首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Salt-sensitive hypertension is a major risk factor for renal impairment leading to chronic kidney disease. High-salt diet leads to hypertonic skin interstitial volume retention enhancing the activation of the tonicity-responsive enhancer-binding protein (TonEBP) within macrophages leading to vascular endothelial growth factor C (VEGF-C) secretion and NOS3 modulation. This promotes skin lymphangiogenesis and blood pressure regulation. Whether VEGF-C administration enhances renal and skin lymphangiogenesis and attenuates renal damage in salt-sensitive hypertension remains to be elucidated. Hypertension was induced in BALB/c mice by a high-salt diet. VEGF-C was administered subcutaneously to high-salt-treated mice as well as control animals. Analyses of kidney injury, inflammation, fibrosis, and biochemical markers were performed in vivo. VEGF-C reduced plasma inflammatory markers in salt-treated mice. In addition, VEGF-C exhibited a renal anti-inflammatory effect with the induction of macrophage M2 phenotype, followed by reductions in interstitial fibrosis. Antioxidant enzymes within the kidney as well as urinary RNA/DNA damage markers were all revelatory of abolished oxidative stress under VEGF-C. Furthermore, VEGF-C decreased the urinary albumin/creatinine ratio and blood pressure as well as glomerular and tubular damages. These improvements were associated with enhanced TonEBP, NOS3, and lymphangiogenesis within the kidney and skin. Our data show that VEGF-C administration plays a major role in preserving renal histology and reducing blood pressure. VEGF-C might constitute an interesting potential therapeutic target for improving renal remodeling in salt-sensitive hypertension.  相似文献   

2.
The present study determined cardiac chamber-specific alterations of the expression of the atrial and brain natriuretic peptide (ANP and BNP) genes with a small increase in age beyond adulthood and with systemic hypertension of intermediate duration. The expression distributions of these genes was determined using in situ hybridization in the right and left atria (RA and LA), and the right and left ventricles (RV and LV) in Wistar Kyoto rats (WKY) and age-matched Spontaneously Hypertensive rats (SHR) at ages 6 months (adult) and 8 months (advanced-age beyond adulthood).In all rat groups, both genes were expressed (ANP > BNP) in the LA and LV, and were not expressed in the RA and RV. The genes were expressed in the LA in all rat groups; the ANP, but not the BNP, expression increased with advancing age and with superimposed hypertension. They were expressed in the LV of the advanced-age WKY, adult and advanced-age SHR, but not in the adult WKY. The ANP mRNA labeling in the LA was diffuse and interspersed with dense accumulations, whereas BNP labeling was diffuse. The labeling of both genes in the form of sparse clusters was seen in the LV of the advanced-age SHR. Our study showed that ANP and BNP expression in left heart chambers increased with a small increase in age, with hypertension of intermediate duration, and with modest left ventricular hypertrophy. The chamber-specific expression distribution could be due to special groups of cardiac cells, or to local chamber-specific factors.  相似文献   

3.
目的 :探讨低氧对大鼠心脏钠尿肽C受体 (NPR C)表达的调节作用 ,以及血管钠肽 (VNP)对这一过程的影响。方法 :将大鼠随机分为 3组 :对照组、低氧组 (3~ 2 8d)和VNP(2 5~ 75 μg/kgbw) 低氧组 ,采用放射免疫的方法测定大鼠血浆心房钠尿肽 (ANP)的浓度 ,并采用定量PCR的方法分析NPR C的mRNA水平。结果 :低氧 2 8d大鼠血浆ANP浓度显著高于正常大鼠 (P <0 .0 5 ) ,而且每天注射 75 μg/kgbw的VNP使ANP浓度进一步升高 (P <0 .0 1)。低氧 3d对大鼠心脏NPR C的mRNA的量没有显著影响 ;低氧 7d使大鼠心脏NPR C的mRNA的拷贝数显著升高 (P <0 .0 5 ) ;低氧 14d、2 8d使大鼠心脏NPR C的mRNA的拷贝数进一步升高 (P <0 .0 1)。每日注射 2 5μg/kgbw的VNP对低氧诱导的大鼠心脏NPR C表达没有显著影响 ;5 0 μg/kgbw的VNP显著降低低氧大鼠心脏NPR C的表达 (P <0 .0 5 ) ;75 μg/kgbw的VNP进一步降低低氧大鼠心脏NPR C的表达 (P <0 .0 1)。 结论 :VNP可以升高低氧大鼠的血浆ANP水平 ;低氧可以使大鼠心脏NPR C表达增加 ,而且具有时间依赖性 ,而VNP对这一过程有抑制作用 ,并且呈剂量依赖性  相似文献   

4.
5.
Pulmonary arterial hypertension (PAH) is a disease that increases the pulmonary vascular resistance, causing hypertrophy and subsequent right heart failure. Oxidative stress is involved in the pathogenesis of PAH, and estrogen is considered an antioxidant. Thus, the aim of this study was to test the hypothesis that estrogen could attenuate PAH by modulating oxidative stress. Female Wistar rats were ovariectomized or suffered the surgery simulation (sham). After 7 days, subcutaneous pellets with 17β‐estradiol or sunflower oil were implanted. At this time, PAH was induced by means of a single dose of monocrotaline (MCT) (60 mg·kg‐1 i.p.). The experimental groups were as follows: (1) sham, (2) sham + MCT, (3) ovariectomy (O), (4) ovariectomy + MCT (OM), (5) ovariectomy + estrogen replacement + MCT (ORM). Hemodynamic measurements were performed 21 days after MCT or saline. Nonovariectomized animals were assessed in the stage of diestrus. Afterwards, the rats were killed to collect the heart, the lung and the liver to evaluate morphometry. Samples of the right ventricle were used to analyse the reduced glutathione : oxidized glutathione ratio. Lung congestion in the OM group, which was decreased in the ORM group, was observed. Right ventricle end‐diastolic pressure was increased in the OM and the ORM groups. The glutathione ratio decreased in the groups O, OM and ORM. The data suggest that estrogen can exert great influence on the cellular redox balance. The maintenance of physiological estrogen levels may help to avoid the appearance of pulmonary oedema, characteristic of this model of PAH, and right ventricular failure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
In this study, Tyr808 in GC-B (guanylate cyclase-B), a receptor of the CNP (C-type natriuretic peptide), has been shown to be a critical regulator of GC-B activity. In searching for phosphorylation sites that could account for suppression of GC-B activity by S1P (sphingosine-1-phosphate), mutations were introduced into several candidate serine/threonine and tyrosine residues. Although no novel phosphorylation sites that influenced the suppression of GC-B were identified, experiments revealed that mutations in Tyr808 markedly enhanced GC-B activity. CNP-stimulated activities of the Y808F and Y808A mutants were greater than 30-fold and 70-fold higher, respectively, than that of WT (wild-type) GC-B. The Y808E and Y808S mutants were constitutively active, expressing 270-fold higher activity without CNP stimulation than WT GC-B. Those mutations also influenced the sensitivity of GC-B to a variety of inhibitors, including S1P, Na3VO4 and PMA. Y808A, Y808E and Y808S mutations markedly weakened S1P- and Na3VO4-dependent suppression of GC-B activity, whereas Y808E and Y808S mutations rather elevated cGMP production. Tyr808 is conserved in all membrane-bound GCs and located in the niche domain showing sequence similarity to a partial fragment of the HNOBA (haem nitric oxide binding associated) domain, which is found in soluble GC and in bacterial haem-binding kinases. This finding provides new insight into the activation mechanism of GCs.  相似文献   

7.
Our recent studies indicate that the transient receptor potential vanilloid type 1 (TRPV1) channel may act as a potential regulator of monocyte/macrophage recruitment to reduce renal injury in salt-sensitive hypertension. This study tests the hypothesis that deletion of TRPV1 exaggerates salt-sensitive hypertension-induced renal injury due to enhanced inflammatory responses via monocyte chemoattractant protein-1 (MCP-1)/C-C chemokine receptor 2 (CCR2)-dependent pathways. Wild type (WT) and TRPV1-null mutant (TRPV1−/−) mice were subjected to uninephrectomy and deoxycorticosterone acetate (DOCA)-salt treatment for four weeks with or without the selective CCR2 antagonist, RS504393. DOCA-salt treatment increased systolic blood pressure (SBP) to the same degree in both strains, but increased urinary excretion of albumin and 8-isoprostane and decreased creatinine clearance with greater magnitude in TRPV1−/− mice compared to WT mice. DOCA-salt treatment also caused renal glomerulosclerosis, tubulointerstitial injury, collagen deposition, monocyte/macrophage infiltration, proinflammatory cytokine and chemokine production, and NF-κB activation in greater degree in TRPV1−/− mice compared to WT mice. Blockade of the CCR2 with RS504393 (4 mg/kg/day) had no effect on SBP in DOCA-salt-treated WT or TRPV1−/− mice compared to their respective controls. However, treatment with RS504393 ameliorated renal dysfunction and morphological damage, and prevented the increase in monocyte/macrophage infiltration, cytokine/chemokine production, and NF-κB activity in both DOCA-salt hypertensive strains with a greater effect in DOCA-salt-treated TRPV1−/− mice compared to DOCA-salt-treated WT mice. No differences in CCR2 protein expression in kidney were found between DOCA-salt-treated WT and TRPV1−/− mice with or without RS504393 treatment. Our studies for the first time indicate that deletion of TRPV1 aggravated renal injury in salt-sensitive hypertension via enhancing MCP-1/CCR2 signaling-dependent inflammatory responses.  相似文献   

8.
BACKGROUND: The success of any gene-therapy approach depends on the survival of the genetically engineered cells that are implanted in the patient to deliver the therapeutic product. Immunoisolation of nonautologous cells within a microcapsule is a unique approach for gene therapy. METHODS: We employed an immunoisolation device that protects nonautologous cells from destruction, to implant human atrial natriuretic peptide (hANP)-producing Chinese hamster ovary (CHO) cells in two-kidney, one-clip (2K1C) hypertensive rats. CHO cells transfected with the plasmid CMV-cANP were encapsulated in biocompatible polycaprolactone (PCL) capsules, and then the PCL capsules were implanted into 2K1C hypertensive rats intraperitoneally. RESULTS: The implantation of encapsulated hANP-producing cells caused a significant delay of blood pressure (BP) increase 2 weeks post-implantation and the effect lasted for more than 5 months. The implantation of encapsulated hANP-producing cells also caused significant increases in renal blood flow (RBF), glomerular filtration rate (GFR), sodium output, urine excretion, and urinary cGMP levels. These beneficial effects were reflected morphologically by an attenuation of the glomerular sclerotic lesions, reduction in cardiomyocyte size, tubular injury and renal arterial thickening. Immunoreactive hANP can be detected in the blood of 2K1C rats after implantation of the PCL capsules containing hANP-producing cells. CONCLUSIONS: This study demonstrates the usefulness of encapsulated ANP gene transfected cells as a new tool for ANP gene delivery in studying renovascular hypertension and cardiovascular diseases. Thus, our results may have important implications for clinical use of transgene cells as therapeutic agents in the treatment of cardiovascular diseases.  相似文献   

9.
10.

《素问•经脉别论》云:“生病起于过用”。人体疾病的产生在于体内阴阳失衡,风、火、痰、瘀之邪内生。因此,人体物质摄入之“度”是机体阴阳平衡与脏腑相和的重要前提。盐敏感性高血压很好地反映了高盐摄入与高血压显著相关,中医认为咸味入肾,胜血伤肝,助湿伤脾,使阳亢风动,痰湿中阻,导致风逆于上,气滞于中,水行不畅,进而引肝风上扰清窍,清阳滞于中州,导致血压升高。而肠-肾轴理论从肠道微生态角度说明了肠道菌群在调控血压中的重要作用。本文就肠-肾轴与盐敏感性高血压的关系进行探讨,以期从新的视角为高血压的早期防治提供干预方案。

  相似文献   

11.
In the infarcted rat heart, the increase of NO occurs in the hypertrophied myocardium of non-infarcted areas and its antihypertrophic efficacy has been well established. As another endogenous regulator and the reliable index of heart pathology, B-type natriuretic peptide also exhibits the antihypertrophic properties in many tissues by elevating intracellular cGMP. Several studies indicate that natriuretic peptides family may exert some actions in part via a nitric oxide pathway following receptor-mediated stimulation of iNOS. Therefore, it raises our great interest to ask what role NO plays in the antihypertrophic actions of B-type natriuretic peptide in cardiomyocytes. Incubation of cardiomyocytes under mild hypoxia for 12 h caused a significant increase in cellular protein content, protein synthesis and cell surface sizes. This growth stimulation was suppressed by exogenous B-type natriuretic peptide in a concentration dependent manner. Furthermore, the generation of intracellular cGMP, the upregulation of iNOS mRNA expression, the increase of iNOS activity and subsequent nitrite generation in hypertrophic cardiomyocytes was also increased by B-type natriuretic peptide. AG, a selective iNOS inhibitor, inhibited the upregulation of iNOS expression and the increase of iNOS activity by the combination of B-type natriuretic peptide/mild hypoxia or by the combination of 8-bromo-cGMP/mild hypoxia. Rp-8-br-cGMP, cGMP dependent protein kinase inhibitor, attenuated the actions of B-type natriuretic peptide and 8-bromo-cGMP which increases intracellular cGMP independent of B-type natriuretic peptide. In conclusion, our present data suggest that B-type natriuretic peptide exerted the antihypertrophic effects in cardiomyocytes, which was partially attributed to induction of iNOS-derived NO by cGMP pathway.  相似文献   

12.
Endothelin-3 (ET-3) elicited a concentration-dependent positive inotropic effect on rabbit papillary muscle, the maximal response being approximately 65% of the maximal response to isoproterenol. ET-1 induced a positive inotropic effect over the concentration range below 10–9 M, at which ET-3 did not produce a positive inotropic effect, but the maximal response to ET-1 was equivalent to or slightly lower than that of ET-3. The nonselective ET receptor antagonist PD 145065 effectively antagonized the positive inotropic effect of ET-3 in a concentration-dependent manner and abolished it at 10–5 M. PD 145065 decreased the positive inotropic effect induced by ET 1 at lower concentrations (< 10–9 M) but it did not affect the main portion of the concentration-response curve for the positive inotropic effect, i.e., the effect induced by high concentrations (> 10–9 M) of ET-1. PD 145065 antagonized also the positive inotropic effect of sarafotoxin S6c. PD 145065 inhibited the specific binding of [125I]ET-1 and of [125I]ET-3 with a high- and a low-affinity site for competition. ETB selective ligands, RES-701-1 and sarafotoxin S6c, displaced [125Iuc]ET-3 with high affinity but they scarcely affected the [1251]ET-1 binding. These findings indicate that different subtypes of the ET receptor are responsible for the induction of the positive inotropic effect of ET-3 and ET-1. ET receptors involved in the production of the positive inotropic effect in the rabbit ventricular myocardium have pharmacological characteristics that are different from those of conventional ET receptors originally classified based on the pharmacological findings in noncardiac tissues. The positive inotropic effect of ET-3 in the rabbit ventricular muscle may be mediated predominantly by ETA1 receptors that are susceptible to PD 145065 as well as BQ-123 and FR139317, and partially mediated by ETB receptors that are inhibitable with RES-701-1. ETA2 receptors that are resistant to ETA selective as well as nonselective antagonists may mainly be responsible for the positive inotropic effect of ET-1 in the rabbit ventricular muscle.  相似文献   

13.
Endothelin has been implicated in the pathogenesis of experimental and human Chagas' disease (American trypanosomiasis). In the present study, we tested the effect of bosentan, an antagonist of both ET(A) and ET(B) endothelin receptors, on parasitemia, histopathology (heart and diaphragm), heart levels of tumor necrosis factor (TNF)-alpha, interleukin (IL)-10, interferon (IFN)-gamma, CCL2, CCL3 and CCL5, and the serum levels of nitrate/nitrite (NOx). Bosentan treatment was accompanied by a significant increase in parasitemia and tissue parasitism or inflammation. In vehicle-treated rats, Trypanosoma cruzi infection increased the cardiac levels of TNF-alpha, IFN-gamma and IL-10, at day 9 post inoculation, and the TNF-alpha remained elevated until day 13. The infection also caused a significant increase in the cardiac levels of the chemokines CCL2 (9, 13 and 18 days) and CCL3 (13 and 18 days). Bosentan-treatment had no significant effect on the infection-associated increase in IFN-gamma and chemokine concentrations. There was a lower increase in IL-10 at day 9 and this was mirrored by a greater increase of TNF-alpha at day 13, in comparison with vehicle-treated rats. These latter findings correlated well with the enhanced inflammatory process in hearts of bosentan-treated infected rats. Bosentan treatment reduced the infection-associated increase in NOx serum concentration. Altogether, our data suggest that ET action on ET(A) and ET(B) receptors may play a role in the initial control of T. cruzi infection in rats probably by interfering in NO production.  相似文献   

14.
Summary The (Ca2+ + Mg2+) ATPase which serves as a Ca2+ pump in the kidney basolateral membranes is essential to the maintenance of an intracellular Ca2+ concentration optimal for kidney function. Since atrial natriuretic peptide (ANP) is known to participate in the Ca2+ homeostasis mechanism, altered levels of ANP in diabetes may vary the pump activity and consequently the kidney function. In order to examine the modulatory role of ANP on (Ca2+ + Mg2+) ATPase in short- (6 weeks) and long-term (6 months) diabetes, rats were injected with streptozotocin (65 mg/kg body wt, i.v.). At 6 weeks, the plasma ANP was decreased whereas, ANP-receptor binding in the kidney basolateral membrane was increased. In contrast, there was an increased plasma ANP and decreased ANP receptor binding at 6 months. Insulin treatment to diabetic animals normalized these parameters. The (Ca2+ + Mg2+) ATPase activity was unchanged both at 6 weeks and 6 months. Our results demonstrate that the unchanged Ca2+ pump activity in short-term and long-term diabetes serves to maintain the Ca2+ homeostasis in the kidney cells and thus may maintain the hyperfiltration state in diabetes. Unaltered (Ca2+ + Mg2+) ATPase is achieved by the initial up-regulation and subsequent down-regulation of the ANP receptors.  相似文献   

15.
To dissect the tissue-specific functions of atrial natriuretic peptide (ANP), we recently introduced loxP sites into the murine gene for its receptor, guanylyl cyclase-A (GC-A), by homologous recombination (tri-lox GC-A). For either smooth-muscle or cardiomyocyte-restricted deletion of GC-A, floxed GC-A mice were mated to transgenic mice expressing Cre-recombinase under the control of the smooth-muscle SM22 or the cardiac alphaMHC promoter. As shown in these studies, Cre-mediated recombination of the floxed GC-A gene fully inactivated GC-A function in a cell-restricted manner. In the present study we show that alphaMHC-Cre, but not SM22-Cre, with high frequency generates genomic recombinations of the floxed GC-A gene segments which were transmitted to the germline. Alleles with partial or complete deletions were readily recovered from the next generation, after segregation of the Cre-transgene. We took advantage of this strategy to generate a new mouse line with global, systemic deletion of GC-A. Doppler-echocardiographic and physiological studies in these mice demonstrate for the first time the tremendous impact of ANP/GC-A dysfunction on chronic blood volume homeostasis.  相似文献   

16.
A series of novel 2-[(4,6-dimethylpyrimidin-2-yl)oxy]-3,3-diphenyl butyric acid derivatives were synthesized and evaluated for their antagonistic activity for endothelin-1-induced contraction in rabbit aorta. Within this series of compounds, 2-[(4,6-dimethylpyrimidin-2-yl)oxy]-3-cyano-3,3-diphenylpropionic acid (4) displays comparable potency with ambrisentan (1), and warrants further investigation.  相似文献   

17.
The membrane-bound atrial natriuretic peptide receptor (GCA) catalyzes the formation of cGMP from GTP in response to natriuretic peptide hormones. Previous structural studies have focused on the extra-cellular hormone binding domain of this receptor whereas its intra-cellular domain has not yet been amenable to such studies. We report here the baculovirus expression and purification of the GCA intra-cellular domain construct GCAID comprising the complete intra-cellular region which includes the kinase-homology domain, coiled-coil region, and catalytic cyclase domain. The intra-cellular domain was enzymatically characterized in terms of guanylyl cyclase activity and the effects of ATP, manganese, and Triton X-100. Our results indicate that the activity of the intra-cellular domain of the ANP receptor is about 2 fold less active compared to a truncated cyclase domain construct lacking the kinase-like domain that was also expressed and purified. In addition, unlike the full length receptor, the intra-cellular domain could not be activated by Triton X-100/Mn2+ or its activity stimulated by ATP. These data therefore indicate that the major part of the transition from the basal state to the fully, ANP/ATP-dependent, activated state as well its stimulation/enhancement by Triton X-100/Mn2+ requires the full length receptor. These receptor insights could aid in the development of novel therapeutics as the GCA receptor is a key drug target for cardiovascular diseases.  相似文献   

18.
Kassuya CA  Rogerio AP  Calixto JB 《Peptides》2008,29(8):1329-1337
In this study, we investigated the effects of the selective ET(A) (BQ-123) and ET(B) (BQ-788) receptor antagonists for endothelin-1 (ET-1) against several flogistic agent-induced paw edema formation and ovalbumin-induced allergic lung inflammation in mice. The intraplantar injection of BQ-123, but not BQ-788, significantly inhibited carrageenan-, PAF-, ET-1- and bradykinin-induced paw edema formation. The obtained inhibitions (1h after the inflammatory stimulus) were 79+/-5%, 55+/-4%, 55+/-6% and 74+/-4%, respectively. In carrageenan-induced paw edema, the mean ID(50) value for BQ-123 was 0.77 (0.27-2.23)nmol/paw. The neutrophil influx induced by carrageenan or PAF was reduced by BQ-123, with inhibitions of 55+/-2% and 72+/-4%, respectively. BQ-123 also inhibited the indirect macrophage influx induced by carrageenan (55+/-6%). However, BQ-788 failed to block the cell influx caused by either of these flogistic agents. When assessed in the bronchoalveolar lavage fluid in a murine model of asthma, both BQ-123 and BQ-788 significantly inhibited ovalbumin-induced eosinophil recruitment (78+/-6% and 71+/-8%), respectively. Neither neutrophil nor mononuclear cell counts were significantly affected by these drugs. Our findings indicate that ET(A), but not ET(B), selective ET-1 antagonists are capable of preventing the acute inflammatory responses induced by carrageenan, PAF, BK and ET-1. However, both ET(A) and ET(B) receptor antagonists were found to be effective in inhibiting the allergic response in a murine model of asthma.  相似文献   

19.
Aminoterminal proCNP (NTproCNP), a stable product of CNP gene expression and readily measured in human plasma, provides a new approach to studies of CNP which is rapidly degraded at source. CNP is detectable in human CSF but the presence and proportions of NTproCNP in CSF are unknown. Since CNP is widely expressed throughout the CNS, we hypothesized that the ratio of NTproCNP to CNP in CSF is greatly increased when compared to plasma and that CSF CNP peptides may contribute to their concentrations in the systemic circulation. Concurrent plasma and CSF concentrations of CNP forms were measured in 51 subjects undergoing spinal anesthesia for arranged orthopedic procedures. Elevated concentrations of NTproCNP (1045 ± 359 pmol/L), characterized by HPLC-RIA, were found in CSF and greatly exceeded those of CNP (7.9 ± 3.2 pmol/L). The ratio of NTproCNP to CNP in CSF (145 ± 55) was much higher than in plasma (31 ± 27). A significant inverse relation was found between plasma and CSF CNP concentrations (r = −0.29, p < 0.05). cGMP and neprilysin were unrelated to CNP levels in CSF. We conclude that CNP is differentially regulated across the brain in normal health. Despite markedly elevated levels of NTproCNP in CSF, it is unlikely that these contribute to systemic levels in healthy adults. Identifying NTproCNP as the dominant CNP form in CSF opens up the possibility of its use in future studies exploring CNP regulation within the CNS and possible applications in the diagnosis and monitoring of subjects with central neural disorders.  相似文献   

20.
Mouse embryonic fibroblasts (MEFs) are commonly grown in cell culture and are known to enter senescence after a low number of passages as a result of oxidative stress. Oxidative stress has also been suggested to promote centrosome disruption; however, the contribution of this organelle to senescence is poorly understood. Therefore, this study aimed to assess the role of the centrosome in oxidative stress induced-senescence using MEFs as a model. We demonstrate here that coincident with the entry of late-passage MEFs into senescence, there was an increase in supernumerary centrosomes, most likely due to centrosome fragmentation. In addition, disrupting the centrosome in early-passage MEFs by depletion of neural precursor cell expressed developmentally downregulated gene 1 (NEDD1) also resulted in centrosomal fragmentation and subsequent premature entry into senescence. These data show that a loss of centrosomal integrity may contribute to the entry of MEFs into senescence in culture, and that centrosomal disruption can cause senescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号