首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zusammenfassung Die früher beschriebene Stilettbildung bei der Infektion von Polymyxa betae wird auf Grund elektronenoptischer Aufnahmen näher untersucht. Es zeigt sich, daß bei dieser Art ein besonders ausgebildetes Infektionsorgan vorliegt, aus dem ein als Stachel bezeichneter Körper in die Wirtszelle eindringt.
The process of infection by Polymyxa betae
Summary In zoospores of Polymyxa betae, attached to the root surface of the host plant, before infection a tubular structure is formed which points with its open site towards the host and extends into the interior of the spore. Within this tube an osmiophilic missile or bullet-like body is visible which is found after the infection within the host cell.
  相似文献   

2.
Parasitism of Trichoderma harzianum on Cystosori of Polymyxa betae Transmission electron microscope investigations revealed that cystosori of Polymyxa betae Keskin are, in vitro conditions, parasitized and completely degraded by Trichoderma harzianum Rifai. The hyperparasite showed a high ability in colonizing excised, surface-sterilized lateral roots of sugar beet and in invading the cystosori present in them. Both the walls of the root cells and of the cysts are enzymatically perforated. However, in cysts penetration, mechanical forces are also involved. After penetration, cysts undergo a rapid degradation and finally they appear to be completely empty or to contain only small amounts of degradated cytoplasm. Cyst walls are also strongly altered and deformed and only two thin osmiophylic residual layers are detectable.  相似文献   

3.
The control of rhizomania, one of the most important diseases of sugar beet caused by the Beet necrotic yellow vein virus, remains limited to varietal resistance. In this study, we investigated the putative action of Bacillus amylolequifaciens lipopeptides in achieving rhizomania biocontrol through the control of the virus vector Polymyxa betae. Some lipopeptides that are produced by bacteria, especially by plant growth-promoting rhizobacteria, have been found to induce systemic resistance in plants. We tested the impact of the elicitation of systemic resistance in sugar beet through lipopeptides on infection by P. betae. Lipopeptides were shown to effectively induce systemic resistance in both the roots and leaves of sugar beet, resulting in a significant reduction in P. betae infection. This article provides the first evidence that induced systemic resistance can reduce infection of sugar beet by P. betae.  相似文献   

4.
Ikuko Okabe 《Mycoscience》1997,38(1):75-77
Resting spore clusters ofPolymyxa graminis andP. betae, fungal vectors of virus diseases, were observed using the scanning electron microscope. The spore clusters in host plant cells were uncovered using the styrene resin cracking method. Resting spores ofP. graminis were found to be spherical, whileP. betae spores were more irregular in shape.  相似文献   

5.
Polymyxa betae isolates were obtained by means of bait plants from a large number of soil samples collected in eastern Germany. Additional P. betae isolates were received from several institutions in western Germany and abroad. Isolates were grown on sugarbeet seedlings and tested for the presence of beet necrotic yellow vein virus (BNYVV) and beet soilborne virus (BSBV). BNYVV was only present in isolates from western Germany and abroad but absent in all isolates from eastern Germany., In contrast, BSBV was detected in more uniform geographic distribution in 14 out of 33 P. betae isolates tested. The virulence of P. betae isolates was estimated on the basis of the extent of resting spore formation in the root system of sugarbeet seedlings. Differences in virulence were found among virus-free as well as virus-carrying P. betae isolates. The mean value of virulence ratings was distinctly lower with BNYVV-carrying isolates and slightly lower with BSBV-carrying isolates as compared to virus-free isolates.  相似文献   

6.
7.
8.
9.
The abiotic conditions required for eradication of Polymyxa betae, the vector of Beet necrotic yellow vein virus in sugar beet, were investigated. Survival of resting spores of P. betae was determined under aerobic (30 min, 4 days and 21 days) and anaerobic (4 days) conditions under several temperature regimes in a water suspension and in leachate extracted from an aerobic compost heap. In water under aerobic conditions the lethal temperature was 60, 55 and 40°C for exposure times of 30 min, 4 days and 21 days, respectively. The effect of compost leachate and/or anaerobic conditions on survival of P. betae depended on temperature. After incubation for 4 days at 20°C, no significant effects of anaerobic conditions or leachate on the survival of P. betae were found. However, at 40°C for 4 days under anaerobic conditions, survival of P. betae was significantly lower than survival under aerobic conditions in water as well as in leachate. In leachate taken from an aerobic compost heap, aerobically incubated at 40°C for 4 days, survival of P. betae was significantly lower than survival in water at the same temperature. As anaerobic spots are prevalent in aerobic compost heaps, especially during the thermophilic phase, actual inactivation temperatures under composting conditions are likely to be lower than the temperatures we found for eradication in water under aerobic conditions.  相似文献   

10.
The soil fungus Polymyxa betae, Keskin, besides being a root parasite, plays a role of a vector in dissemination of Beet necrotic yellow vein virus (BNYVV) causing rhizomania in sugar beet. An alternative to its chemical control is the application of antagonistic microorganisms suppressing proliferation of the fungal vector. In the present work, 66 Trichoderma isolates have been obtained from sugar beet plantations from diverse locations in Slovakia. The ability of the selected isolates to grow at low temperature (10 °C) and to suppress the colonization of roots with P. betae and the multiplication of BNYVV in roots under glasshouse conditions were tested. The roots of sugar beet seedlings growing in the BNYVV-infested soil were analyzed by serological ELISA test using monoclonal and polyclonal antibodies for the presence of BNYVV and checked microscopically for the occurrence of cystosori of P. betae. The efficacy of the selected strains to suppress the proliferation of BNYVV varied on the average between 21 and 68%. On the basis of these tests, candidate strains for practical application in biocontrol of sugar beet rhizomania were selected.  相似文献   

11.
A simple subtractive hybridization was applied for cloning of Polymyxa graminis deoxyribonucleic acid (DNA). Total DNA preparations from concentrated P. graminis resting spores and from roots of non‐infested (healthy) barley were digested with different restriction enzymes and batch hybridized, followed by cloning in a plasmid vector. Sequencing and blast analysis of coincidentally selected clones enabled construction of polymerase chain reaction primers specific to P. graminis DNA. Four Polymyxa‐specific primers showed different affinities to DNA of type I and type II P. graminis and to DNA of P. betae.  相似文献   

12.
The fungus Polymyxa betae is an obligate parasite of the roots of many plants of the family Chenopodiaceae. In the sugar beet, it acts as a vector of beet necrotic yellow vein virus, the agent of a serious disease known as rhizomania. With indirect methods of analysis, such as bioassay, one can establish only the presence or absence, but not the quantity, of P. betae in soil. A new method based on the technique of the most probable number (MPN) of infective units of P. betae present in the soil was developed on the basis of the biological characteristics of this microorganism. Compared with traditional bioassay methods, the MPN method is suitable for determining the contamination level of P. betae in a soil, and it appears promising for the routine analysis of many soil samples, whether they were affected by rhizomania or presumed noninfested. The instrumentation designed especially for the recovery of viable P. betae from soil with the MPN technique is made from commercially available materials, results in a saving of space during sample incubation, and permits this method to be used for any laboratory analysis.  相似文献   

13.
Resca  R.  Basaglia  M.  Poggiolini  S.  Vian  P.  Bardin  S.  Walsh  U. F.  Enriquez Barreiros  C. M.  O'Gara  F.  Nuti  M. P.  Casella  S.  Peruch  U. 《Plant and Soil》2001,232(1-2):215-226
Rhizomania is an extremely severe sugarbeet disease caused by the complex Polymyxa betae/Beet Necrotic Yellow Vein Virus (BNYVV). A relatively small number of recently introduced sugarbeet cultivars characterized by a high tolerance to rhizomania are available on the market. An integrated approach was therefore developed using Pseudomonas fluorescens biological control agents (BCAs) in order to improve yield performance of cultivars characterized by a medium tolerance to the disease. A genetically modified biological control agent, Pseudomonas fluorescens F113Rif (pCUGP), was developed for enhanced production of the antimicrobial metabolite 2,4-diacetylphloroglucinol (Phl) and lacking an antibiotic resistance marker gene, making the strain suitable for field release. The ability of synthetic Phl and P. fluorescens F113Rif (pCUGP) to antagonize the fungal vector, P. betae, was assessed in microcosm trials. Results encouraged the preparation of multiple field trials in a soil naturally infested with P. betae/BNYVV, to determine the biocontrol efficacy of P. fluorescens F113Rif (pCUGP) and to assess its impact on sugarbeet yield and quality and on the indigenous microbial population. While the colonization ability of P. fluorescens F113Rif (pCUGP) was satisfactory at sugarbeet emergence (2.5×106 CFU g–1 root), control of rhizomania was not achieved. Inoculation of sugarbeet with Pseudomonas fluorescens F113Rif (pCUGP) did not affect crop yield and quality nor affect the numbers of selected microbial populations.  相似文献   

14.
Zoospore suspensions of Polymyxa betae were analysed for their potential as inocula to infect sugar beet plants with beet necrotic yellow vein furovirus. The infectivity could be maintained when zoospore suspensions were serially transferred. When zoospore-producing seedlings were individually transferred some of these seedlings lost their infectivity after several passages. Infectivity was first detected in suspensions within I day after inoculation of the plant by zoospores. The suspensions remained infectious for at least 10 h after removal of the plants producing viruliferous zoospores. Both the number of test plants infected and the concentration of virus that developed were greater at 25 C than at 20 C.  相似文献   

15.
The fungus Polymyxa betae Keskin belongs to the family Plasmodiophoraceae and lives in the soil as an obligatory parasite of the roots of the Chenopodiaceae. When contaminated by beet necrotic yellow vein virus, this viruliferous fungus causes a serious disease of sugar beet known as rhizomania, whereas the infection by the fungus alone (aviruliferous fungus) causes only slight damage to the plant with little economic consequence. The manifestation of rhizomania in sugar beet is directly related to the concentration of infecting units of viruliferous P. betae present in the soil. (One infecting unit is a group of one or more sporosori that liberate zoospores capable of visibly infecting a plant.) By using current methods of analysis, it is possible to estimate the total quantity of P. betae present in the soil, but one cannot distinguish quantitatively the infecting units of aviruliferous from viruliferous P. betae. A new method has been developed based on the technique of the most probable number and enzyme-linked immunosorbent assay to estimate the concentration of infecting units of viruliferous P. betae in soil. The method is suitable for the routine analysis of numerous soil samples and allows one to estimate the concentration of viable forms of the fungus P. betae, whether or not contaminated by beet necrotic yellow vein virus, present in a soil affected by rhizomania or presumed healthy. The analyses performed with this method are economical and use a reagent kit and equipment in wide use.  相似文献   

16.
《Genomics》2022,114(1):9-22
Genomic knowledge of the tree of life is biased to specific groups of organisms. For example, only six full genomes are currently available in the rhizaria clade. Here, we have applied metagenomic techniques enabling the assembly of the genome of Polymyxa betae (Rhizaria, Plasmodiophorida) RES F41 isolate from unpurified zoospore holobiont and comparison with the A26–41 isolate. Furthermore, the first P. betae mitochondrial genome was assembled. The two P. betae nuclear genomes were highly similar, each with just ~10.2 k predicted protein coding genes, ~3% of which were unique to each isolate. Extending genomic comparisons revealed a greater overlap with Spongospora subterranea than with Plasmodiophora brassicae, including orthologs of the mammalian cation channel sperm-associated proteins, raising some intriguing questions about zoospore physiology. This work validates our metagenomics pipeline for eukaryote genome assembly from unpurified samples and enriches plasmodiophorid genomics; providing the first full annotation of the P. betae genome.  相似文献   

17.
The evaluation of rhizomania resistant sugar beet for the UK   总被引:4,自引:0,他引:4  
Sugar beet rhizomania disease, caused by Beet necrotic yellow vein virus and transmitted by the soil‐borne parasite Polymyxa betae, was first recorded in the UK in 1987. Recently, breeding lines and cultivars with partial resistance to the virus derived from the ‘Holly’ source of resistance have been developed and their suitability for use under UK conditions is explored in this paper. Virus multiplication in the roots of resistant lines exposed to severe disease pressure in glasshouse tests, when quantified by ELISA, was less than one third of that in susceptible controls. More recently developed resistant lines had a lower virus content, on average, largely due to a reduced frequency of susceptible individuals. There was no evidence for resistance to the vector, P. betae, in virus resistant lines. However, the proportion of viruliferous P. betae resting spores in the roots, estimated using the most probable number (MPN) technique, was reduced by at least one third in resistant lines compared with the most susceptible control. A novel line, containing an additional gene to that in ‘Holly’, was the most effective, reducing the infection level to 3% of that in the susceptible control. In two field experiments on severely infested sites, the rate of infection of a resistant line, when assessed by ELISA, was reduced by half compared with a susceptible cultivar and sugar yields of resistant lines were consistently 2–3 times higher than those of susceptible cultivars. In 41 trials on rhizomania‐free sites, several recently introduced resistant lines exhibited sugar yields and agronomic performance comparable to that of three selected high yielding, susceptible cultivars. Results are discussed in relation to the specific UK requirements for rhizomania resistant cultivars. One resistant line, Beta 805 (cv. Concept), fulfilled the requirements for widespread use to control the disease.  相似文献   

18.
Rhizomania, one of the most devastating diseases in sugar beet, is caused by Beet Necrotic Yellow Vein Virus (BNYVV) belonging to the genus Benyvirus. Use of sugar beet varieties with resistance to BNYVV is generally considered as the only way to maintain a profitable yield on rhizomania-infested fields. As an alternative to natural resistance, we explored the transgenic expression of viral dsRNA for engineering resistance to rhizomania. Transgenic plants expressing an inverted repeat of a 0.4 kb fragment derived from the BNYVV replicase gene displayed high levels of resistance against different genetic strains of BNYVV when inoculated using the natural vector, Polymyxa betae. The resistance was maintained under high infection pressures and over prolonged growing periods in the greenhouse as well as in the field. Resistant plants accumulated extremely low amounts of transgene mRNA and high amounts of the corresponding siRNA in the roots, illustrative of RNA silencing as the underlying mechanism. The transgenic resistance compared very favourably to natural sources of resistance to rhizomania and thus offers an attractive alternative for breeding resistant sugar beet varieties.  相似文献   

19.
Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) is one of the most devastating sugar beet diseases. Sugar beet plants engineered to express a 0.4 kb inverted repeat construct based on the BNYVV replicase gene accumulated the transgene mRNA to similar levels in leaves and roots, whereas accumulation of the transgene-homologous siRNA was more pronounced in roots. The roots expressed high levels of resistance to BNYVV transmitted by the vector, Polymyxa betae. Resistance to BNYVV was not decreased following co-infection of the plants with Beet soil borne virus and Beet virus Q that share the same vector with BNYVV. Similarly, co-infection with the aphid-transmitted Beet mild yellowing virus, Beet yellows virus (BYV), or with all of the aforementioned viruses did not affect the resistance to BNYVV, while they accumulated in roots. These viruses are common in most of the sugar beet growing areas in Europe and world wide. However, there was a competitive interaction between BYV and BMYV in sugar beet leaves, as infection with BYV decreased the titres of BMYV. Other interactions between the viruses studied were not observed. The results suggest that the engineered resistance to BNYVV expressed in the sugar beets of this study is efficient in roots and not readily compromised following infection of the plants with heterologous viruses.  相似文献   

20.
Leaf spot disease of A. vera was observed in nurseries of Gwalior city afterthe post-rainy season. As the disease progressed, the tip of the leaf shrank, then dried and eventually broke. The causal agent was identified as Phoma betae A.B. Frank. This is the first report of leaf spot disease on Aloe vera caused by P. betae in India.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号