首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary We have established an efficient Agrobacterium-mediated transformation procedure for Arabidopsis thaliana genotype C24 using the chimeric bialaphos resistance gene (bar) coding for phosphinothricin acetyltransferase (PAT). Hypocotyl explants from young seedlings cocultivated with agrobacteria carrying a bar gene were selected on shoot-inducing media containing different concentrations of phosphinothricin (PPT) which is an active component of bialaphos. We found that 20 mg/l of PPT completely inhibited the control explants from growing whereas the explants transformed with the bar gene gave rise to multiple shoots resistant to PPT after 3 weeks under the same selection conditions. The transformation system could also be applied to root explants. Resulting plantlets could produce viable seeds in vitro within 3 months after preparation of the explants. The stable inheritance of the resistance trait, the integration and expression of the bar gene in the progeny were confirmed by genetic tests, Southern analysis and PAT enzyme assay, respectively. In addition, the mature plants in soil showed tolerance to the herbicide Basta.Abbreviations bar bialaphos resistance gene - CIM callus-inducing medium - DTNB 5,5-dithiobis(2-nitrobenzoic acid) - GM germination medium - HPT hygromycin phosphotransferase - MS Murashige and Skoog salts - NPTII neomycin phosphotransferase II - PAT phosphinothricin acetyltransferase - PPT phosphinothricin - SIM shoot-inducing medium  相似文献   

2.
Expression of bar in the plastid genome confers herbicide resistance   总被引:12,自引:0,他引:12  
Lutz KA  Knapp JE  Maliga P 《Plant physiology》2001,125(4):1585-1590
Phosphinothricin (PPT) is the active component of a family of environmentally safe, nonselective herbicides. Resistance to PPT in transgenic crops has been reported by nuclear expression of a bar transgene encoding phosphinothricin acetyltransferase, a detoxifying enzyme. We report here expression of a bacterial bar gene (b-bar1) in tobacco (Nicotiana tabacum cv Petit Havana) plastids that confers field-level tolerance to Liberty, an herbicide containing PPT. We also describe a second bacterial bar gene (b-bar2) and a codon-optimized synthetic bar (s-bar) gene with significantly elevated levels of expression in plastids (>7% of total soluble cellular protein). Although these genes are expressed at a high level, direct selection thus far did not yield transplastomic clones, indicating that subcellular localization rather than the absolute amount of the enzyme is critical for direct selection of transgenic clones. The codon-modified s-bar gene is poorly expressed in Escherichia coli, a common enteric bacterium, due to differences in codon use. We propose to use codon usage differences as a precautionary measure to prevent expression of marker genes in the unlikely event of horizontal gene transfer from plastids to bacteria. Localization of the bar gene in the plastid genome is an attractive alternative to incorporation in the nuclear genome since there is no transmission of plastid-encoded genes via pollen.  相似文献   

3.
Phosphinothricin (PPT) is a potent inhibitor of glutamine synthetase in plants and is used as a non-selective herbicide. The bar gene which confers resistance in Streptomyces hygroscopicus to bialaphos, a tripeptide containing PPT, encodes a phosphinothricin acetyltransferase (PAT) (see accompanying paper). The bar gene was placed under control of the 35S promoter of the cauliflower mosaic virus and transferred to plant cells using Agrobacterium-mediated transformation. PAT was used as a selectable marker in protoplast co-cultivation. The chimeric bar gene was expressed in tobacco, potato and tomato plants. Transgenic plants showed complete resistance towards high doses of the commercial formulations of phosphinothricin and bialaphos. These data present a successful approach to obtain herbicide-resistant plants by detoxification of the herbicide.  相似文献   

4.
以微弹轰击法转化获得的含bar基因燕麦T3代为材料 ,运用Northernblot方法研究了bar基因在燕麦的不同生育阶段、不同叶位、以及Challenge(0 .2 0 % )处理后不同时间的叶片中mRNA水平的变化。结果表明 ,外源bar基因在燕麦的不同生育阶段、不同叶位、以及除草剂处理后转录水平没有明显差异。由于除草剂喷涂后 ,植株体内氨含量的变化能够反映bar基因编码的PAT酶活性的变化 ,因而测定了Challenge处理后不同时间、不同部位的叶片中氨含量的变化情况。结果发现 ,含bar基因的燕麦植株体内氨含量在除草剂处理后不同时间和不同部位都没有显著的变化 ,而对照植株体内氨的含量在除草剂处理后能迅速上升。这表明 ,含bar基因的燕麦植株体内由于PAT酶的稳定表达 ,而使氨的含量维持在较低水平。从转录和翻译两个层次上反映了水稻Act1启动子融合的bar基因在转基因燕麦T3 中能够稳定表达 ,且表达水平不受叶位和除草剂的影响  相似文献   

5.
Summary Suspension cells of Oryza sativa L. (rice) were transformed, by microprojectile bombardment, with plasmids carrying the coding region of the Streptomyces hygroscopicus phosphinothricin acetyl transferase (PAT) gene (bar) under the control of either the 5 region of the rice actin 1 gene (Act1) or the cauliflower mosaic virus (CaMV) 35S promoter. Subsequently regenerated plants display detectable PAT activity and are resistant to BASTATM, a phosphinothricin (PPT)-based herbicide. DNA gel blot analyses showed that PPT resistant rice plants contain a bar-hybridizing restriction fragment of the expected size. This report shows that expression of the bar gene in transgenic rice plants confers resistance to PPT-based herbicide by suppressing an increase of ammonia in plants after spraying with the herbicide.  相似文献   

6.
In eukaryotes, many genes were transferred to the nucleus from prokaryotic ancestors of the cytoplasmic organelles during endosymbiotic evolution. In plants, the transfer of genetic material from the plastid (chloroplast) and mitochondrion to the nucleus is a continuing process. The cellular location of a kanamycin resistance gene tailored for nuclear expression (35SneoSTLS2) was monitored in the progeny of reciprocal crosses of tobacco (Nicotiana tabacum) in which, at the start of the experiments, the reporter gene was confined either to the male or the female parental plastid genome. Among 146,000 progeny from crosses where the transplastomic parent was male, 13 transposition events were identified, whereas only one atypical transposition was identified in a screen of 273,000 transplastomic ovules. In a second experiment, a transplastomic beta-glucuronidase reporter gene, tailored to be expressed only in the nucleus, showed frequent stochastic expression that was confined to the cytoplasm in the somatic cells of several plant tissues. This gene was stably transferred in two out of 98,000 seedlings derived from a male transplastomic line crossed with a female wild type. These data demonstrate relocation of plastid DNA to the nucleus in both somatic and gametophytic tissue and reveal a large elevation of the frequency of transposition in the male germline. The results suggest a new explanation for the occurrence of uniparental inheritance in eukaryotes.  相似文献   

7.
Summary Selectable marker genes play an important role in plant transformation. The level of selection pressure is generally established by generating a kill curve for the selectable marker. In most cases, the lowest concentration which kills all explants is used. This study examined two selectable marker genes, phosphinothricin acetyl transferase (PAT) and hygromycin phosphotransferase (HPT), in transformation of tobacco leaf disks. Experiments to determine the lethal level of the herbicide, glufosinate-ammonium (phosphinothricin) (PPT) using a leaf-disk regeneration assay established that no shoots regenerated at 2 to 4 mg PPT per 1. Likewise with the antibiotic, hygromycin (HYG), no plants regenerated at 50 mg hygromycin per 1. In contrast, after cocultivation of the leaf disks withAgrobacterium tumefaciens containing either the PAT or HPT gene in combination with a Bt gene for insect resistance, plants were successfully regenerated from leaf disks at 2 to 4 mg PPT per 1 and 50 mg hygromycin per 1. However, most plants regenerated at 2 and 3 mg PPT per 1 were found to be nontransformed (95–100% escapes) by i) Southern-blot analysis, ii) herbicide application test, and iii) insect feeding bioassay. On the other hand, plants that regenerated on 50 mg hygromycin per 1 and 4 mg PPT per 1 were transgenic as determined by Southern analysis, leaf assay for PPT or HYG resistance, and death of tobacco budworms feeding on these leaves. This study showed a significant level of cross-protection and/or transient expression of the PAT selectable marker gene allowing escapes (95–100%) at selection levels of 2 and 3 mg PPT per 1 which completely kill controls. On the other hand, the HPT gene at 50 mg is efficient in selecting for T-DNA integration.  相似文献   

8.
Plasmid pJIT101 containing bar gene and luc gene was transferred into wheat protoplasts mediated with PEG 1450. Transformants were then selected out in medium containing 50 mg/L Basta, a phosphinothricin (PPT)containing chemical product. The results of DNA hybridizaion indicated that both bar gene and luc gene had integerated into transformant genome. The luciferase activity has also been detected in those transformants.  相似文献   

9.
Protoplasts isolated from embryogenic suspension cultures of wheat (Triticum aestivum cv. Hartog) were electroporated in the presence of plasmid pEmuGN and/or pEmuPAT, which contained the reporter gene gus and selectable marker gene bar, respectively. Under optimised electroporation conditions, up to 0.9% of viable protoplasts displayed gus activity two days after electroporation. To select for phosphinothricin (PPT) resistant colonies, electroporated protoplasts were incubated for six weeks in a medium containing 10 g/ml PPT. The cells surviving the selection were maintained as individual colonies on solid medium or as suspension cultures. More than 60% of these colonies exhibited tolerance to 40 g/ml PPT when tested 10 months after initial selection. To date, 57 green plants have been regenerated from these colonies and 24 have been transferred to soil. Southern blot analyses of colonies and plants, using the bar gene sequence as the probe, confirmed transformation of the cells. Positive PAT assays of both regenerated colonies and plants indicated the presence of the bar gene product. These results provide a basis for the establishment of routine procedures for transformation of wheat by direct gene transfer into protoplasts.Abbreviations gus -glucuronidase - PAT phosphinothricin N-acetyltransferase - PPT phosphinothricin - MS Murashige and Skoog medium  相似文献   

10.
Transgenic plants of the model legume Lotus japonicus were regenerated by hypocotyl transformation using a bar gene as a selectable marker. The bar encodes for Phosphinothricin Acetyl Transferase that detoxifies phosphinothricin (PPT), the active ingredient of herbicides such as Ignite (AgrEvo) and Basta (Hoechst). Transgenic L. japonicus plants resistant to PPT were positive upon PCR by bar gene-specific primers. In 5 out of 7 independent lines tested, PPT resistance segregated as a single dominant allele indicating a single T-DNA insertion into the plant genome. All regenerated plants were fertile and void of visible somaclonal abnormalities contrary to 14% infertility when antibiotic selectable markers were used. The lack of somaclonal variation, ease of PPT application and low cost of PPT makes this protocol an attractive alternative for the regeneration of transgenic L. japonicus. The production of PPT herbicide-resistant L. japonicus plants may have significant commercial applications in crop production.  相似文献   

11.
Chloroplasts offer high-level transgene expression and transgene containment due to maternal inheritance, and are ideal hosts for biopharmaceutical biosynthesis via multigene engineering. To exploit these advantages, we have expressed 12 enzymes in chloroplasts for the biosynthesis of artemisinic acid (precursor of artemisinin, antimalarial drug) in an alternative plant system. Integration of transgenes into the tobacco chloroplast genome via homologous recombination was confirmed by molecular analysis, and biosynthesis of artemisinic acid in plant leaf tissues was detected with the help of 13C NMR and ESI-mass spectrometry. The excess metabolic flux of isopentenyl pyrophosphate generated by an engineered mevalonate pathway was diverted for the biosynthesis of artemisinic acid. However, expression of megatransgenes impacted the growth of the transplastomic plantlets. By combining two exogenous pathways, artemisinic acid was produced in transplastomic plants, which can be improved further using better metabolic engineering strategies for commercially viable yield of desirable isoprenoid products.  相似文献   

12.
Summary Transgenic herbicide-resistant Scoparia dulcis plants were obtained by using an Ri binary vector system. The chimeric bar gene encoding phosphinothricin acetyltransferase flanked by the promoter for cauliflower mosaic virus 35S RNA and the terminal sequence for nopaline synthase was introduced in the plant genome by Agrobacterium-mediated transformation by means of scratching young plants. Hairy roots resistant to bialaphos were selected and plantlets (R0) were regenerated. Progenies (S1) were obtained by self-fertilization. The transgenic state was confirmed by DNA-blot hybridization and assaying of neomycin phosphotransferase II. Expression of the bar gene in the transgenic R0 and S1 progenies was indicated by the activity of phosphinothricin acetyltransferase. Transgenic plants accumulated scopadulcic acid B, a specific secondary metabolite of S. dulcis, in amounts of 15–60% compared with that in normal plants. The transgenic plants and progenies showed resistant trait towards bialaphos and phosphinothricin. These results suggest that an Ri binary system is one of the useful tools for the transformation of medicinal plants for which a regeneration protocol has not been established.Abbreviations CaMV cauliflower mosaic virus - NPT-II neomycin phosphotransferase - PAT phosphinothricin acetyltransferase - PPT phosphinothricin  相似文献   

13.
Transgenic plants of Lupinus angustifolius L. (cvs. Unicrop and Merrit) were routinely generated using Agrobacterium-mediated gene transfer to shoot apices. The bar gene for resistance to phosphinothricin (PPT, the active ingredient of the herbicide Basta) was used as the selectable marker. After co-cultivation, the shoot apex explants were transferred onto a PPT-free regeneration medium and their tops were thoroughly wetted with PPT solution (2 mg/ml). The multiple axillary shoots developing from the shoot apices were excised onto a medium containing 20 mg/l PPT. The surviving shoots were transferred every second week onto fresh medium containing 20 mg/l PPT. At each transfer, the number of surviving shoots decreased, until it stabilized. Indeed, some of these chimeric shoots surviving the PPT selection, eventually produced new green healthier axillary shoots which could be transferred to soil. This whole process took from 5 to 9 months after co-cultivation. Average transformation frequencies of 2.8% for cv. Unicrop and of 0.4% for the commercial cultivar Merrit were achieved. Molecular analysis of T0, T1, and T2 generations demonstrated stable integration of the foreign gene into the plant genome and expression of the integrated gene. Transformed plants of the T1 and T2 generations were resistant in glasshouse trials where the herbicide Basta (0.1 mg/ml) was sprayed onto whole plants. These results demonstrate that Agrobacterium-mediated gene transfer to preorganised meristematic tissue combined with axillary regeneration can form the basis of a routine transformation system for legume crop species which are difficult to regenerate from other explants.  相似文献   

14.
Fertile plants of wheat have been regenerated from protoplasts in several laboratories. The objective of this study was to develop a transformation system using protoplasts as target cells. Protoplasts were isolated from cell suspensions initiated from an anther-derived callus. The protoplasts were transformed by electroporation using pBARGUS or pBAS, both carrying the Basta resistance (BAR) gene. A total of 2,761 calli were produced from electroporation transformed protoplasts in 3 independent experiments. Six calli survived selective culture on 10 mg/l phosphinothricin (PPT), a concentration that completely inhibited the growth of non-transformed wheat callus. Five PPT resistant calli showed phosphinothricin acetyltransferase (PAT) activity, whereas the sixth probably was a mutant. The transformed wheat calli could tolerate PPT concentrations up to 2,560 mg/l. Southern blot analyses confirmed the integration of the BAR gene in wheat genomes. The integrated DNA sequence may have partially methylated and tandemly repeated at least once. These results demonstrate the production of stably transformed wheat calli by electroporation-mediated direct gene transfer into protoplasts.  相似文献   

15.
To increase expression level of cholera toxin B subunit (CTB) in lettuce plants, synthetic CTB (sCTB) gene based on the optimized codon usage was fused with an endoplasmic reticulum retention signal, KDEL. The sCTB gene was introduced into a plant expression vector and transformed to lettuce plants using Agrobacterium-mediated transformation system. As a selection marker, a bialaphos resistance (bar) gene that encodes phosphinothricin acetyltransferase (PAT), conferring tolerance to the herbicide phosphinothricin (PPT), was used. PCR amplification of genomic DNA confirmed the presence of the sCTB gene in the transgenic lettuce plants. Expressions of mRNA and protein of sCTB were observed by Northern and Western blot analyses, respectively. The sCTB synthesized in the transgenic lettuce showed strong affinity for GM1-ganglioside suggesting that the sCTB conserved the antigenic sites for binding and proper folding of pentameric CTB structure. The expression level of CTB was relatively high, reaching total soluble protein (TSP) levels of 0.24% in transgenic lettuce.  相似文献   

16.
采用玉米Ubi-1启动子获得低拷贝转基因玉米植株   总被引:7,自引:0,他引:7  
通过基因枪粒子轰击和草丁膦(PPT)选择获得可育的玉米转基因植株,并分析了外源基因在转化体中的拷贝数与启动子之间的关系。用玉米Ubi-1启动子驱动外源基因,玉米转化体中外源基因的拷贝数较低;可能的原因为Ubi-1启动子通过与其内部同源序列发生重组而被定点整合进玉米基因组,共转化的两种质粒DNA在整合至玉米染色体DNA之前已重构成为一个整体。结果显示使用某一植物自身基因的启动子可以降低外源基因在该物种转基因个体中的拷贝数,进而避免基因沉默现象的发生。目前已得到第二代转基因玉米种子。  相似文献   

17.
A protocol has been developed to produce a cholera toxin B subunit (CTB) in tobacco tolerant to the herbicide phosphinothricin (PPT) by means of in vitro selection. The synthetic CTB subunit gene was altered to modify the codon usage to that of tobacco plant genes. The gene was then cloned into a plant expression vector and was under the control of the ubiquitin promoter and transformed into tobacco plants by Agrobacterium-mediated transformation. Transgenic plantlets were selected in a medium supplemented with 5 mg/L PPT. Polymerase chain reaction analysis confirmed stable integration of the synthetic CTB gene into a chromosomal DNA. A high level of CTB (1.8% of total soluble protein) was expressed in transgenic plants, which was 18-fold higher than that under the control of the expressed CaMV 35S promoter with native gene. The transgenic plants when transferred to a greenhouse proved to be resistant to 2% PPT.  相似文献   

18.
A reproducible system for the generation of fertile, transgenic maize plants has been developed. Cells from embryogenic maize suspension cultures were transformed with the bacterial gene bar using microprojectile bombardment. Transformed calli were selected from the suspension cultures using the herbicide bialaphos. Integration of bar and activity of the enzyme phosphinothricin acetyltransferase (PAT) encoded by bar were confirmed in all bialaphos-resistant callus lines. Fertile transformed maize plants (R0) were regenerated, and of 53 progeny (R1) tested, 29 had PAT activity. All PAT-positive progeny analyzed contained bar. Localized application of herbicide to leaves of bar-transformed R0 and R1 plants resulted in no necrosis, confirming functional activity of PAT in the transgenic plants. Cotransformation experiments were performed using a mixture of two plasmids, one encoding PAT and one containing the nonselected gene encoding [beta]-glucuronidase. R0 plants regenerated from co-transformed callus expressed both genes. These results describe and confirm the development of a system for introduction of DNA into maize.  相似文献   

19.
20.
Construction of marker-free transplastomic plants   总被引:4,自引:0,他引:4  
Because of its prokaryotic-type gene expression machinery, maternal inheritance and the opportunity to express proteins at a high level, the plastid genome (plastome or ptDNA) is an increasingly popular target for engineering. The ptDNA is present as up to 10,000 copies per cell, making selection for marker genes essential to obtain plants with uniformly transformed ptDNA. However, the marker gene is no longer desirable when homoplastomic plants are obtained. Marker-free transplastomic plants can now be obtained with four recently developed protocols: homology-based excision via directly repeated sequences, excision by phage site-specific recombinanses, transient cointegration of the marker gene, and the cotransformation-segregation approach. Marker excision technology will benefit applications in agriculture and in molecular farming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号