首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
2.
A high concentration of the calcium ionophore A23187 (10 uM) stimulated release of labeled arachidonate and immunoreactive PGE2 from isolated superfused glomeruli. A lower concentration of A23187 (1 uM) or 12-0-tetradecanoyl phorbol-13-acetate (TPA, 0.1 uM), a direct activator of protein kinase C, when added alone was without effect on these parameters. Combined addition of A23187 (1 uM) and TPA (0.1 uM) synergistically stimulated arachidonate release and PGE2 production. 1-(5-isoquinolinyl)-2-methylpiperazine (H-7) a known inhibitor of protein kinase C in other tissues, suppressed increases in arachidonate release and PGE2 production mediated by A23187 (10 uM) or TPA plus A23187 (1 uM). H-7 inhibited while TPA stimulated protein kinase C activity that had been partially purified from soluble fractions of glomerular homogenates. These results support a role for protein kinase C in A23187 mediated arachidonate release.  相似文献   

3.
Goldfish preovulatory ovarian follicles (prior to germinal vesicle breakdown) were utilized for studies investigating the actions of activators of different signal transduction pathways on prostaglandin (PG) production. The protein kinase C (PKC) activators phorbol 12-myristate 13-acetate (PMA; 100-400 nM), 1-oleoyl-2-acetylglycerol (5 and 25 micrograms/ml), and 1,2-dioctanoylglycerol (10 and 50 micrograms/ml) stimulated PGE production; the inactive phorbol 4 alpha-phorbol didecanoate, which does not activate PKC, had no effect. Calcium ionophore A23187 (0.25-4.0 microM) stimulated PGE production and acted in a synergistic manner with activators of PKC. Although produced in lower amounts than PGE, PGF was stimulated by PMA and A23187. The direct activator of phospholipase A2, melittin (0.1-1.0 microM), stimulated a dose-related increase in PGE production, whereas chloroquine (100 microM), a putative inhibitor of phospholipase A2, blocked basal and PMA + A23187-stimulated PGE production. Several drugs known to elevate intracellular levels of cAMP including the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (0.1-1.0 mM), forskolin (10 microM), and dibutyryl cAMP (dbcAMP; 5 mM) attenuate PMA + A23187-stimulated PGE production. Melittin-stimulated production of PGE was inhibited by dbcAMP, suggesting that the action of cAMP was distal to the activation of phospholipase A2. In summary, these studies demonstrate that activation of PKC and elevation of intracellular calcium levels stimulate PG production, in part, through activation of phospholipase A2. The adenylate cyclase/cAMP signalling pathway is inhibitory to PG production by goldfish ovarian follicles.  相似文献   

4.
In cloned osteoblast-like cells, MC3T3-E1, prostaglandin F2 alpha (PGF2 alpha) stimulated arachidonic acid (AA) release in a dose-dependent manner in the range between 1 nM and 10 microM. 12-O-tetradecanoylphorbol-13-acetate (TPA), a protein kinase C (PKC) activator, which by itself had little effect on AA release, markedly amplified the release of AA stimulated by PGF2 alpha in a dose-dependent manner. 4 alpha-phorbol 12,13-didecanoate, a phorbol ester which is inactive for PKC, showed little effect on the PGF2 alpha-induced AA release. 1-oleoyl-2-acetylglycerol (OAG), a specific activator for PKC, mimicked TPA by enhancement of the AA release induced by PGF2 alpha. H-7, a PKC inhibitor, markedly suppressed the effect of OAG on PGF2 alpha-induced AA release. Quinacrine, a phospholipase A2 inhibitor, showed partial inhibitory effect on PGF2 alpha-induced AA release, while it suppressed the amplification by OAG of PGF2 alpha-induced AA release almost to the control level. Furthermore, TPA enhanced the AA release induced by melittin, known as a phospholipase A2 activator. On the other hand, TPA inhibited the formation of inositol trisphosphate stimulated by PGF2 alpha. Under the same condition, PGF2 alpha indeed stimulated prostaglandin E2 (PGE2) synthesis and TPA markedly amplified the PGF2 alpha-induced PGE2 synthesis as well as AA release. These results indicate that the activation of PKC amplifies PGF2 alpha-induced both AA release and PGE2 synthesis through the potentiation of phospholipase A2 activity in osteoblast-like cells.  相似文献   

5.
Functional activity of polymorphonuclear neutrophils (PMN) is associated with the metabolism of Arachidonic Acid (AA) released from membrane phospholipids. In this study the in vitro effect of dipyrone, a non steroidal anti-inflammatory drug, on the production of AA metabolites through cyclooxygenase (CO) and lipoxygenase (LO) pathways by stimulated PMN has been investigated. PMN isolated by counterflow centrifuge elutriator were greater than 98% pure and viable. Metabolite production was evaluated by RIA of Thromboxane A2 (TxA2), Prostaglandin E2 (PGE2), Leukotriene B2 (LTB4) and Leukotriene C4 (LTC4) after PMN stimulation with calcium ionophore A 23187 (20 microM). The levels of beta-thromboglobulin (RIA) lower than 5 ng/ml allowed us to rule out activation of residual contaminant platelets. In these experimental conditions, in the absence of dipyrone the products (ng/10(6) cells) of AA metabolism were LTB4 (3.51 +/- 0.22), LTC4 (0.81 +/- 0.08), TxB2 (0.144 +/- 0.025) and PGE2 (0.150 +/- 0.017). Incubation with dipyrone induced changes of PGE2 and TXB2 production in a dose dependent fashion (r = 0.83 and r = 0.87, p less than 0.001), obtaining already at the lowest drug concentration (5 micrograms/ml) a significant inhibition (33 and 40% for TxB2 and PGE2 p less than 0.005). No significant changes of LTB4 and LTC4 production have been observed. The results of this study indicate that dipyrone relevantly affects CO metabolite synthesis by stimulated PMN at concentrations comparable to those reached in therapeutic use. The inhibition of PGE2 synthesis which is present in inflamed tissues and actively participates in inflammatory reactions, could contribute to the therapeutic anti-inflammatory action of dipyrone.  相似文献   

6.
In rabbit articular chondrocytes, phorbol myristate acetate (PMA), 1,2-dioctanoyl-sn-glycerol (DG) and calcium ionophore (A23187), reduced the proteoglycan synthesis, in a dose-dependent manner. The combined treatment by PMA and A23187 resulted in an enhanced inhibition of proteoglycan production, indicating a synergistic effect. In presence of PMA or A23187, the release of prostaglandin E2 (PGE2) was dramatically increased. The addition of indomethacin and BW755c to chondrocytes stimulated by PMA or A23187, suppressed the liberation of PGE2, but did not stop the decrease of proteoglycan synthesis.  相似文献   

7.
Calcium ionophore A23187 lowers basal levels of tyrosinase and inhibits the MSH-induced increase in tyrosinase in Cloudman S-91 mouse melanoma cell cultures. Ionophore at a concentration of 10(-6) g/ml causes a 50% reduction in basal levels of tyrosinase and inhibits the MSH stimulated level of enzyme. Ionophore A23187 also inhibits the PGE1 mediated stimulation of tyrosinase, as well as the rise in enzyme activity observed in cells exposed to either theophylline (1 mM) or dbcAMP (10(-4)M). Ionophore does not affect basal levels of cyclic AMP nor the elevated levels produced by either MSH or PGE1, suggesting then, that the antagonistic activity of A23187 is localized to a point in the pathway of tyrosinase activation distal to the formation of cAMP. Ionophore causes a rapid and marked (greater than 50%) inhibition of cellular protein synthesis and it is possible that this calcium mobilizing compound may exert its inhibitory effects on tyrosinase activity by causing a general reduction in cellular translation. Since the inhibition of protein synthesis occurs in cells exposed to ionophore in either the presence or absence of calcium in the medium, it seems, likely that the ionophore may exert its effects by causing the release of calcium from intracellular sites.  相似文献   

8.
The release of prostanoids from the three different vascular cell types derived from rat aortic explants has been studied in vitro. Under resting conditions and when incubated with exogenous arachidonic acid (AA, 10 microM), the endothelial cells (EC) produced the highest concentration of prostacyclin (PGI2 PGE2 PGF2 alpha TxA2). In contrast, PGE2 was the major prostanoid produced by the smooth muscle cells and fibroblasts. Pretreatment of EC with aspirin (10 microM) or indomethacin (10 microM) effectively inhibited the production of prostanoids by these cells. Incubation with the calcium ionophore A23187 (10 microM) did not stimulate production of PGI2 or leukotriene B4 (LTB4) by EC. However, treatment of EC with a combination of A23187 and AA led to production of amounts of both PGI2 and LTB4 which were greater than the summed values for the different drug treatments. These findings indicate that the concentration of substrate, AA, is a limiting factor in prostanoid formation by these cultured vascular cells but that rat EC are relatively poor in the enzymes required for leukotriene formation.  相似文献   

9.
We have previously demonstrated that the pretreatment of polymorphonuclear leukocytes (PMNs) with the chemotherapeutic drug, Suramin, increases both cell attachment and inhibits calcium ionophore A23187-stimulated leukotriene (LT) synthesis. Here, we examined the effects of extracellular arachidonic acid (AA) and albumin on attachment and LT synthesis in the interaction of PMNs with both collagen-coated surfaces and human umbilical vein endothelial cell (HUVEC) monolayers. Suramin decreased the release of radiolabelled AA and 5-lipoxygenase metabolites by [(14)C-AA]-prelabelled PMNs stimulated with A23187, with and without human serum albumin (HSA) in the culture medium. Addition of 1 microM AA together with calcium ionophore stimulated the release of endogenous AA to the same level as control and Suramin-pretreated cells, but attachment was unaffected and LT synthesis was still inhibited with Suramin treatment. Using 24 microM AA, regulation of LT synthesis was dependent on the presence of HSA in the medium. Without HSA, 24 microM AA induced detachment of PMNs and increased LT synthesis in Suramin-treated cells above the control level. In the presence of HSA, 24 microM AA did not influence PMN attachment or abolish Suramin-induced inhibition of LT synthesis. These results suggest that tight attachment of PMNs to a solid surface leads to decreased LT synthesis during subsequent stimulation of the cells by A23187 in the presence or absence of exogenous substrate.  相似文献   

10.
The effects of Cleome arabica leaf extract, rutin and quercetin on soybean lipoxygenase (Lox) activity and on calcium ionophore (A23187)-stimulated generation of the leukotriene B4 and prostaglandin E2 by human neutrophils were examined. The extract (25 microg/ml), rutin (25 microM) and quercetin (25 microM) inhibited LTB4 synthesis at all concentrations of A23187 used. The extract at 1-100 microg/ml and rutin at 1-100 microM inhibited LTB4 generation by neutrophils stimulated with 1 microM A23187 by about 50%. PGE2 production in response to different concentrations of A23187 was affected in a biphasic manner by the extract and rutin. Quercetin at 1-100 microM caused concentration-dependent inhibition of LTB4 and PGE2 production. The extract, rutin and quercetin caused concentration-dependent inhibition of soybean Lox activity. These results indicate that rutin, quercetin and an extract of C. arabica containing these compounds inhibit Lox activity, consequently decreasing LTB4 production. Thus, these compounds or extracts containing them may be beneficial for the treatment of inflammatory conditions, particularly those characterised by excessive leukotriene generation.  相似文献   

11.
alpha-Tocopherol and three derivatives in which the phytol chain is modified or deleted were examined for their effect on cultured keratinocyte arachidonic acid metabolism. 2,2,5,7,8-Pentamethyl-6-hydroxychromane (PMC), in which the phytol chain is replaced by a methyl group, inhibited basal, bradykinin (BK)- and A23187-stimulated prostaglandin E2 (PGE2) synthesis with an apparent Ki of 1.3 microM. The Ki of the analogue with six carbon atoms in the side chain (C6) was 5 microM while that of the C11 analogue was 10 microM. No effect of alpha-tocopherol was observed. The mechanism of inhibition was studied using PMC. The effect of PMC on phospholipase and cyclooxygenase activity was assayed using stable isotope mass measurements of PGE2 formation, which assesses arachidonate release and cyclooxygenase metabolism simultaneously. BK-stimulated formation of PGE2, derived from endogenous phospholipid, was decreased 60% by 5 microM PMC and eliminated by 50 microM PMC, compared with controls. No difference in PGE2 formed from exogenous arachidonic acid was observed, indicating no effect of PMC on cyclooxygenase activity. In contrast, no effect of 5 microM PMC was observed on BK-stimulated [3H]arachidonic acid release from prelabeled cultures. The capacity of PMC to inhibit phospholipase activity in vitro was also assessed. PMC inhibited hydrolysis of phospholipid substrate by up to 60%. These results suggest that alpha-tocopherol analogues with alterations in the phytol chain inhibit eicosanoid synthesis by preferential inhibition of phospholipase.  相似文献   

12.
In rat alveolar macrophages treated with 100 microM t-butyl hydroperoxide (tBOOH), leukotriene B4 (LTB4) synthesis was significantly lower than the basal level while levels of cyclooxygenase pathway products were increased. LTB4, 5,6-dihydroxyeicosatetraenoic acid (5,6-DiHETEs), and 5-hydroxyeicosatetraenoic acid (5-HETE) production in macrophages was significantly stimulated by 2 microM A23187, but this was suppressed 40% by simultaneous addition of 10 microM tBOOH and completely abolished by 100 microM tBOOH. Basal and A23187-stimulated macrophage production of chemotactic agents were similarly suppressed by addition of tBOOH; this effect paralleled depression of cellular LTB4 synthesis. In contrast to the significant depression of A23187-stimulated formation of 5-lipoxygenase products by 10 microM tBOOH, cellular adenosine triphosphate (ATP) was unchanged. Macrophages pretreated with KCN led to a 42% decline in ATP levels; however, LTB4, 5,6-DiHETEs, and 5-HETE production in response to A23187 was not suppressed. The results indicate that inhibition of 5-lipoxygenase pathway products in macrophages treated with tBOOH did not occur by depletion of cellular ATP levels.  相似文献   

13.
NIH 3T3 fibroblasts were transfected with the chloramphenicol-acetyltransferase (CAT) gene under the control of the SV40 early promoter, which can be stimulated by IL-1. CAT activity in cell lysates and PGE2 release in the supernatants were measured in control and stimulated cell cultures in parallel. Human IL-1 beta (180 pM) and human rTNF-alpha (3 nM) significantly stimulated both CAT activity and PGE2 release. The combined incubation of the two cytokines resulted in a synergistic effect on PGE2 release. The addition of AA (30 microM) greatly stimulated PGE2 release without affecting CAT activity. Similarly, drugs interfering with AA metabolism were without effect on CAT activity although profoundly reducing PGE2 release. Forskolin (0.1 microM) did not modify either parameter. The glucocorticoid fluocinolone (20 nM) was able to decrease both parameters. Protein kinase inhibitors H7 (5-50 microM) and sphingosine (50 microM) inhibited only IL-1-induced CAT activity, whereas H8 (5-50 microM) and HA1004 (50 microM) were ineffective on both parameters. PMA (0.5 microM) and R59 022, a diacylglycerol kinase inhibitor (10 microM), did not modify either control or IL-1-induced CAT activity. IL-1-stimulated PGE2 release was potentiated by PMA, although this effect was not inhibited by H7. The data suggest that: 1) in NIH 3T3 cells the activation of AA metabolism by IL-1 is not involved in IL-1-induced gene expression; 2) protein kinase C activity is required but not sufficient for IL-1-induced gene expression; and 3) PMA may stimulate AA metabolism by a mechanism in part independent of protein kinase activity.  相似文献   

14.
Treatment of bovine pulmonary artery endothelial cells with the calcium ionophore, A23187, stimulates the cell membrane associated protease activity, phospholipase A2 (PLA2) activity, and arachidonic acid (AA) release from the cells. Pretreatment of the cells with arachidonyl-trifluomethylketone (AACOCF3), a cPLA2 inhibitor, but not bromoenollactone (BEL), a iPLA2 inhibitor, prevents A23187 stimulated PLA2 activity and AA release without producing an appreciable alteration of the protease activity. Pretreatment of the cells with aprotinin, an ambient protease inhibitor, prevents the increase in the protease activity and cPLA2 activity in the membrane and AA release from the cells caused by both low and high doses of A23187, and also inhibits protein kinase C (PKC) activity caused by high doses of A23187. Immunoblot study of the endothelial cell membrane isolated from A23187 (10 microM)-treated cells with polyclonal PKCalpha antibody elicited an increase in the 80 kDa immunoreactive protein band along with an additional 47 kDa immunoreactive fragment. Pretreatment of the cells with aprotinin abolished the 47 kDa immunoreactive fragment in the immunoblot. Immunoblot study of the endothelial membrane with polyclonal cPLA2 antibody revealed that treatment of the cells with A23187 dose-dependently increases cPLA2 immunoreactive protein profile in the membrane. It therefore appears from the present study that treatment of the cells with a low dose of A23187 (1 microM) causes a small increase in an aprotinin-sensitive protease activity and that stimulates cPLA2 activity in the cell membrane without an involvement of PKC. By contrast, treatment of the cells with a high dose of 10 microM of A23187 causes optimum increase in the protease activity and that plays an important role in activating PKCalpha, which subsequently stimulates cPLA2 activity in the cell membrane. Although pretreatment of the cells with pertussis toxin caused ADP ribosylation of a 41 kDa protein in the cell membrane, it did not inhibit the cPLA2 activity and AA release caused by both low and high doses of A23187.  相似文献   

15.
Human amnion prostaglandin E2 (PGE2) synthesis increases with the onset of labour, and this synthesis is Ca2+-dependent. To understand better the mechanism of Ca2+-stimulated PGE2 biosynthesis, studies were performed to identify the presence of the intracellular Ca2+-mediator, calmodulin, in human amnion and to examine its role in PGE2 synthesis. Calmodulin-like activity was identified by the ability of the microsomal and cytosolic fractions of the 105,000g centrifugation of amnion homogenate to stimulate cyclic AMP-dependent phosphodiesterase activity. Cytosolic fractions consistently stimulated phosphodiesterase activity more than microsomal fractions (P less than 0.001) in paired samples from term human amnions. This activity was calcium-dependent. The cytosolic and microsomal factors increased the Vmax but not the Km of phosphodiesterase. There were no differences in these parameters with the onset of labour. The distribution of calmodulin-like activity between microsomes and cytosol was similar to the distribution of calmodulin mass as determined by radioimmunoassay. Three structurally different inhibitors of calmodulin activity, calmidazolium, trifluoperazine and W7, were tested for their ability to inhibit cytosolic factor-stimulated phosphodiesterase activity and to inhibit PGE2 output from dispersed amnion cells obtained before the onset of labour at term (cesarean section cells) or after spontaneous labour and vaginal delivery (spontaneous labour cells). The 50% inhibitory concentrations of the calmodulin antagonists in the phosphodiesterase assay were: trifluoperazine (6.7 microM), calmidazolium (0.11 microM), and W7 (24 microM). Trifluoperazine inhibited both basal and calcium ionophore (A23187)-stimulated PGE2 output from cesarean section cells and spontaneous labour amnion cells. Calmidazolium inhibited basal PGE2 output in cesarean section cells and spontaneous labour cells, but had no effect on A23187-stimulated output. W7 inhibited only the ionophore-stimulated PGE2 output in cesarean section amnion cells. The rank order of inhibition of both phosphodiesterase activation and basal PGE2 output was: calmidazolium greater than trifluoperazine greater than W7. These results suggest that human amnion contains calmodulin and that its distribution, concentration and activity remain unchanged with the onset of labour. The data suggest, although not conclusively, that calmodulin may, in part, play a role in amnion cell PGE2 production. Further investigation of calmodulin effects upon specific enzymes in the PGE2 synthetic pathway will be necessary to elucidate a role for calmodulin in PGE2 production.  相似文献   

16.
In order to examine the possible role of vitamin E on the modulation of macrophages, we investigated the effect of vitamin E on O2- and PGE2 production in macrophages. The production of both PGE2 and O2- in rat peritoneal macrophages was dose-dependently stimulated by the addition of PMA and calcium ionophore A23187. However, the macrophages obtained after intraperitoneal injection of vitamin E for six successive days showed less PGE2 and O2- production when stimulated with PMA or A23187 as compared to those of control macrophages. O2- production in control macrophages stimulated with 139 nM PMA and 1 microM A23187 as 4.2 +/- 0.3 and 3.0 +/- 0.2 nmol/min per 10(6) cells, respectively. On the other hand, O2- production by the macrophages from vitamin E-treated rats was 1.5 +/- 0.4 nmol/min per 10(6) cells when stimulated with the PMA, and was not detectable when stimulated with A23187. As for the production of PGE2, control macrophages produced 2.59 +/- 0.70 ng/30 min per 10(6) cells when stimulated with PMA and 8.96 +/- 3.26 ng/30 min per 10(6) cells with the A23187, whereas PGE2 production by the macrophages from vitamin E-treated rats was reduced to 12-20% of the control. By analyzing alpha-tocopherol content and intracellular concentration of calcium ion [( Ca2+]i) in the macrophages isolated from control and vitamin E-treated rats, vitamin E treatment augmented alpha-tocopherol content (384.7 +/- 76.1 vs. 1.2 +/- 0.4 ng/10(6) cells) and decreased free [Ca2+]i when stimulated with A23187 (652 +/- 14 vs. 1201 +/- 223 nM).  相似文献   

17.
Previous studies from our laboratory have demonstrated that exposure of human monocytes to a stimulant, such as Con A, results in the production of the enzyme collagenase through PGE2-dependent pathway. Inasmuch as rIFN-gamma has been shown to modulate monocyte/macrophage PG synthesis, we examined the effect of rIFN-gamma on the activation sequence leading to collagenase production. The addition of rIFN-gamma (10 to 1000 U/ml) to Con A-stimulated monocytes resulted in a dose-dependent inhibition of PGE2 and collagenase synthesis. The suppression of collagenase production by rIFN-gamma was related to its ability to reduce PGE2 levels as demonstrated by the restoration of collagenase activity by the addition of PGE2. HPLC analysis of the arachidonic acid (AA) metabolites released by monocytes showed that rIFN-gamma caused a reduction in the release of AA and products of the cyclooxygenase and lipoxygenase pathways. These data indicated that rIFN-gamma decreased eicosanoid production by inhibiting the release of AA from phospholipids. This conclusion was supported by the reduction in membrane bound phospholipase activity in rIFN-gamma-treated monocytes. Moreover, the inhibition by rIFN-gamma of PGE2 and collagenase was reversed by the addition of phospholipase A2. Our findings demonstrate that rIFN-gamma inhibits phospholipase activity in activated monocytes and as a result blocks PGE2-dependent collagenase synthesis.  相似文献   

18.
In inflammatory cells, agonist-stimulated arachidonic acid (AA) release is thought to be induced by activation of group IV Ca(2+)-dependent cytosolic phospholipase A(2) (cPLA(2)) through mitogen-activated protein kinase (MAP kinase)- and/or protein kinase C (PKC)-mediated phosphorylation and Ca(2+)-dependent translocation of the enzyme to the membrane. Here we investigated the role of phospholipases in N-formylmethionyl-l-leucyl-l-phenylalanine (fMLP; 1 nM-10 microM)-induced AA release from neutrophil-like db-cAMP-differentiated HL-60 cells. U 73122 (1 microM), an inhibitor of phosphatidyl-inositol-4,5-biphosphate-specific phospholipase C, or the membrane-permeant Ca(2+)-chelator 1, 2-bis?2-aminophenoxy?thane-N,N,N',N'-tetraacetic acid (10 microM) abolished fMLP-mediated Ca(2+) signaling, but had no effect on fMLP-induced AA release. The protein kinase C-inhibitor Ro 318220 (5 microM) or the inhibitor of cPLA(2) arachidonyl trifluoromethyl ketone (AACOCF(3); 10-30 microM) did not inhibit fMLP-induced AA release. In contrast, AA release was stimulated by the Ca(2+) ionophore A23187 (10 microM) plus the PKC activator phorbol myristate acetate (PMA) (0.2 microM). This effect was inhibited by either Ro 318220 or AACOCF(3). Accordingly, a translocation of cPLA(2) from the cytosol to the membrane fraction was observed with A23187 + PMA, but not with fMLP. fMLP-mediated AA release therefore appeared to be independent of Ca(2+) signaling and PKC and MAP kinase activation. However, fMLP-mediated AA release was reduced by approximately 45% by Clostridium difficile toxin B (10 ng/ml) or by 1-butanol; both block phospholipase D (PLD) activity. The inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), D609 (100 microM), decreased fMLP-mediated AA release by approximately 35%. The effect of D609 + 1-butanol on fMLP-induced AA release was additive and of a magnitude similar to that of propranolol (0.2 mM), an inhibitor of phosphatidic acid phosphohydrolase. This suggests that the bulk of AA generated by fMLP stimulation of db-cAMP-differentiated HL-60 cells is independent of the cPLA(2) pathway, but may originate from activation of PC-PLC and PLD.  相似文献   

19.
Cytochrome P-450 monooxygenase (epoxygenase)-derived arachidonic acid (AA) metabolites, including 11,12-epoxyeicosatrienoic acid (11,12-EET), possess anti-inflammatory and antipyretic properties. Prostaglandin E2 (PGE2), a cyclooxygenase (COX)-derived metabolite of AA, is a well-defined mediator of fever and inflammation. We have tested the hypothesis that 11,12-EET attenuates synthesis of PGE2 in monocytes, which are the cells that are indispensable for induction of fever and initiation of inflammation. Monocytes isolated from freshly collected rat blood were stimulated with lipopolysaccharide (LPS; 100 ng/2 x 10(5) cells) to induce COX-2 and stimulate generation of PGE2. SKF-525A, an inhibitor of epoxygenases, significantly augmented the lipopolysaccharide-provoked synthesis of PGE2 in cell culture in a concentration-dependent manner. It did not affect, however, elevation of the expression of COX-2 protein in monocytes stimulated with LPS. 11,12-EET also did not affect the induction of COX-2 in monocytes incubated with lipopolysaccharide. However, 11,12-EET suppressed, in a concentration-dependent fashion, the generation of PGE2 in incubates. Preincubation of a murine COX-2 preparation for 0-5 min with three concentrations of 11,12-EET (1, 5, and 10 microM) inhibited the oxygenation of [14C]-labeled AA by the enzyme. The inhibitory effect of 11,12-EET on COX-2 was time-and-concentration-dependent, suggesting a mechanism-based inhibition. Based on these data, we conclude that 11,12-EET suppresses generation of PGE2 in monocytes via modulating the activity of COX-2. These data support the hypothesis that epoxygenase-derived AA metabolites constitute a negative feedback on the enhanced synthesis of prostaglandins upon inflammation.  相似文献   

20.
The effect of cAMP on prostaglandin production may depend on cell types. To clarify the relationship between PG and cAMP, we examined arachidonate's effects on PG synthesis and intracellular cAMP accumulation in monolayers of rat gastric mucosal cells. These cells produced PGE2, PGI2 and thromboxaneA2 (TXA2) in amounts of 316 +/- 18, 100 +/- 7 and 30 +/- 5 pg per 10(5) cells in 10 min, respectively, in response to 10 microM arachidonic acid (AA). The production of these PG, however, leveled off subsequently. Cells initially exposed to AA responded poorly to a subsequent stimulation by AA. AA simultaneously stimulated intracellular cAMP accumulation; this stimulatory effect on cAMP production was abolished by the pretreatment with indomethacin. Nevertheless, the pretreatments with dibutyryl cAMP (0.1-5 mM) did not alter the amount of subsequent AA-induced PGE2 production. Furthermore, the preincubation with 1mM isobutyl methyl xanthine also failed to affect PGE2 synthesis, while it increased intracellular cAMP accumulation. Our studies suggest AA stimulates intracellular cAMP formation in cultured gastric mucosal cells, linked with conversion of AA to cyclooxygenase metabolites, AA-induced PG production is limited in these cells, and it seems, however, unlikely that intracellular cAMP modulates AA metabolism to PG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号