首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Diffusional fluxes of a large number of hydrophilic solutes and water across bullfrog (Rana catesbeiana) alveolar epithelium were measured in the Ussing-type flux chamber. Lungs were isolated from double-pithed animals and studied as flat sheets. Radioactive solutes and water were added to the upstream reservoir, and the rate of change of downstream reservoir radioactivity was monitored. A permeability coefficient was estimated for each substance from a linear relationship between radiotracer concentration in the downstream reservoir and time. These permeability data were used to analyze the equivalent water-filled pore characteristics of the alveolar epithelial barrier. The data reveal that the alveolar epithelium is best characterized by two distinct pore populations rather than by a single homogeneous pore population. The large-pore population consists of pores with a radius of about 5 nm and occupies 4% of the available pore area. The small-pore population consists of pores with a radius of about 0.5 nm and occupies 96% of the available pore area. The number of small pores to large pores is 2.68 X 10(3). After the alveolar surface was damaged by acid, a large-pore population with a radius of about 27 nm was seen, allowing nearly free diffusion of solutes. A major implication of the presence of two populations of pores in the alveolar epithelium is that hydrostatically driven bulk water flow occurs predominantly through the large pores, while osmotically driven bulk water flow takes place predominantly through the small pores. As a result, in general, hydrostatic and osmotic gradients may not be equally effective driving forces for water flow across this tissue.  相似文献   

2.
Water and solute transport properties of the alveolar epithelium of isolated bullfrog lungs were studied. Lungs from Rana catesbeiana were removed and mounted in an Ussing chamber. Unstirred layers on both sides of the tissue were estimated from the time courses of dilution potential development, and the measured transport parameters were corrected for the effect of the unstirred layers. Spontaneous potential difference, short-circuit current, tissue resistance, instantaneous voltage-current relationships, diffusional permeabilities of water and hydrophilic solutes, and hydraulic conductivities were determined. The hydraulic conductivity obtained from hydrostatically driven water flow anomalously decreased with time, and was initially 100 -1,000 times higher than osmotically determined hydraulic conductivity. The equivalent pore radius of the bullfrog alveolar epithelium was estimated to be 0.8-0.9 nm. We conclude that the alveolar epithelium is extremely tight, presenting a major barrier to water and solute flow. This high resistance to water and solute flow may be helpful in maintaining the alveolar lumen relatively free of fluid under normal physiological conditions.  相似文献   

3.
To evaluate the transport properties of the alveolar epithelium, we instilled hetastarch (Het; 6%, 10 ml, 1 - 1 x 10(4) kDa) into the trachea of isolated rat lungs and then measured the molecular distribution of Het that entered the lung perfusate from the air space over 6 h. Het transport was driven by either diffusion or an oncotic gradient. Perfusate Het had a unique, bimodal molecular weight distribution, consisting of a narrow low-molecular-weight peak at 10-15 kDa (range, 5-46 kDa) and a broad high-molecular-weight band (range 46-2,000 kDa; highest at 288 kDa). We modeled the low-molecular-weight transport as (passive) restricted diffusion or osmotic flow through a small-pore system and the high-molecular-weight transport as passive transport through a large-pore system. The equivalent small-pore radius was 5.0 nm, with a distribution of 150 pores per alveolus. The equivalent large-pore radius was 17.0 nm, with a distribution of one pore per seven alveoli. The small-pore fluid conductivity (2 x 10(-5) ml. h(-1). cm(-2). mmHg(-1)) was 10-fold larger than that of the large-pore conductivity.  相似文献   

4.
Osmotic transient responses in organ weight after changes in perfusate osmolarity have implied steric hindrance to small-molecule transcapillary exchange, but tracer methods do not. We obtained osmotic weight transient data in isolated, Ringer-perfused rabbit hearts with NaCl, urea, glucose, sucrose, raffinose, inulin, and albumin and analyzed the data with a new anatomically and physicochemically based model accounting for 1) transendothelial water flux, 2) two sizes of porous passages across the capillary wall, 3) axial intracapillary concentration gradients, and 4) water fluxes between myocytes and interstitium. During steady-state conditions approximately 28% of the transcapillary water flux going to form lymph was through the endothelial cell membranes [capillary hydraulic conductivity (Lp) = 1.8 +/- 0.6 x 10-8 cm. s-1. mmHg-1], presumably mainly through aquaporin channels. The interendothelial clefts (with Lp = 4.4 +/- 1.3 x 10-8 cm. s-1. mmHg-1) account for 67% of the water flux; clefts are so wide (equivalent pore radius was 7 +/- 0.2 nm, covering approximately 0.02% of the capillary surface area) that there is no apparent hindrance for molecules as large as raffinose. Infrequent large pores account for the remaining 5% of the flux. During osmotic transients due to 30 mM increases in concentrations of small solutes, the transendothelial water flux was in the opposite direction and almost 800 times as large and was entirely transendothelial because no solute gradient forms across the pores. During albumin transients, gradients persisted for long times because albumin does not permeate small pores; the water fluxes per milliosmolar osmolarity change were 200 times larger than steady-state water flux. The analysis completely reconciles data from osmotic transient, tracer dilution, and lymph sampling techniques.  相似文献   

5.
We have previously presented evidence that cultured alveolar epithelial cell monolayers actively transport sodium from medium to substratum, a process that can be inhibited by sodium transport blockers and stimulated by beta-agonists. In this study, the isolated perfused rat lung was utilized in order to investigate the presence of active sodium transport by intact adult mammalian alveolar epithelium. Radioactive tracers (22Na and [14C]sucrose) were instilled into the airways of isolated Ringer-perfused rat lungs whose weight was continuously monitored. The appearance of isotopes in the recirculated perfusate was measured, and fluxes and apparent permeability-surface area products were determined. A pharmacological agent (amiloride, ouabain, or terbutaline) was added to the perfusate during each experiment after a suitable control period. Amiloride and ouabain resulted in decreased 22Na fluxes and a faster rate of lung weight gain. Terbutaline resulted in increased 22Na flux and a more rapid rate of lung weight loss. [14C]sucrose fluxes were unchanged by the presence of these pharmacological agents. These data are most consistent with the presence of a regulable active component of sodium transport across intact mammalian alveolar epithelium that leads to removal of sodium from the alveolar space, with anions and water following passively. Regulation of the rate of sodium and fluid removal from the alveolar space may play an important role in the prevention and/or resolution of alveolar pulmonary edema.  相似文献   

6.
A hydrophobic constriction site can act as an efficient barrier to ion and water permeation if its diameter is less than the diameter of an ion's first hydration shell. This hydrophobic gating mechanism is thought to operate in a number of ion channels, e.g. the nicotinic receptor, bacterial mechanosensitive channels (MscL and MscS) and perhaps in some potassium channels (e.g. KcsA, MthK and KvAP). Simplified pore models allow one to investigate the primary characteristics of a conduction pathway, namely its geometry (shape, pore length, and radius), the chemical character of the pore wall surface, and its local flexibility and surface roughness. Our extended (about 0.1 micros) molecular dynamic simulations show that a short hydrophobic pore is closed to water for radii smaller than 0.45 nm. By increasing the polarity of the pore wall (and thus reducing its hydrophobicity) the transition radius can be decreased until for hydrophilic pores liquid water is stable down to a radius comparable to a water molecule's radius. Ions behave similarly but the transition from conducting to non-conducting pores is even steeper and occurs at a radius of 0.65 nm for hydrophobic pores. The presence of water vapour in a constriction zone indicates a barrier for ion permeation. A thermodynamic model can explain the behaviour of water in nanopores in terms of the surface tensions, which leads to a simple measure of 'hydrophobicity' in this context. Furthermore, increased local flexibility decreases the permeability of polar species. An increase in temperature has the same effect, and we hypothesize that both effects can be explained by a decrease in the effective solvent-surface attraction which in turn leads to an increase in the solvent-wall surface free energy.  相似文献   

7.
Electroporation uses electric pulses to promote delivery of DNA and drugs into cells. This study presents a model of electroporation in a spherical cell exposed to an electric field. The model determines transmembrane potential, number of pores, and distribution of pore radii as functions of time and position on the cell surface. For a 1-ms, 40 kV/m pulse, electroporation consists of three stages: charging of the cell membrane (0-0.51 micros), creation of pores (0.51-1.43 micros), and evolution of pore radii (1.43 micros to 1 ms). This pulse creates approximately 341,000 pores, of which 97.8% are small ( approximately 1 nm radius) and 2.2% are large. The average radius of large pores is 22.8 +/- 18.7 nm, although some pores grow to 419 nm. The highest pore density occurs on the depolarized and hyperpolarized poles but the largest pores are on the border of the electroporated regions of the cell. Despite their much smaller number, large pores comprise 95.3% of the total pore area and contribute 66% to the increased cell conductance. For stronger pulses, pore area and cell conductance increase, but these increases are due to the creation of small pores; the number and size of large pores do not increase.  相似文献   

8.
Foliar uptake pathways for hydrophilic solutes were studied by the analysis of co-uptake of 15N-labelled urea, NH4+ or NO3 and 13C-labelled sucrose across leaf surfaces of various plant species. Uptake of N (y) and sucrose (x) were strongly correlated. Curvilinear regression revealed significantly positive intercepts with the y-axis indicating the involvement of a sucrose-excluding pathway consisting of small pores with radii <0.5 nm. Depending on plant species, N source, leaf side and aperture of stomata, these small pores accounted for 6–62% of total N uptake. Regression analysis revealed that in stomatous leaf surfaces of Vicia faba L., Coffea arabica L. and Prunus cerasus L., the remaining N uptake occurred via another pathway with an estimated average pore radius (rP) greater than 20 nm. This is two orders of magnitude greater than previous estimations of cuticular rP, indicating that this pathway, which was only found in stomatous leaf surfaces, was probably not located in the cuticle but at the surfaces of the stomatal pores. In astomatous leaf surfaces of C. arabica and Populus × canadensis Moench, average rP was 2.0 and 2.4 nm, respectively, which is four to eight times larger than previous estimations of cuticular rP. These results indicate that for polar solutes, the size exclusion limits of plant surfaces can be considerably larger than previously estimated. The far-reaching implications of these findings are discussed.  相似文献   

9.
In high-pressure pulmonary edema, lung interstitial and air space edema liquids have equal protein concentrations (Am. J. Physiol. 231: 1466, 1976). This suggests that the alveolar-airway barrier separating the air and interstitial spaces is relatively unrestrictive, even without apparent epithelial injury. To estimate the equivalent pore population of the alveolar-airway barrier we inflated each of 18 isolated dog lung lobes for 1 h with a solution of colored tracer of uniform radius. Tracer radii ranged from 1.3 to 405 nm. After freezing the lobes in liquid N2, we measured interstitial tracer concentrations in frozen perivascular cuffs or in samples thawed after dissection from frozen cuffs. Relative to the concentrations instilled, interstitial concentrations ranged from 0.34 for the smallest particles (1.3 and 3.5 nm radius) to zero for particles with radii of 405 nm. From the results we designed a pore model of the alveolar-airway barrier to reproduce the concentrations we measured. No single-pore model could be obtained, although a three-pore model fit the data well. The model results predict that pores with radii of 1, 40, and 400 nm would account for 68, 30, and 2% of total liquid flux, respectively. The majority of liquid flux (68%) would occur through passageways smaller than the smallest tracer we used (1.3 nm radius). We believe the alveolar-airway barrier consists not only of tight intercellular junctions that allow passage of only water and electrolytes but also of a smaller number of large leaks that allow passage of particles up to nearly 400 nm in radius.  相似文献   

10.
Effects of terbutaline on sodium transport in isolated perfused rat lung   总被引:6,自引:0,他引:6  
We have previously presented evidence that cultured alveolar epithelial cell monolayers actively transport sodium from medium to substratum, and that this process can be stimulated by beta-agonists. In this study the isolated perfused rat lung was utilized to investigate sodium transport across intact mammalian alveolar epithelium. Radioisotopic tracer(s) (22Na and/or [14C]sucrose) were instilled into the airways of isolated Ringer-perfused rat lungs. The appearance of isotope(s) in the recirculated perfusate was measured and a permeability-surface area product was calculated. Pharmacological agent(s) (terbutaline and/or propranolol) were present in the instillate or were added to the perfusate during the experiments. Terbutaline alone, whether in the instillate or perfusate, caused a significant increase in 22Na flux. This increase was prevented by the presence of propranolol. [14C]sucrose fluxes were unaffected by the presence of terbutaline. These data are consistent with the presence of an active component of sodium transport across intact mammalian alveolar epithelium that leads to removal of sodium from the alveolar space.  相似文献   

11.
The newly proposed function of the maxi-anion channel as a conductive pathway for ATP release requires that its pore is sufficiently large to permit passage of a bulky ATP(4-) anion. We found a linear relationship between relative permeability of organic anions of different size and their relative ionic mobility (measured as the ratio of ionic conductance) with a slope close to 1, suggesting that organic anions tested with radii up to 0.49 nm (lactobionate) move inside the channel by free diffusion. In the second approach, we, for the first time, succeeded in pore sizing by the nonelectrolyte exclusion method in single-channel patch-clamp experiments. The cutoff radii of PEG molecules that could access the channel from intracellular (1.16 nm) and extracellular (1.42 nm) sides indicated an asymmetry of the two entrances to the channel pore. Measurements by symmetrical two-sided application of PEG molecules yielded an average functional pore radius of approximately 1.3 nm. These three estimates are considerably larger than the radius of ATP(4-) (0.57-0.65 nm) and MgATP(2-) (approximately 0.60 nm). We therefore conclude that the nanoscopic maxi-anion channel pore provides sufficient room to accommodate ATP and is well suited to its function as a conductive pathway for ATP release in cell-to-cell communication.  相似文献   

12.
The kinetics of transport in pores the size postulated for cell membranes has been investigated by direct computer simulation (molecular dynamics). The simulated pore is 11 Å long and 3.2 Å in radius, and the water molecules are modeled by hard, smooth spheres, 1 Å in radius. The balls are given an initial set of positions and velocities (with an average temperature of 313° K) and the computer then calculates their exact paths through the pore. Two different conditions were used at the ends of the pore. In one, the ends are closed and the balls are completely isolated. In the other, the ball density in each end region is fixed so that a pressure difference can be established and a net convective flow produced. The following values were directly measured in the simulated experiments: net and diffusive (oneway) flux; pressure, temperature, and diffusion coefficients in the pore; area available for diffusion; probability distribution of ball positions in the pore; and the interaction between diffusion and convection. The density, viscosity, and diffusion coefficients in the bulk fluid were determined from the theory of hard sphere dense gases. From these values, the “equivalent” pore radius (determined by the same procedure that is used for cell membranes) was computed and compared with the physical pore radius of the simulated pore.  相似文献   

13.
Water transfer by osmosis through pores occurs either by viscous flow or diffusion depending on whether the driving osmolyte is able to enter the pore. Analysis of osmotic permeabilities (P os )measured in antibiotic and cellular pore systems supports this distinction, showing that P os approaches either the viscous value (P f ) or the diffusive value (P d )depending on the size of the osmolyte in relation to the pore radius. Macroscopic hydrodynamics and diffusion theory, when used with drag and steric coefficients within an appropriate osmotic model, apply with remarkable accuracy to channels of molecular dimensions where water molecules cannot pass each other, without the need to postulate any special flow regimes. It becomes apparent that the true viscous to diffusive flow ratio, P f /P d , can be separated from the effects of tracer filing by osmotic measurements alone. It does not monotonically decrease with the pore radius but rises steeply at the smaller radii which would apply to pores in cell membranes. Consequently, the application of the theory to osmotic and diffusive flow data for the red cell predicts a pore radius of 0.2 nm in agreement with other recent measurements on isolated components of the system, showing that the viscous-diffusive distinction applies even in molecular pores.  相似文献   

14.
The total osmotic flow of water across cell membranes generally exceeds diffusional flow measured with labeled water. The ratio of osmotic to diffusional flow has been widely used as a basis for the calculation of the radius of pores in the membrane, assuming Poiseuille flow of water through the pores. An important assumption underlying this calculation is that both osmotic and diffusional flow are rate-limited by the same barrier in the membrane. Studies employing a complex synthetic membrane show, however, that osmotic flow can be limited by one barrier (thin, dense barrier), and the rate of diffusion of isotopic water by a second (thick, porous) barrier in series with the first. Calculation of a pore radius is meaningless under these conditions, greatly overestimating the size of the pores determining osmotic flow. On the basis of these results, the estimation of pore radius in biological membranes is reassessed. It is proposed that vasopressin acts by greatly increasing the rate of diffusion of water across an outer barrier of the membrane, with little or no accompanying increase in pore size.  相似文献   

15.
The effects of hypercapnia (CO(2)) confined to either the alveolar space or the intravascular perfusate on exhaled nitric oxide (NO), perfusate NO metabolites (NOx), and pulmonary arterial pressure (Ppa) were examined during normoxia and progressive 20-min hypoxia in isolated blood- and buffer-perfused rabbit lungs. In blood-perfused lungs, when alveolar CO(2) concentration was increased from 0 to 12%, exhaled NO decreased, whereas Ppa increased. Increments of intravascular CO(2) levels increased Ppa without changes in exhaled NO. In buffer-perfused lungs, alveolar CO(2) increased Ppa with reductions in both exhaled NO from 93.8 to 61.7 (SE) nl/min (P < 0.01) and perfusate NOx from 4.8 to 1.8 nmol/min (P < 0.01). In contrast, intravascular CO(2) did not affect either exhaled NO or Ppa despite a tendency for perfusate NOx to decline. Progressive hypoxia elevated Ppa by 28% from baseline with a reduction in exhaled NO during normocapnia. Alveolar hypercapnia enhanced hypoxic Ppa response up to 50% with a further decline in exhaled NO. Hypercapnia did not alter the apparent K(m) for O(2), whereas it significantly decreased the V(max) from 66.7 to 55.6 nl/min. These results suggest that alveolar CO(2) inhibits epithelial NO synthase activity noncompetitively and that the suppressed NO production by hypercapnia augments hypoxic pulmonary vasoconstriction, resulting in improved ventilation-perfusion matching.  相似文献   

16.
Summary The permeability of rabbit gallbladder to hydrophilic nonelectrolytes, with molecular weights from 20 to 60,000, has been studied. Restriction in the diffusion of the small electrolytes is very significant up to glycerol, which suggests permeation through aqueous pores with equivalent radii of 4 Å. An extracellular pathway is responsible for the permeation of the larger solutes. This extracellular pathway shows no restriction in diffusion of molecules up to the size of inulin. Dextran (15,000 to 17,000 mol wt) is significantly restricted. Albumin permeability is <10–8 cm sec–1. These observations can be equated with equivalent, pore radii of 40 Å for the shunt pathway.Increasing osmolarities of the incubation medium cause decreased cell-membrane permeability and increased shunt permeability. 0.5mm phloretin induces a 60% reduction in urea permeability and a 168% increase in antipyrine permeability. No effect on the osmotic water permeability or on the shunt permeability is observed in the presence of phloretin. The apparent activation energy of urea permeation changes from values consistent with diffusion in bulk water, to values consistent with diffusion through hydrocarbon regions. This suggests that the polar route for urea permeation is blocked by phloretin.The contribution of the shunt pathway to osmotic flow induced by sucrose or NaCl gradients is smaller than 16% according to Poiseuille's flow calculations. Tetraethylammoniumchloride and albumin have been shown to be osmotically more effective than sucrose, suggesting a greater shunt contribution to the total water flow.  相似文献   

17.
Pore formation constitutes a key step in the mode of action of Bacillus thuringiensis delta-endotoxins and various activated Cry toxins have been shown to form ionic channels in receptor-free planar lipid bilayers at high concentrations. Multiple conductance levels have been observed with several toxins, suggesting that the channels result from the multimeric assembly of a variable number of toxin molecules. To test this possibility, the size of the channels formed by Cry1C was estimated with the non-electrolyte exclusion technique and polyethylene glycols of various molecular weights. In symmetrical 300 mM KCl solutions, Cry1C induced channel activity with 15 distinct conductance levels ranging from 21 to 246 pS and distributed in two main conductance populations. Both the smallest and largest conductance levels and the mean conductance values of both populations were systematically reduced in the presence of polyethylene glycols with hydrated radii of up to 1.05 nm, indicating that these solutes can penetrate the pores formed by the toxin. Larger polyethylene glycols had little effect on the conductance levels, indicating that they were excluded from the pores. Our results indicate that Cry1C forms clusters composed of a variable number of channels having a similar pore radius of between 1.0 and 1.3 nm and gating synchronously.  相似文献   

18.
This paper quantitatively defines the nanoscale topography of the basement membrane underlying the anterior corneal epithelium of the macaque. Excised corneal buttons from macaques were placed in 2.5 mM ethylenediaminetetraacetate (EDTA) for 2.5 h, after which the epithelium was carefully removed to expose the underlying basement membrane. The integrity of the remaining basement membrane was verified using fluorescent microscopy in conjunction with antibody staining directed against laminin and collagen type IV as well as transmission electron microscopy. Characterization of the surface of the basement membrane was performed using transmission electron microscopy, high-resolution, low-voltage scanning electron microscopy, and atomic force microscopy. Quantitative data were obtained with all three imaging techniques and compared. The basement membrane has a complex topography consisting of tightly cross-linked fibers intermingled with pores. The mean elevation of features measured by transmission electron microscopy, scanning electron microscopy, and atomic force microscopy was 149 +/- 60 nm, 191 +/- 72 nm, and 147 +/- 73 nm, respectively. Mean fiber diameter as measured by SEM was 77 +/- 44 nm and pore diameter was 72 +/- 40 nm, with pores occupying approximately 15% of the total surface area. Similar feature types and dimensions were also found for Matrigel, a commercially available basement membrane-like complex, supporting that a minimum of artifact was introduced by corneal preparative procedures to remove the overlying epithelium. Topographic features amplified the surface area over which cell-substratum interactions occur by an estimated 400%. The three-dimensional structure of the basement membrane exhibits a rich complex topography of individual features, consisting of pores and fibers with dimensions ranging from 30 to 400 nm. These nanoscale substratum features may modulate fundamental cell behaviors such as adhesion, migration, proliferation, and differentiation.  相似文献   

19.
Plant cuticles are lipid membranes with separate diffusion paths for lipophilic non-electrolytes and hydrated ionic compounds. Ions are lipid insoluble and require an aqueous pathway across cuticles. Based on experimental data, the aqueous pathway in cuticles has been characterized. Aqueous pores arise by hydration of permanent dipoles and ionic functional groups. They can be localized using ionic fluorescent dyes, silver nitrate, and mercuric chloride. Aqueous pores preferentially occur in cuticular ledges, at the base of trichomes, and in cuticles over anticlinal walls. Average pore radii ranged from 0.45 to 1.18 nm. Penetration of ions was a first order process as the fraction of the salt remaining on the cuticle surface decreased exponentially with time. Permeability of cuticles to ions depended on humidity and was highest at 100% humidity. Wetting agents increased rate constants by factors of up to 12, which indicates that the pore openings are surrounded by waxes. The pores in cuticular ledges of Helxine soleirolii allowed passage of berberine sulphate, which has a molecular weight of 769 g mol(-1). Increasing the molecular weight of solutes from 100 to 500 g mol(-1) decreased the rate constants of penetration by factors of 7 (Vicia faba) and 13 (Populus canescens), respectively. Half-times of penetration of inorganic salts and organic ions across Populus cuticles and Vicia leaf surfaces varied between 1 and 12 h. This shows that penetration of ionic compounds can be fairly rapid, and ions with molecular weights of up to 800 g mol(-1) can penetrate cuticles that possess aqueous pores.  相似文献   

20.
Pulmonary epithelial sieving of small solutes in rat lungs   总被引:3,自引:0,他引:3  
Transport and consumption of glucose from the air spaces of isolated, fluid-filled lungs can result in significantly lower glucose concentrations in the air spaces than in the perfusate compartment (11). This concentration difference could promote the osmotic movement of water from the air spaces to the perfusate, but the rate of fluid extraction from the air spaces would then be limited by the rates of electrolyte transport through the epithelium. In the present study, measurements were made of solute and water losses from the air spaces of fluid-filled rat lungs and the transport of these solutes and water into the vasculature after addition of hypertonic glucose or sucrose to the perfusate. Increases in the concentrations of Na+, Cl-, K+, and labeled mannitol in the air space were initially comparable to those of albumin labeled with Evans blue. Similarly, decreases in electrolyte concentrations in the perfusate were comparable to those of labeled albumin, indicating that very little solute accompanied the movement of water out of the lungs. Nor was evidence found that exposure of the vasculature to hypertonic glucose resulted in an increase in the rate at which fluid was reabsorbed from the air spaces over a 1-h interval, aside from an initial, abrupt loss of solute-free water from the lungs. These observations suggest that perfusion of fluid-filled lungs with hypertonic solutions of small solutes results in the extraction of water from the air spaces and pulmonary parenchyma across membranes that resist the movement of electrolytes and other lipophobic solutes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号