首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endothelial cells play an important, active role in the onset and regulation of inflammatory and immune reactions. Through the production of chemokines they attract leukocytes and activate their adhesive receptors. This leads to the anchorage of leukocytes to the adhesive molecules expressed on the endothelial surface. Leukocyte adhesion to endothelial cells is frequently followed by their extravasation. The mechanisms which regulate the passage of leukocytes through endothelial clefts remain to be clarified. Many indirect data suggest that leukocytes might transfer signals to endothelial cells both through the release of active agents and adhesion to the endothelial cell surface. Adhesive molecules (such as PECAM) on the endothelial cell surface might also 'direct' leukocytes through the intercellular junction by haptotaxis. The information available on the molecular structure and functional properties of endothelial chemokines, adhesive molecules or junction organization is still fragmentary. Further work is needed to clarify how they interplay in regulating leukocyte infiltration into tissues.  相似文献   

2.
Leukocyte polarization in cell migration and immune interactions.   总被引:33,自引:0,他引:33       下载免费PDF全文
Cell migration plays a key role in a wide variety of biological phenomena. This process is particularly important for leukocyte function and the inflammatory response. Prior to migration leukocytes undergo polarization, with the formation of a lamellipodium at the leading edge and a uropod at the trailing edge. This cell shape allows them to convert cytoskeletal forces into net cell-body displacement. Leukocyte chemoattractants, including chemokines, provide directional cues for leukocyte motility, and concomitantly induce polarization. Chemoattractant receptors, integrins and other adhesion molecules, cytoskeletal proteins and intracellular regulatory molecules change their cellular localization during cell polarization. A complex system of signal transduction molecules, including tyrosine kinases, lipid kinases, second messengers and members of the Rho family of small GTPases is thought to regulate the cytoskeletal rearrangements underlying leukocyte polarization and migration. The elucidation of the mechanisms and signals that control this complex reorganization will lead to a better understanding of critical questions in cell biology of leukocyte migration and polarity.  相似文献   

3.
The role of cell adhesion molecules (CAM) and extracellular matrix proteins (ECM) in various pathological processes including angiogenesis, thrombosis, apoptosis, cell migration & proliferation are well documented. These processes can lead to both acute and chronic disease states such as ocular diseases, metastasis, unstable angina, myocardial infarction, stroke, osteoporosis, a wide range of inflammatory diseases, vascular remodeling, and neurodegenerative disorders. A key success in this field is evident from the potential role of the platelet GPIIb/IIIa integrin in the prevention and diagnosis of various thromboembolic disorders. Additionally, the use of soluble adhesion molecules as potential diagnostic markers for acute and chronic leukocyte, platelet, and endothelial cellular insult are increasingly utilized. The development of various therapeutic and diagnostic candidates based on the key role of CAM, with special emphasis on integrins in various diseases as well as the structure-function aspects of cell adhesion and signaling of the different CAM and ECM are highlighted.  相似文献   

4.
Lymph nodes can be the primary target of infection or malignant transformation and may exhibit characteristic patterns of leukocyte infiltration analogous to those seen in inflammation of other tissues. Leukocyte migration to lymph nodes in vivo is a highly regulated, multi-step process that depends upon adhesion molecules and as yet, uncharacterized chemotactic signals. Chemokines are a key part of the orchestrated code of signals that directs leukocyte subsets to sites of inflammation or immune response. The potential role of these chemoattractants in selective trafficking of leukocyte subsets into lymph nodes was assessed by determining the expression of chemokines on a range of pathological and normal human lymph nodes and by evaluating the cellular composition of each lymph node. In situ hybridization using chemokine riboprobes and immunohistochemistry using specific antibodies were performed in order to correlate the mRNA and protein expression of the chemokines. The cellular source(s) of each chemokine was assessed by immunohistochemical staining of adjacent sections using antibodies directed against distinctive cellular markers. Substantial, but varied, expression of macrophage inflammatory protein (MIP)-1alpha, MIP-1beta, RANTES, macrophage chemotactic protein (MCP)-1, eotaxin, and interleukin 8 (IL-8) were detected in the pathological lymph nodes by diverse cell types. Control lymph nodes showed expression only of RANTES, mainly by high endothelial venules. In all lymph nodes, except the nodes infiltrated with breast cancer, chemokine mRNA expression was highly concordant with the corresponding protein. In contrast with in vitro studies that have suggested discrete target cell specificity of chemokines, this study showed that with the possible exception of the neutrophil chemoattractant, IL-8, no chemokine appeared to be uniquely associated with the accumulation of a specific leukocyte subset. These data implicate chemokines in the recruitment of leukocytes to lymph nodes affected by diverse disease states.  相似文献   

5.
Emigration of leukocytes from the circulation into tissue by transendothelial migration, is mediated subsequently by adhesion molecules such as selectins, chemokines and integrins. This multistep paradigm, with multiple molecular choices at each step, provides a diversity in signals. The influx of neutrophils, monocytes and lymphocytes into inflamed tissue is important in the pathogenesis of chronic inflammatory bowel disease. The importance of each of these groups of adhesion molecules in chronic inflammatory bowel disease, either in human disease or in animal models, will be discussed below. Furthermore, the possibilities of blocking these different steps in the process of leukocyte extravasation in an attempt to prevent further tissue damage, will be taken into account.  相似文献   

6.
Recruitment of lymphocytes to the human liver   总被引:13,自引:0,他引:13  
  相似文献   

7.
The adhesive function of integrins is regulated through cytoplasmic signaling induced by several stimuli, whose process is designated "inside-out signaling". A large number of leukocytes are rapidly recruited to the sites of inflammation where they form an essential component of the response to infection, injury, autoimmune disorders, allergy, tumor invasion, atherosclerosis and so on. The recruitment of leukocytes into tissue is regulated by a sequence of interactions between the circulating leukocytes and the endothelial cells. Leukocyte integrins play a pivotal role in leukocyte adhesion to endothelial cells. During the process, the activation of integrins by various chemoattractants, especially chemokines, is essential for integrin-mediated adhesion in which a signal transduced to the leukocyte converts the functionally inactive integrin to an active adhesive configuration. We have proposed that H-Ras-sensitive activation of phosphoinositide 3 (PI 3)-kinase and subsequent profilin-mediated actin polymerization, can be involved in chemokine-induced integrin-dependent adhesion of T cells. The present review documents the relevance of cytoplasmic signaling and cytoskeletal assembly to integrin-mediated adhesion induced by chemoattractants including chemokines during inflammatory processes. In contrast, various adhesion molecules are known to transduce extracellular information into cytoplasm, which leads to T cell activation and cytokine production from the cells, designated "outside-in signaling". Such a bi-directional "cross-talking" among adhesion molecules and cytokines is most relevant to inflammatory processes by augmenting immune cell migration from circulation into inflamed tissue such as rheumatoid arthritis, tumor invasion, Beh?et's disease and atherosclerosis.  相似文献   

8.
Fractalkine/CX3C ligand 1 and its receptor CX3CR1 are known to mediate both cell adhesion and cell migration. Here we show that CX3CR1 defines peripheral blood cytotoxic effector lymphocytes commonly armed with intracellular perforin and granzyme B, which include NK cells, gammadelta T cells, and terminally differentiated CD8(+) T cells. In addition, soluble fractalkine preferentially induced migration of cytotoxic effector lymphocytes. Furthermore, interaction of cytotoxic effector lymphocytes with membrane-bound fractalkine promoted subsequent migration to the secondary chemokines, such as macrophage inflammatory protein-1beta/CC ligand 4 or IL-8/CXC ligand 8. Thus, fractalkine expressed on inflamed endothelium may function as a vascular regulator for cytotoxic effector lymphocytes, regardless of their lineage and mode of target cell recognition, through its ability to capture them from blood flow and to promote their emigration in response to other chemokines.  相似文献   

9.
The vasculature plays a crucial role in inflammation, angiogenesis, and atherosclerosis associated with the pathogenesis of inflammatory rheumatic diseases, hence the term 'vascular rheumatology'. The endothelium lining the blood vessels becomes activated during the inflammatory process, resulting in the production of several mediators, the expression of endothelial adhesion molecules, and increased vascular permeability (leakage). All of this enables the extravasation of inflammatory cells into the interstitial matrix. The endothelial adhesion and transendothelial migration of leukocytes is a well-regulated sequence of events that involves many adhesion molecules and chemokines. Primarily selectins, integrins, and members of the immunoglobulin family of adhesion receptors are involved in leukocyte 'tethering', 'rolling', activation, and transmigration. There is a perpetuation of angiogenesis, the formation of new capillaries from pre-existing vessels, as well as that of vasculogenesis, the generation of new blood vessels in arthritis and connective tissue diseases. Several soluble and cell-bound angiogenic mediators produced mainly by monocytes/macrophages and endothelial cells stimulate neovascularization. On the other hand, endogenous angiogenesis inhibitors and exogenously administered angiostatic compounds may downregulate the process of capillary formation. Rheumatoid arthritis as well as systemic lupus erythematosus, scleroderma, the antiphospholipid syndrome, and systemic vasculitides have been associated with accelerated atherosclerosis and high cardiovascular risk leading to increased mortality. Apart from traditional risk factors such as smoking, obesity, hypertension, dyslipidemia, and diabetes, inflammatory risk factors, including C-reactive protein, homocysteine, folate deficiency, lipoprotein (a), anti-phospholipid antibodies, antibodies to oxidized low-density lipoprotein, and heat shock proteins, are all involved in atherosclerosis underlying inflammatory rheumatic diseases. Targeting of adhesion molecules, chemokines, and angiogenesis by administering nonspecific immunosuppressive drugs as well as monoclonal antibodies or small molecular compounds inhibiting the action of a single mediator may control inflammation and prevent tissue destruction. Vasoprotective agents may help to prevent premature atherosclerosis and cardiovascular disease.  相似文献   

10.
Chemokines are multifunctional molecules initially described as having a role in leukocyte trafficking and later found to participate in developmental processes such as differentiation and directed migration. Similar events occur in pregnancy during development of the fetal-maternal interface, where there is extensive leukocyte trafficking and tissue morphogenesis, and this is accompanied by abundant chemokine expression. The relationship between chemokines, leukocytes and placental development is beginning to be delineated. During pregnancy a specialised population of maternal leukocytes infiltrates the implantation site. These leukocytes are thought to sustain the delicate balance between protecting the developing embryo/fetus and tolerating its hemiallogeneic tissues. A network of chemokine expression by both fetal and maternal components in the pregnant uterus functions in establishing this leukocyte population. Intriguingly, experiments investigating immune cell recruitment revealed the additional possibility that chemokines influence aspects of placental development. Specifically, cytotrophoblasts, the effector cells of the placenta, express chemokine receptors that can bind ligands found at key locations, implicating chemokines as regulators of cytotrophoblast differentiation and migration. Thus, as in other systems, at the fetal-maternal interface chemokines might regulate multiple functions.  相似文献   

11.
Allergic diseases result in a considerable socioeconomic burden. The incidence of allergic diseases, notably allergic asthma, has risen to high levels for reasons that are not entirely understood. With an increasing knowledge of underlying mechanisms, there is now more potential to target the inflammatory process rather than the overt symptoms. This focuses attention on the role of leukocytes especially Th2 lymphocytes that regulate allergic inflammation and effector cells where eosinophils have received much attention. Eosinophils are thought to be important based on the high numbers that are recruited to sites of allergic inflammation and the potential of these cells to effect both tissue injury and remodelling. It is hoped that future therapy will be directed towards specific leukocyte types, without overtly compromising essential host defence responses. One obvious target is leukocyte recruitment. This necessitates a detailed understanding of underlying mechanisms, particularly those involving soluble chemoattractants signals and cell-cell adhesion molecules.  相似文献   

12.
13.
Attachment of leukocytes to the blood vessel wall initiates leukocyte extravasation. This enables leukocytes to migrate to and accumulate at sites of tissue injury or infection where they execute host-defense mechanisms. A series of vascular cell adhesion molecules on leukocytes and on endothelial cells mediate leukocyte attachment to the endothelium in a stepwise process. A large panel of about 40 known human chemokines is able to specifically activate certain leukocytes and attract them to migrate across the endothelial barrier and within tissue. The specific combination of molecular signals provided by the diversity of cytokines, adhesion molecules, and chemokines regulates the specificity and selectivity of the recruitment of certain subpopulations of leukocytes in vivo. This review will focus on selectins and chemokines which initiate the cell contact and regulate activation and chemoattraction of leukocytes. Accepted: 20 May 1999  相似文献   

14.
This article describes various adhesion molecules and reviews evidence to support a mechanistic role for adhesion molecules in the process of cancer metastasis. A variety of evidence supports the involvement of specific adhesion molecules in metastasis.
  1. For example, some cancer cells metastasize to specific organs, irrespective of the first organ encountered by the circulating cancer cells. This ability to colonize a specific organ has been correlated with the preferential adhesion of the cancer cells to endothelial cells derived from the target organ. This suggests that cancer cell/endothelial cell adhesion is involved in cancer cell metastasis and that adhesion molecules are expressed on the endothelium in an organ-specific manner.
  2. Further, inclusion of peptides that inhibit cell adhesion, such as the YIGSR- or RGD-containing peptides, is capable of inhibiting experimental metastasis.
  3. Metastasis can be enhanced by acute or chronic inflammation of target vessels, or by treatment of animals with inflammatory cytokines, such as interleukin-1. In vitro, cancer cell/endothelial cell adhesion can be enhanced by pretreating the endothelial cell monolayer with cytokines, such as interleukin-1 or tumor necrosis factor-α. This suggests that, in addition to organ-specific adhesion molecules, a population of inducible endothelial adhesion molecules is involved and is relevant to metastasis.
  4. Further support for this model is found in the comparison to leukocyte/endothelial adhesion during leukocyte trafficking. Convincing evidence exists, both in vivo and in vitro, to demonstrate an absolute requirement for leukocyte/endothelial adhesion before leukocyte extravasation can occur. The relevance of this comparison to metastasis is reinforced by the observation that some of the adhesion molecules involved in leukocyte/endothelial adhesion are also implicated in cancer cell/endothelial adhesion. The involvement of adhesion molecules suggests a potential therapy for metastasis based on interrupting adhesive interactions that would augment other treatments for primary tumors.
  相似文献   

15.
Recent studies indicate that chemoattractant cytokines (chemokines), together with tissue-specific adhesion molecules, coordinate the migration of antibody-secreting cells (ASCs) from their sites of antigen-driven differentiation in lymphoid tissues to target effector tissues. Developing ASCs downregulate the expression of receptors for lymphoid tissue chemokines and selectively upregulate the expression of chemokine receptors that might target the migration of IgA ASCs to mucosal surfaces, IgG ASCs to sites of tissue inflammation and both types of ASC to the bone marrow - an important site for serum antibody production. By directing plasma-cell homing, chemokines might help to determine the character and efficiency of mucosal, inflammatory and systemic antibody responses.  相似文献   

16.
Cell-cell-interactions are important for the regulation of tissue integrity, the generation of barriers between different tissues and body compartments thereby providing an effective defence against toxic or pathogenic agents, as well as for the regulation of inflammatory cell recruitment. Intercellular interactions are regulated by adhesion receptors on adjacent cells which upon extracellular ligand binding mediate intracellular signals. In the vasculature, neighbouring endothelial cells interact with each other through various adhesion molecules leading to the generation of junctional complexes like tight junctions (TJs) and adherens junctions (AJs) which regulate both leukocyte endothelial interactions and paracellular permeability. In this context, emerging evidence points to the importance of the family of junctional adhesion molecules (JAMs), which are localized in tight junctions of endothelial and epithelial cells and are implicated in the regulation of both leukocyte extravasation as well as junction formation and permeability.  相似文献   

17.
Lipid mediator networks and leukocyte transmigration   总被引:1,自引:0,他引:1  
In intact tissues, vascular endothelial cells lie anatomically positioned as the central coordinator of inflammation. Endothelia communicate with underlying cells (e.g. smooth muscle, fibroblasts, epithelia) in ways that both coordinate leukocyte trafficking, and control the composition of the inflammatory microenvironment. Such coordination occurs through both direct communication (e.g. cell adhesion) as well as via soluble mediators liberated at sites of inflammation (e.g. chemokines, cytokines, lipids). Locally generated mediators bind to surface receptors, and mediate both physiologic and pathophysiologic functional responses. Important in this regard, both endothelial and subendothelial cell populations express enzymes capable of utilizing arachidonic acid substrates to generate bioactive lipid mediators (e.g. lipoxygenases, cyclooxygenases). Such lipid mediators can signal via autocrine or paracrine pathways and, depending on the tissue microenvironment, can convey a pro- or anti-inflammatory message. This review will highlight recent studies characterizing inflammatory responses to lipid mediators liberated at sites of inflammation, with a particular emphasis on neutrophil (polymorphonuclear leukocyte or PMN) trafficking.  相似文献   

18.
ABSTRACT

Matrix metalloproteinases (MMPs) constitute a family of more than 20 endopeptidases. Identification of specific matrix and non-matrix components as MMP substrates showed that, aside from their initial role as extracellular matrix modifiers, MMPs play significant roles in highly complex processes such as the regulation of cell behavior, cell-cell communication, and tumor progression. Thanks to the comprehensive examination of the expanded MMP action radius, the initial view of proteases acting in the soluble phase has evolved into a kaleidoscope of proteolytic reactions connected to the cell surface. Important classes of cell surface molecules include adhesion molecules, mediators of apoptosis, receptors, chemokines, cytokines, growth factors, proteases, intercellular junction proteins, and structural molecules. Proteolysis of cell surface proteins by MMPs may have extremely diverse biological implications, ranging from maturation and activation, to inactivation or degradation of substrates. In this way, modification of membrane-associated proteins by MMPs is crucial for communication between cells and the extracellular milieu, and determines cell fate and the integrity of tissues. Hence, insights into the processing of cell surface proteins by MMPs and the concomitant effects on physiological processes as well as on disease onset and evolution, leads the way to innovative therapeutic approaches for cancer, as well as degenerative and inflammatory diseases.  相似文献   

19.
Matrix metalloproteinases (MMPs) constitute a family of more than 20 endopeptidases. Identification of specific matrix and non-matrix components as MMP substrates showed that, aside from their initial role as extracellular matrix modifiers, MMPs play significant roles in highly complex processes such as the regulation of cell behavior, cell-cell communication, and tumor progression. Thanks to the comprehensive examination of the expanded MMP action radius, the initial view of proteases acting in the soluble phase has evolved into a kaleidoscope of proteolytic reactions connected to the cell surface. Important classes of cell surface molecules include adhesion molecules, mediators of apoptosis, receptors, chemokines, cytokines, growth factors, proteases, intercellular junction proteins, and structural molecules. Proteolysis of cell surface proteins by MMPs may have extremely diverse biological implications, ranging from maturation and activation, to inactivation or degradation of substrates. In this way, modification of membrane-associated proteins by MMPs is crucial for communication between cells and the extracellular milieu, and determines cell fate and the integrity of tissues. Hence, insights into the processing of cell surface proteins by MMPs and the concomitant effects on physiological processes as well as on disease onset and evolution, leads the way to innovative therapeutic approaches for cancer, as well as degenerative and inflammatory diseases.  相似文献   

20.
Integrin-mediated leukocyte adhesion is a critical aspect of leukocyte function that is tightly regulated by diverse stimuli, including chemokines, antigen receptors, and adhesion receptors. How cellular signals from CD31 and other adhesion amplifiers are integrated with those from classical mitogenic stimuli to regulate leukocyte function remains poorly understood. Here, we show that the cytoplasmic tail of CD31, an important integrin adhesion amplifier, propagates signals that induce T cell adhesion via beta1 (VLA-4) and beta2 (LFA-1) integrins. We identify the small GTPase, Rap1, as a critical mediator of this effect. Importantly, CD31 selectively activated the small Ras-related GTPase, Rap1, but not Ras, R-Ras, or Rap2. An activated Rap1 mutant stimulated T lymphocyte adhesion to intercellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM), as did the Rap1 guanine nucleotide exchange factor C3G and a catalytically inactive mutant of RapGAP. Conversely, negative regulators of Rap1 signaling blocked CD31-dependent adhesion. These findings identify a novel important role for Rap1 in regulating ligand-induced cell adhesion and suggest that Rap1 may play a more general role in coordinating adhesion-dependent signals during leukocyte migration and extravasation. Our findings also suggest an alternative mechanism, distinct from interference with Ras-proximal signaling, by which Rap1 might mediate transformation reversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号