some of these genes might be biologically related or might have a regulatory relationship, as was corroborated by comparing some of the clusters obtained with SOMs against a previously reported regulatory network that was generated using biological knowledge, such as protein-protein interactions, gene expression levels, metabolism dynamics, promoter binding, and modification, regulation and transport of proteins. The methodology described in this paper could be applied to the study of gene relationships of other biological processes in different organisms.  相似文献   

5.
Borrelia burgdorferi, the causative agent of Lyme disease, shows a great ability to adapt to different environments, including the arthropod vector, and the mammalian host. The success of these microorganisms to survive in nature and complete their enzootic cycle depends on the regulation of genes that are essential to their survival in the different environments. This review describes the current knowledge of gene expression by B. burgdorferi in the tick and the mammalian host. The functions of the differentially regulated gene products as well as the factors that influence their expression are discussed. A thorough understanding of the changes in gene expression and the function of the differentially expressed antigens during the life cycle of the spirochete will allow a better control of this prevalent infection and the design of new, second generation vaccines to prevent infection with the spirochete.  相似文献   

6.
D Kizis  V Lumbreras  M Pagès 《FEBS letters》2001,498(2-3):187-189
Crop plants are exposed to many types of abiotic stress during their life cycle. Water deficit derived from drought, low temperature or high salt concentration in the soil, is one of the most common environmental stresses that affects growth and development of plants through alterations in metabolism and gene expression. Adaptation to these conditions may involve passive tolerance or active homeostatic mechanisms for maintaining water balance. Active responses occur at different levels in the plant and may represent a concomitant protection against other types of stress such as pathogen attack. Many morphological and physiological adaptations to water stress are under the control of the plant hormone abscisic acid and involve specific activation of target genes that in one way or another protect cells against water deficit or participate in the regulation of the drought response. Here, we discuss recent advances in our understanding of drought adaptation mediated by specific changes in gene expression and the role of AP2/EREBP nuclear factors in these processes.  相似文献   

7.
Age is a predisposing condition for susceptibility to chronic kidney disease and progression as well as acute kidney injury that may arise due to the adverse effects of some drugs. Age-related differences in kidney biology, therefore, are a key concern in understanding drug safety and disease progression. We hypothesize that the underlying suite of genes expressed in the kidney at various life cycle stages will impact susceptibility to adverse drug reactions. Therefore, establishing changes in baseline expression data between these life stages is the first and necessary step in evaluating this hypothesis. Untreated male F344 rats were sacrificed at 2, 5, 6, 8, 15, 21, 78, and 104 weeks of age. Kidneys were collected for histology and gene expression analysis. Agilent whole-genome rat microarrays were used to query global expression profiles. An ANOVA (p<0.01) coupled with a fold-change>1.5 in relative mRNA expression, was used to identify 3,724 unique differentially expressed genes (DEGs). Principal component analyses of these DEGs revealed three major divisions in life-cycle renal gene expression. K-means cluster analysis identified several groups of genes that shared age-specific patterns of expression. Pathway analysis of these gene groups revealed age-specific gene networks and functions related to renal function and aging, including extracellular matrix turnover, immune cell response, and renal tubular injury. Large age-related changes in expression were also demonstrated for the genes that code for qualified renal injury biomarkers KIM-1, Clu, and Tff3. These results suggest specific groups of genes that may underlie age-specific susceptibilities to adverse drug reactions and disease. This analysis of the basal gene expression patterns of renal genes throughout the life cycle of the rat will improve the use of current and future renal biomarkers and inform our assessments of kidney injury and disease.  相似文献   

8.

Background, aim and scope  

A relatively broad consensus has formed that the purpose of developing and using the social life cycle assessment (SLCA) is to improve the social conditions for the stakeholders affected by the assessed product’s life cycle. To create this effect, the SLCA, among other things, needs to provide valid assessments of the consequence of the decision that it is to support. The consequence of a decision to implement a life cycle of a product can be seen as the difference between the decision being implemented and ‘non-implemented’ product life cycle. This difference can to some extent be found using the consequential environmental life cycle assessment (ELCA) methodology to identify the processes that change as a consequence of the decision. However, if social impacts are understood as certain changes in the lives of the stakeholders, then social impacts are not only related to product life cycles, meaning that by only assessing impacts related to the processes that change as a consequence of a decision, not all changes in the life situations of the stakeholders will be captured by an assessment following the consequential ELCA methodology. This article seeks to identify these impacts relating to the non-implemented product life cycle and establish indicators for their assessment.  相似文献   

9.
The aetiological agent of cystic hydatid disease, the platyhelminth parasite Echinococcus granulosus, undergoes a series of metamorphic events during its complex life cycle. One of its developmental stages, the protoscolex, shows a remarkable degree of heterogeneous morphogenesis, being able to develop either into the vesicular or strobilar direction. Another level of complexity is added by the existence of genotypes or strains that differ in the range of intermediate hosts where they can develop and form fertile cysts. These features make E. granulosus an interesting model for developmental studies. Hence, we focused on the study of the regulation of gene expression by microRNAs (miRNAs), one of the key mechanisms that control development in metazoans and plants and which has not been analysed in E. granulosus yet. In this study, we cloned 38 distinct miRNAs, including four candidate new miRNAs that seem to be specific to Echinococcus spp. Thirty-four cloned sequences were orthologous to miRNAs already described in other organisms and were grouped in 16 metazoan miRNA families, some of them known for their role in the development of other organisms. The expression of some of the cloned miRNAs differs according to the parasite life cycle stage analysed, showing differential developmental expression. We did not detect differences in the expression of the analysed miRNAs between protoscoleces of two parasite genotypes. This work sets the scene for the study of gene regulation mediated by miRNAs in E. granulosus and provides a new approach to study the molecules involved in its developmental plasticity and intermediate host specificity. Understanding the developmental processes of E. granulosus may help to find new strategies for the control of cystic hydatid disease, caused by the metacestode stage of the parasite.  相似文献   

10.
Definitive allocation of function requires the introduction of genetic mutations and analysis of their phenotypic consequences. Novel, rapid and convenient techniques or materials are very important and useful to accelerate gene identification in functional genomics research. Here, over‐expression of PmFT (Prunus mume), a novel FT orthologue, and PtFT (Populus tremula) lead to shortening of the tobacco life cycle. A series of novel short life cycle stable tobacco lines (30–50 days) were developed through repeated self‐crossing selection breeding. Based on the second transformation via a gusA reporter gene, the promoter from BpFULL1 in silver birch (Betula pendula) and the gene (CPC) from Arabidopsis thaliana were effectively tested using short life cycle tobacco lines. Comparative analysis among wild type, short life cycle tobacco and Arabidopsis transformation system verified that it is optional to accelerate functional gene studies by shortening host plant material life cycle, at least in these short life cycle tobacco lines. The results verified that the novel short life cycle transgenic tobacco lines not only combine the advantages of economic nursery requirements and a simple transformation system, but also provide a robust, effective and stable host system to accelerate gene analysis. Thus, shortening tobacco life cycle strategy is feasible to accelerate heterologous or homologous functional gene identification in genomic research.  相似文献   

11.
The development of species-specific gene microarrays has greatly facilitated gene expression profiling in nonhuman primates. However, to obtain accurate and physiologically meaningful data from these microarrays, one needs to consider several factors when designing the studies. This article focuses on effective experimental design while the companion article focuses on methodology and data analysis. Biological cycles have a major influence on gene expression, and at least 10% of the expressed genes are likely to show a 24-h expression pattern. Consequently, the time of day when RNA samples are collected can influence detection of significant changes in gene expression levels. Similarly, when photoperiodic species such as the rhesus macaque are housed outdoors, some of their genes show differential expression according to the time of year. In addition, the sex-steroid environment of humans and many nonhuman primates changes markedly across the menstrual cycle, and so phase of the cycle needs to be considered when studying gene expression in adult females.  相似文献   

12.
13.
We describe the expression of the homeobox genes orthodenticle (Otx) and distal-less (Dlx) during the larval development of seven species representing three classes of echinoderms: Holothuroidea, Asteroidea, and Echinoidea. Several expression domains are conserved between species within a single class, including Dlx expression within the brachiolar arms of asteroid larvae and Otx expression within the ciliated bands of holothuroid larvae. Some expression domains are apparently conserved between classes, such as the expression of Dlx within the hydrocoel (left mesocoel) in all three classes. However, several substantial differences in expression domains among taxa were also evident for both genes. Some autapomorphic (unique derived) features of gene expression are phylogenetically associated with autapomorphic structures, such as Dlx expression within the invaginating rudiment of euechinoids. Other autapomorphic gene expression domains are associated with evolutionary shifts in life history from feeding to nonfeeding larval development, such as Otx expression within the ciliated bands of a nonfeeding holothuroid larva. Similar associations between evolutionary changes in morphology and life history mode with changes in regulatory gene expression have also been observed in arthropods, urochordates, and chordates. We predict that recruitment of regulatory genes to a new developmental role is commonly associated with evolutionary changes in morphology and may be particularly common in clades with complex life cycles and diversity of life history modes. Caution should be used when making generalizations about gene expression and function based on a single species, which may not accurately reflect developmental processes and life histories of the phyla to which it belongs.  相似文献   

14.
15.
The life cycle of Podocoryne carnea (Coelenterata, Anthomedusae) shows several distinct stages which differ considerably in terms of their ecology, morphology, cellular composition, and ultrastructure. Previously these stages had even been described as separate species. Using two-dimensional gel electrophoresis and a new method of double-label autoradiography, we show here for the first time for metagenic hydrozoans that only minor differences in gene expression exist between the various life cycle stages. Our results demonstrate the high resolution power of these techniques and show that the different life stages of P. carnea remain rather similar on the protein level. Most of the prominent spots of the two-dimensional gel protein patterns are common to all stages studied. These data show that the hydrozoan life cycle and development are regulated by only minor distinctions in gene expression which possibly explains the great morphogenetic repertoire of these animals described in many studies.  相似文献   

16.
Aging and age‐related pathology is a result of a still incompletely understood intricate web of molecular and cellular processes. We present a C57BL/6J female mice in vivo aging study of five organs (liver, kidney, spleen, lung, and brain), in which we compare genome‐wide gene expression profiles during chronological aging with pathological changes throughout the entire murine life span (13, 26, 52, 78, 104, and 130 weeks). Relating gene expression changes to chronological aging revealed many differentially expressed genes (DEGs), and altered gene sets (AGSs) were found in most organs, indicative of intraorgan generic aging processes. However, only ≤ 1% of these DEGs are found in all organs. For each organ, at least one of 18 tested pathological parameters showed a good age‐predictive value, albeit with much inter‐ and intraindividual (organ) variation. Relating gene expression changes to pathology‐related aging revealed correlated genes and gene sets, which made it possible to characterize the difference between biological and chronological aging. In liver, kidney, and brain, a limited number of overlapping pathology‐related AGSs were found. Immune responses appeared to be common, yet the changes were specific in most organs. Furthermore, changes were observed in energy homeostasis, reactive oxygen species, cell cycle, cell motility, and DNA damage. Comparison of chronological and pathology‐related AGSs revealed substantial overlap and interesting differences. For example, the presence of immune processes in liver pathology‐related AGSs that were not detected in chronological aging. The many cellular processes that are only found employing aging‐related pathology could provide important new insights into the progress of aging.  相似文献   

17.
18.
19.
Arbuscular mycorrhizal (AM) fungi are obligate symbionts that need their plant hosts to complete their life cycle. In the absence of the plant, germlings arrest growth after a few days and retract most of their cytoplasm back into the multinuclear spores. The spores can germinate again during more favorable conditions. How AM fungi recognize compatible host roots and activate their symbiotic program is not yet understood. However, research in this field in the last years has shed light into this topic. We, and others, have approached some of these aspects by studying changes in fungal gene expression observed at early stages of development, before and at the plant recognition stage in an attempt to identify genes and proteins featuring as key regulators in the switch between the asymbiotic and symbiotic style of life. The molecular bases of this recognition process are now starting to be understood and point to common signaling pathways shared with other microbe-plant associations and to arbuscular mycorrhiza specific signaling pathways.  相似文献   

20.
During embryogenesis, cell division must be spatially and temporally regulated with respect to other developmental processes. Leech embryos undergo a series of unequal and asynchronous cleavages to produce individually recognizable cells whose lineages, developmental fates and cell cycle properties have been characterized. Thus, leech embryos provide an opportunity to examine the regulation of cell division at the level of individual well-characterized cells within a community of different types of cells. Isolation of leech homologues of some of the highly conserved regulators of the cell division cycle, and characterization of their patterns of maternal and zygotic expression, indicate that the cell divisions of early leech embryos are regulated by cell type-specific mechanisms. These studies with leech embryos contribute to the emerging appreciation of the diverse mechanisms by which animals regulate cell division during early development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号