首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
粘附斑激酶(focal adhesion kinase,FAK)是一种胞质非受体酪氨酸激酶,是整合素信号通路里一个重要的调节因子,在肿瘤细胞中高表达,与细胞迁移、粘附和侵袭有关。mTOR (mammalian target of rapamycin)是非典型性的Ser/Thr激酶,属于PIKK(phosphatidylinositol kinase related kinase)超家族,介导营养信号调控细胞生长、分化及代谢等生理过程。近年的研究发现FAK通过三条途径与mTOR相关联,组成FAK/mTOR信号通路,在肿瘤细胞的增殖、迁移及肿瘤微环境中发挥着重要的调控作用。本文综述了FAK、mTOR和FAK/mTOR信号通路的特点及对肿瘤细胞调控作用的研究概况,为肿瘤治疗提供参考。  相似文献   

2.
Amino acids positively regulate signaling through the mammalian target of rapamycin (mTOR). Recent work demonstrated the importance of the tuberous sclerosis protein TSC2 for regulation of mTOR by insulin. TSC2 contains a GTPase-activator domain that promotes hydrolysis of GTP bound to Rheb, which positively regulates mTOR signaling. Some studies have suggested that TSC2 also mediates the control of mTOR by amino acids. In cells lacking TSC2, amino acid withdrawal still results in dephosphorylation of S6K1, ribosomal protein S6, the eukaryotic initiation factor 4E-binding protein, and elongation factor-2 kinase. The effects of amino acid withdrawal are diminished by inhibiting protein synthesis or adding back amino acids. These studies demonstrate that amino acid signaling to mTOR occurs independently of TSC2 and involves additional unidentified inputs. Although TSC2 is not required for amino acid control of mTOR, amino acid withdrawal does decrease the proportion of Rheb in the active GTP-bound state. Here we also show that Rheb and mTOR form stable complexes, which are not, however, disrupted by amino acid withdrawal. Mutants of Rheb that cannot bind GTP or GDP can interact with mTOR complexes. We also show that the effects of hydrogen peroxide and sorbitol, cell stresses that impair mTOR signaling, are independent of TSC2. Finally, we show that the ability of energy depletion (which impairs mTOR signaling in TSC2+/+ cells) to increase the phosphorylation of eukaryotic elongation factor 2 is also independent of TSC2. This likely involves the phosphorylation of the elongation factor-2 kinase by the AMP-activated protein kinase.  相似文献   

3.
Enhanced GLUT1 expression in mesangial cells plays an important role in the development of diabetic nephropathy by stimulating signaling through several pathways resulting in increased glomerular matrix accumulation. Similarly, enhanced mammalian target of rapamycin (mTOR) activation has been implicated in mesangial matrix expansion and glomerular hypertrophy in diabetes. We sought to examine whether enhanced GLUT1 expression increased mTOR activity and, if so, to identify the mechanism. We found that levels of GLUT1 expression and mTOR activation, as evidenced by S6 kinase (S6K) and 4E-BP-1 phosphorylation, changed in tandem in cell lines exposed to elevated levels of extracellular glucose. We then showed that increased GLUT1 expression enhanced S6K phosphorylation by 1.7- to 2.9-fold in cultured mesangial cells and in glomeruli from GLUT1 transgenic mice. Treatment with the mTOR inhibitor, rapamycin, eliminated the GLUT1 effect on S6K phosphorylation. In cells lacking functional tuberous sclerosis complex (TSC) 2, GLUT1 effects on mTOR activity persisted, indicating that GLUT1 effects were not mediated by TSC. Similarly, AMP kinase activity was not altered by enhanced GLUT1 expression. Conversely, enhanced GLUT1 expression led to a 2.4-fold increase in binding of mTOR to its activator, Rheb, and a commensurate 2.1-fold decrease in binding of Rheb to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) consistent with mediation of GLUT1 effects by a metabolic effect on GAPDH. Thus, GLUT1 expression appears to augment mesangial cell growth and matrix protein accumulation via effects on glycolysis and decreased GAPDH interaction with Rheb.  相似文献   

4.
The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that plays an essential role in cell growth control. mTOR stimulates cell growth by phosphorylating p70 ribosomal S6 kinase (S6K) and eukaryote initiation factor 4E-binding protein 1 (4EBP1). The mTOR pathway is regulated by a wide variety of cellular signals, including mitogenic growth factors, nutrients, cellular energy levels, and stress conditions. Recent studies have proposed several mechanisms to explain how mTOR is regulated by growth factors and cellular energy levels. However, little is known as to how mTOR is regulated by stress conditions. We observed that two stress-induced proteins, RTP801/Redd1 and RTP801L/Redd2, potently inhibit signaling through mTOR. Our data support that RTP801 and RTP801L work downstream of AKT and upstream of TSC2 to inhibit mTOR functions. These results add a new dimension to mTOR pathway regulation and provide a possible molecular mechanism of how cellular stress conditions may regulate mTOR function.  相似文献   

5.
BACKGROUND: Tuberous Sclerosis Complex (TSC) is a genetic disorder that occurs through the loss of heterozygosity of either TSC1 or TSC2, which encode Hamartin or Tuberin, respectively. Tuberin and Hamartin form a tumor suppressor heterodimer that inhibits the mammalian target of rapamycin (mTOR) nutrient signaling input, but how this occurs is unclear. RESULTS: We show that the small G protein Rheb (Ras homolog enriched in brain) is a molecular target of TSC1/TSC2 that regulates mTOR signaling. Overexpression of Rheb activates 40S ribosomal protein S6 kinase 1 (S6K1) but not p90 ribosomal S6 kinase 1 (RSK1) or Akt. Furthermore, Rheb induces phosphorylation of eukaryotic initiation factor 4E binding protein 1 (4E-BP1) and causes 4E-BP1 to dissociate from eIF4E. This dissociation is completely sensitive to rapamycin (an mTOR inhibitor) but not wortmannin (a phosphoinositide 3-kinase [PI3K] inhibitor). Rheb also activates S6K1 during amino acid insufficiency via a rapamycin-sensitive mechanism, suggesting that Rheb participates in nutrient signaling through mTOR. Moreover, Rheb does not activate a S6K1 mutant that is unresponsive to mTOR-mediated signals, confirming that Rheb functions upstream of mTOR. Overexpression of the Tuberin-Hamartin heterodimer inhibits Rheb-mediated S6K1 activation, suggesting that Tuberin functions as a Rheb GTPase activating protein (GAP). Supporting this notion, TSC patient-derived Tuberin GAP domain mutants were unable to inactivate Rheb in vivo. Moreover, in vitro studies reveal that Tuberin, when associated with Hamartin, acts as a Rheb GTPase-activating protein. Finally, we show that membrane localization of Rheb is important for its biological activity because a farnesylation-defective mutant of Rheb stimulated S6K1 activation less efficiently. CONCLUSIONS: We show that Rheb acts as a novel mediator of the nutrient signaling input to mTOR and is the molecular target of TSC1 and TSC2 within mammalian cells.  相似文献   

6.
Lymphangioleiomyomatosis (LAM) is associated with dysfunction of the tuberous sclerosis complex (TSC) leading to enhanced cell proliferation and migration. This study aims to examine whether doxycycline, a tetracycline antibiotic, can inhibit the enhanced migration of TSC2‐deficient cells, identify signalling pathways through which doxycycline works and to assess the effectiveness of combining doxycycline with rapamycin (mammalian target of rapamycin complex 1 inhibitor) in controlling cell migration, proliferation and wound closure. TSC2‐positive and TSC2‐negative mouse embryonic fibroblasts (MEF), 323‐TSC2‐positive and 323‐TSC2‐null MEF and Eker rat uterine leiomyoma (ELT3) cells were treated with doxycycline or rapamycin alone, or in combination. Migration, wound closure and proliferation were assessed using a transwell migration assay, time‐lapse microscopy and manual cell counts respectively. RhoA‐GTPase activity, phosphorylation of p70S6 kinase (p70S6K) and focal adhesion kinase (FAK) in TSC2‐negative MEF treated with doxycycline were examined using ELISA and immunoblotting techniques. The enhanced migration of TSC2‐null cells was reduced by doxycycline at concentrations as low as 20 pM, while the rate of wound closure was reduced at 2–59 μM. Doxycycline decreased RhoA‐GTPase activity and phosphorylation of FAK in these cells but had no effect on the phosphorylation of p70S6K, ERK1/2 or AKT. Combining doxycycline with rapamycin significantly reduced the rate of wound closure at lower concentrations than achieved with either drug alone. This study shows that doxycycline inhibits TSC2‐null cell migration. Thus doxycycline has potential as an anti‐migratory agent in the treatment of diseases with TSC2 dysfunction.  相似文献   

7.
The protein kinase mammalian target of rapamycin (mTOR) is a central regulator of cell proliferation and growth, with the ribosomal subunit S6 kinase 1 (S6K1) as one of the key downstream signaling effectors. A critical role of mTOR signaling in skeletal muscle differentiation has been identified recently, and an unusual regulatory mechanism independent of mTOR kinase activity and S6K1 is revealed. An mTOR pathway has also been reported to regulate skeletal muscle hypertrophy, but the regulatory mechanism is not completely understood. Here, we report the investigation of mTOR's function in insulin growth factor I (IGF-I)-induced C2C12 myotube hypertrophy. Added at a later stage when rapamycin no longer had any effect on normal myocyte differentiation, rapamycin completely blocked myocyte hypertrophy as measured by myotube diameter. Importantly, a concerted increase of average myonuclei per myotube was observed in IGF-I-stimulated myotubes, which was also inhibited by rapamycin added at a time when it no longer affected normal differentiation. The mTOR protein level, its catalytic activity, its phosphorylation on Ser2448, and the activity of S6K1 were all found increased in IGF-I-stimulated myotubes compared to unstimulated myotubes. Using C2C12 cells stably expressing rapamycin-resistant forms of mTOR and S6K1, we provide genetic evidence for the requirement of mTOR and its downstream effector S6K1 in the regulation of myotube hypertrophy. Our results suggest distinct mTOR signaling mechanisms in different stages of skeletal muscle development: While mTOR regulates the initial myoblast differentiation in a kinase-independent and S6K1-independent manner, the hypertrophic function of mTOR requires its kinase activity and employs S6K1 as a downstream effector.  相似文献   

8.
The mammalian target of rapamycin complex 1 (mTORC1) functions as an environmental sensor to promote critical cellular processes such as protein synthesis, cell growth, and cell proliferation in response to growth factors and nutrients. While diverse stimuli regulate mTORC1 signaling, the direct molecular mechanisms by which mTORC1 senses and responds to these signals remain poorly defined. Here we investigated the role of mTOR phosphorylation in mTORC1 function. By employing mass spectrometry and phospho-specific antibodies, we demonstrated novel phosphorylation on S2159 and T2164 within the mTOR kinase domain. Mutational analysis of these phosphorylation sites indicates that dual S2159/T2164 phosphorylation cooperatively promotes mTORC1 signaling to S6K1 and 4EBP1. Mechanistically, S2159/T2164 phosphorylation modulates the mTOR-raptor and raptor-PRAS40 interactions and augments mTORC1-associated mTOR S2481 autophosphorylation. Moreover, mTOR S2159/T2164 phosphorylation promotes cell growth and cell cycle progression. We propose a model whereby mTOR kinase domain phosphorylation modulates the interaction of mTOR with regulatory partner proteins and augments intrinsic mTORC1 kinase activity to promote biochemical signaling, cell growth, and cell cycle progression.  相似文献   

9.
Actin cytoskeleton reorganization initiated by testosterone conjugates through activation of membrane androgen receptors (mAR) has recently been reported in colon tumor cells. This mAR-induced actin reorganization was recognized as a critical initial event, controlling apoptosis and inhibiting cell migration. The present study addressed the molecular signaling regulating the rapid actin remodeling initiated upon testosterone-induced mAR activation in Caco2 colon tumor cells. We report early phosphorylation of the Focal Adhesion Kinase (FAK), followed by substantial early phosphorylation of mammalian target of rapamycin (mTOR), S6 kinase (p70S6K) and the actin regulating p21-activated kinase (PAK1). Pharmacological inhibition of FAK-sensitive phosphatidylinositide-3-kinase (PI-3K), a known element of mAR-signaling, fully abrogated the testosterone-induced actin reorganization and the activation of mTOR, p70S6K and PAK1. Similarly, inhibition of mTOR blocked p70S6K and PAK1 phosphorylation and actin remodeling. Pretreatment of the cells with the intracellular androgen receptor (iAR) antagonist flutamide or silencing iAR through siRNA did not influence mTOR phosphorylation and actin reorganization, indicating specific mAR-induced testosterone effects that are independent of iAR signaling. In conclusion, we demonstrate for the first time a new mAR-governed pathway involving FAK/PI-3K and mTOR/p70S6K/PAK1-cascade that regulates early actin reorganization in colon cancer cells.  相似文献   

10.
Prostaglandin F2alpha (PGF2alpha) is an important mediator of corpus luteum (CL) regression, although the cellular signaling events that mediate this process have not been clearly identified. It is established that PGF2alpha binds to a G-proteincoupled receptor (GPCR) to stimulate protein kinase C (PKC) and Raf-MEK-Erk signaling in luteal cells. The present experiments were performed to determine whether PGF2alpha stimulates the mammalian target of rapamycin (mTOR)/ribosomal protein S6 kinase 1 (S6K1) signaling pathway in steroidogenic luteal cells. We demonstrate that PGF2alpha treatment results in a timeand concentration-dependent stimulation of the phosphorylation and activation of S6K1. The stimulation of S6K1 in response to PGF2alpha treatment was abolished by the mTOR inhibitor rapamycin. Treatment with PGF2alpha did not increase AKT phosphorylation but increased the phosphorylation of Erk and the tumor suppressor protein tuberous sclerosis complex 2 (TSC2), an upstream regulator of mTOR. The effects of PGF2alpha were mimicked by the PKC activator PMA and inhibited by U0126, a MEK1 inhibitor. The activation of mTOR/S6K1 and putative down stream processes involving the translational apparatus (i.e. 4EBP1 phosphorylation, release of 4EBP1 binding in m(7)G cap binding assays, and the phosphorylation and synthesis of S6) were completely sensitive to treatment with rapamycin, implicating mTOR in the actions of PGF2alpha. Taken together, our data suggest that GPCR activation in response to PGF2alpha stimulates the mTOR pathway which increases the translational machinery in luteal cells. The translation of proteins under the control of mTOR may have implications for luteal development and regression and offer new strategies for therapeutic intervention in PGF2alpha-target tissues.  相似文献   

11.
Tuberous sclerosis complex 1 (TSC1) inhibits mammalian target of rapamycin (mTOR), a central promotor of cell growth and proliferation. The protein product of the TSC1 gene, hamartin (referred to as TSC1) is known to interact with Polo-like kinase 1 (Plk1) in a cell cycle regulated, phosphorylation-dependent manner. We hypothesized that the p53 target gene, Plk2, is a tumor suppressor, mediating its tumor suppressor function through interactions with TSC1 that facilitate TSC1/2 restraint of mTOR under hypoxic stress. We found that human lung tumor cells deficient in Plk2 grew larger than control tumors, and that Plk2 interacts with endogenous TSC1 protein. Additionally, C-terminal Plk2-GST fusion protein bound both TSC1 and TSC2 proteins. TSC1 levels were elevated in response to Adriamycin and cells transiently over-expressing Plk2 demonstrated decreased phosphorylation of the downstream target of mTOR, ribosomal protein p70S6 kinase during hypoxia. Plk2 levels were inversely correlated with cytoplasmic p70S6K phosphorylation. Plk2 levels did not increase in response to DNA damage (Adriamycin, CPT-11) when HCT 116 and H460 cells were exposed to hypoxia. TSC1-deficient mouse embryonic fibroblasts with TSC1 added back demonstrated decreased S6K phosphorylation, which was further decreased when Plk2 was transiently over-expressed. Interestingly, under normoxia, Plk2 deficient tumor cells demonstrated increased apoptosis in response to various chemotherapeutic agents including CPT-11 but increased resistance to apoptotic death after CPT-11 treatment under hypoxia, and tumor xenografts comprised of these Plk2-deficient cells were resistant to CPT-11. Our results point to a novel Plk2-TSC1 interaction with effects on mTOR signaling during hypoxia, and tumor growth that may enable targeting Plk2 signaling in cancer therapy.  相似文献   

12.
Hyperactive mammalian target of rapamycin (mTOR) is associated with cognitive deficits in several neurological disorders including tuberous sclerosis complex (TSC). The phosphorylation of the mRNA-binding protein FMRP reportedly depends on mTOR complex 1 (mTORC1) activity via p70 S6 kinase 1 (S6K1). Because this phosphorylation is thought to regulate the translation of messages important for synaptic plasticity, we explored whether FMRP phosphorylation of the S6K1-dependent residue (S499) is altered in TSC and states of dysregulated TSC-mTORC1 signaling. Surprisingly, we found that FMRP S499 phosphorylation was unchanged in heterozygous and conditional Tsc1 knockout mice despite significantly elevated mTORC1-S6K1 activity. Neither up- nor down-regulation of the mTORC1-S6K1 axis in vivo or in vitro had any effect on phospho-FMRP S499 levels. In addition, FMRP S499 phosphorylation was unaltered in S6K1-knockout mice. Collectively, these data strongly suggest that FMRP S499 phosphorylation is independent of mTORC1-S6K1 activity and is not altered in TSC.  相似文献   

13.
Tuberous Sclerosis Complex is a multisystem disorder exhibiting a wide range of manifestations characterized by tumour-like lesions called hamartomas in the brain, skin, eyes, heart, lungs and kidneys. Tuberous Sclerosis Complex is genetically determined with an autosomal dominant inheritance and is caused by inactivating mutations in either the TSC1 or TSC2 genes. TSC1/2 genes play a fundamental role in the regulation of phosphoinositide 3-kinase (PI3K) signalling pathway, inhibiting the mammalian target of rapamycin (mTOR) through activation of the GTPase activity of Rheb. Mutations in TSC1/2 genes impair the inhibitory function of the hamartin/tuberin complex, leading to phosphorylation of the downstream effectors of mTOR, p70 S6 kinase (S6K), ribosomal protein S6 and the elongation factor binding protein 4E-BP1, resulting in uncontrolled cell growth and tumourigenesis.  相似文献   

14.
The mammalian target of rapamycin (mTOR) coordinates cell growth with the growth factor and nutrient/energy status of the cell. The phosphatidylinositol 3-kinase-AKT pathway is centrally involved in the transmission of mitogenic signals to mTOR. Previous studies have shown that mTOR is a direct substrate for the AKT kinase and identified Ser-2448 as the AKT target site in mTOR. In this study, we demonstrate that rapamycin, a specific inhibitor of mTOR function, blocks serum-stimulated Ser-2448 phosphorylation and that this drug effect is not explained by the inhibition of AKT. Furthermore, the phosphorylation of Ser-2448 was dependent on mTOR kinase activity, suggesting that mTOR itself or a protein kinase downstream from mTOR was responsible for the modification of Ser-2448. Here we show that p70S6 kinase phosphorylates mTOR at Ser-2448 in vitro and that ectopic expression of rapamycin-resistant p70S6 kinase restores Ser-2448 phosphorylation in rapamycin-treated cells. In addition, we show that cellular amino acid status, which modulates p70S6 kinase (S6K1) activity via the TSC/Rheb pathway, regulates Ser-2448 phosphorylation. Finally, small interfering RNA-mediated depletion of p70S6 kinase reduces Ser-2448 phosphorylation in cells. Taken together, these results suggest that p70S6 kinase is a major effector of mTOR phosphorylation at Ser-2448 in response to both mitogen- and nutrient-derived stimuli.  相似文献   

15.
哺乳动物雷帕霉素靶蛋白mTOR是一个进化上十分保守的蛋白激酶,属于PIKK超家族。在细胞内mTOR存在两种功能不同的复合体mTORC1和mTORC2。mTOR主要通过接受上游信号分子Rheb、TSC1/TSC2的调控来整合细胞内外信号,其下游效应器是4E-BP和p70S6K,通过影响特定mRNA的翻译调节细胞的生长和增殖。在神经系统方面,神经元的发育、突触可塑性的调节、学习和记忆的形成都依赖于适当的mTOR通路的活化。新近的研究显示,神经退行性疾病阿尔茨海默病患者表现mTOR通路的异常,在双转基因鼠中,APP和PS1表达与mTOR/P70S6K下调关联,并影响精神状态评分。mTOR信号通路生理功能和调节机制的研究对了解AD的发病机理和寻找药物靶点具有重要意义。  相似文献   

16.
Mammalian cells respond to nutrient deprivation by inhibiting energy consuming processes, such as proliferation and protein synthesis, and by stimulating catabolic processes, such as autophagy. p70 S6 kinase (S6K1) plays a central role during nutritional regulation of translation. S6K1 is activated by growth factors such as insulin, and by mammalian target of rapamycin (mTOR), which is itself regulated by amino acids. The Class IA phosphatidylinositol (PI) 3-kinase plays a well recognized role in the regulation of S6K1. We now present evidence that the Class III PI 3-kinase, hVps34, also regulates S6K1, and is a critical component of the nutrient sensing apparatus. Overexpression of hVps34 or the associated hVps15 kinase activates S6K1, and insulin stimulation of S6K1 is blocked by microinjection of inhibitory anti-hVps34 antibodies, overexpression of a FYVE domain construct that sequesters the hVps34 product PI3P, or small interfering RNA-mediated knock-down of hVps34. hVps34 is not part of the insulin input to S6K1, as it is not stimulated by insulin, and inhibition of hVps34 has no effect on phosphorylation of Akt or TSC2 in insulin-stimulated cells. However, hVps34 is inhibited by amino acid or glucose starvation, suggesting that it lies on the nutrient-regulated pathway to S6K1. Consistent with this, hVps34 is also inhibited by activation of the AMP-activated kinase, which inhibits mTOR/S6K1 in glucose-starved cells. hVps34 appears to lie upstream of mTOR, as small interfering RNA knock-down of hVps34 inhibits the phosphorylation of another mTOR substrate, eIF4E-binding protein-1 (4EBP1). Our data suggest that hVps34 is a nutrient-regulated lipid kinase that integrates amino acid and glucose inputs to mTOR and S6K1.  相似文献   

17.
The tumor suppressor tuberin, encoded by the Tuberous Sclerosis Complex (TSC) gene TSC2, negatively regulates the mammalian target of rapamycin (mTOR) pathway, which plays a key role in the control of cell growth and proliferation. In addition to naturally occurring mutations, several kinases including Akt, RSK1, and ERK are known to phosphorylate and inactivate tuberin. We demonstrate a novel mechanism of tuberin inactivation through ubiquitination by Pam, a putative RING finger-containing E3 ubiquitin (Ub) ligase in mammalian cells. We show that Pam associates with E2 ubiquitin-conjugating enzymes, and tuberin can be ubiquitinated by Pam through its RING finger domain. Tuberin ubiquitination is independent of its phosphorylation by Akt, RSK1, and ERK kinases. Pam is also self-ubiquitinated through its RING finger domain. Moreover, the TSC1 protein hamartin, which forms a heterodimer with tuberin, protects tuberin from ubiquitination by Pam. However, TSC1 fails to protect a disease-associated missense mutant of TSC2 from ubiquitination by Pam. Furthermore, Pam knockdown by RNA interference (RNAi) in rat primary neurons elevates the level of tuberin, and subsequently inhibits the mTOR pathway. Our results provide novel evidence that Pam can function as an E3 Ub ligase toward tuberin and regulate mTOR signaling, suggesting that Pam can in turn regulate cell growth and proliferation as well as neuronal function through the TSC/mTOR pathway in mammalian cells.  相似文献   

18.
The evolution of mitogenic pathways has led to the parallel requirement for negative control mechanisms, which prevent aberrant growth and the development of cancer. Principally, such negative control mechanisms are represented by tumor suppressor genes, which normally act to constrain cell proliferation (Macleod, K. 2000. Curr. Opin. Genet. Dev. 10:81-93). Tuberous sclerosis complex (TSC) is an autosomal-dominant genetic disorder, characterized by mutations in either TSC1 or TSC2, whose gene products hamartin (TSC1) and tuberin (TSC2) constitute a putative tumor suppressor complex (TSC1-2; van Slegtenhorst, M., M. Nellist, B. Nagelkerken, J. Cheadle, R. Snell, A. van den Ouweland, A. Reuser, J. Sampson, D. Halley, and P. van der Sluijs. 1998. Hum. Mol. Genet. 7:1053-1057). Little is known with regard to the oncogenic target of TSC1-2, however recent genetic studies in Drosophila have shown that S6 kinase (S6K) is epistatically dominant to TSC1-2 (Tapon, N., N. Ito, B.J. Dickson, J.E. Treisman, and I.K. Hariharan. 2001. Cell. 105:345-355; Potter, C.J., H. Huang, and T. Xu. 2001. Cell. 105:357-368). Here we show that loss of TSC2 function in mammalian cells leads to constitutive S6K1 activation, whereas ectopic expression of TSC1-2 blocks this response. Although activation of wild-type S6K1 and cell proliferation in TSC2-deficient cells is dependent on the mammalian target of rapamycin (mTOR), by using an S6K1 variant (GST-DeltaC-S6K1), which is uncoupled from mTOR signaling, we demonstrate that TSC1-2 does not inhibit S6K1 via mTOR. Instead, we show by using wortmannin and dominant interfering alleles of phosphatidylinositide-3-OH kinase (PI3K) that increased S6K1 activation is contingent upon the suppression of TSC2 function by PI3K in normal cells and is PI3K independent in TSC2-deficient cells.  相似文献   

19.
Tumour suppressors hamartin and tuberin, encoded by tuberous sclerosis complex 1(TSC1) and TSC2 genes, respectively, are critical regulators of cell growth and proliferation. Mutations in TSC1 and TSC2 genes are the cause of an autosomal dominant disorder known as tuberous sclerosis complex (TSC). Another genetic disorder, lymphangioleiomyomatosis (LAM), is also associated with mutations in the TSC2 gene. Hamartin and tuberin control cell growth by negatively regulating S6 kinase 1 (S6K1) and eukaryotic initiation factor 4E binding protein 1 (4E-BP1), potentially through their upstream modulator mammalian target of rapamycin (mTOR). Growth factors and insulin promote Akt/PKB-dependent phosphorylation of tuberin, which in turn, releases S6K1 from negative regulation by tuberin and results in the activation of S6K1. Although much has been written regarding the molecular genetics of TSC and LAM, which is associated with either the loss of or mutation in the TSC1 and TSC2 genes, few reviews have addressed the intracellular signalling pathways regulated by hamartin and tuberin. The current review will fill the gap in our understanding of their role in cellular signalling networks, and by improving this understanding, an integrated picture regarding the normal function of tuberin and hamartin is beginning to emerge.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号