首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The Norwegian spring-spawning (NSS) herring (Clupea harengus), blue whiting (Micromesistius poutassou) and Northeast Atlantic (NEA) mackerel (Scomber scombrus) are extremely abundant pelagic planktivores that feed in the Norwegian Sea (NS) during spring and summer. This study investigated the feeding ecology and diet composition of these commercially important fish stocks on the basis of biological data, including an extensive set of stomach samples in combination with hydrographical data, zooplankton samples and acoustic abundance data from 12 stock monitoring surveys carried out in 2005–2010. Mackerel were absent during the spring, but had generally high feeding overlap with herring in the summer, with a diet mainly based on calanoid copepods, especially Calanus finmarchicus, as well as a similar diet width. Stomach fullness in herring diminished from spring to summer and feeding incidence was lower than that of mackerel in summer. However, stomach fullness did not differ between the two species, indicating that herring maintain an equally efficient pattern of feeding as mackerel in summer, but on a diet that is less dominated by copepods and is more reliant on larger prey. Blue whiting tended to have a low dietary overlap with mackerel and herring, with larger prey such as euphausiids and amphipods dominating, and stomach fullness and feeding incidence increasing with length. For all the species, feeding incidence increased with decreasing temperature, and for mackerel so did stomach fullness, indicating that feeding activity is highest in areas associated with colder water masses. Significant annual effects on diet composition and feeding-related variables suggested that the three species are able to adapt to different food and environmental conditions. These annual effects are likely to have an important impact on the predation pressure on different plankton groups and the carrying capacity of individual systems, and emphasise the importance of regular monitoring of pelagic fish diets.  相似文献   

2.
Diel feeding patterns of herring Clupea harengus and mackerel Scomber scombrus in the southern Gulf of St Lawrence were examined based on samples obtained by midwater trawling between 19 and 26 June 2001. Within 3 h time periods, stomach contents tended to be more similar between fish from the same tow than between fish from different tows. Thus, in contrast to previous diet studies, which have used individual fish stomachs as independent observations, tow was used as the experimental unit in statistical analyses in this study. Diel patterns in stomach fullness were identified using generalized additive models. Two peaks in stomach fullness occurred for herring, one in the morning and the other in the evening. Mackerel showed an increase in feeding intensity throughout the day with a peak in mid‐afternoon. The diel changes in stomach contents suggested rapid gastric evacuation rates for both species, especially for herring. The estimate of the instantaneous evacuation rate for herring was twice that for mackerel. Calanus copepods (mainly C. hyperboreus ), fishes (mainly capelin Mallotus villosus ) and euphausiids were the main prey found in the stomachs of both species. Calanus copepods dominated the diet of herring regardless of time period. They also dominated the diet of mackerel during the late afternoon, evening and night while fishes and euphausiids were dominant during the morning and early afternoon. These diel patterns emphasize the need for sampling throughout the day and night in order to estimate ration and diet composition for bioenergetic and ecosystem models.  相似文献   

3.
Feeding ecology of central Baltic Sea herring and sprat   总被引:7,自引:0,他引:7  
A unique dataset of stomach contents sampled between 1977 and 1999 in the central Baltic Sea was used to perform a comprehensive study of the feeding ecology of Central Baltic herring Clupea harengus and sprat Sprattus sprattus . Both fish species were mainly preying upon calanoid copepods with Pseudocalanus sp. dominating the diet of herring, whereas sprat generally preferred Temora longicornis . Sprat preyed upon older copepodite stages, indicating size‐selective particulate feeding, whereas herring additionally fed on smaller copepodite stages, indicating occasional low food supply inducing filter‐feeding. Additional food sources other than copepods were mysids in winter and autumn for medium to large herring, as well as cladocerans for sprat in spring and summer, determined by the seasonal occurrence of these plankton species. Seasonally the highest feeding activity of both fishes species occurred in spring and summer, the main reproductive periods of calanoid copepods. The most important food item for both predators in spring was Pseudocalanus sp. In summer sprat switched to T. longicornis and Acartia spp. Since the late 1970s, the total stomach fullness decreased and the fraction of empty stomachs increased. In parallel the amount of Pseudocalanus sp. in the diets of both fish species decreased. Further, a considerable dietary overlap between both species in spring indicated considerable competition for food resources, especially due to an enlarged sprat stock. The results of this study support the hypothesis that growth reductions observed in Baltic herring and sprat are due to combination of a change in food availability and an increase in density‐dependent competition.  相似文献   

4.
The ontogeny of swimming speed, schooling behaviour and jellyfish avoidance was studied in hatchery-reared Japanese anchovy Engraulis japonicus to compare its life-history strategy with two other common pelagic fishes, jack mackerel Trachurus japonicus and chub mackerel Scomber japonicus. Cruise swimming speed of E. japonicus increased allometrically from 1·4 to 3·9 standard length (L(S) ) per s (L(S) s(-1) ) from early larval to metamorphosing stage. Burst swimming speed also increased from 6·1 to 28 L(S) s(-1) in these stages. Cruise speed was inferior to that of S. japonicus, as was burst speed to that of T. japonicus. Engraulis japonicus larvae were highly vulnerable to predation by moon jellyfish Aurelia aurita and were readily eaten until they reached 23 mm L(S) , but not at 26 mm L(S) . Schooling behaviour (indicated by parallel swimming) started at c. 17 mm L(S) . Average distance to the nearest neighbour was shorter than values reported in other pelagic fishes. The relatively low predator avoidance capability of E. japonicus may be compensated for by their transparent and thus less conspicuous body, in addition to their early maturation and high fecundity.  相似文献   

5.
There are two factors affecting long-term fluctuation of planktotrophic pelagic fish: environmental fluctuation and interspecific competition. Long-term catch data of planktotrophic pelagic fishes in Japan suggest that the chub mackerel (species B) was replaced by the sardine (A), A was replaced by the anchovy, Pacific saury and horse mackerel (Group C), and species in group C were replaced by species B. If species A defeats B, B defeats C, and C defeats A in interspecific competitive ability, then the abundance of these three groups fluctuate forever and dominate in the same order. We call this cyclic advantage hypothesis for species replacement. In this model, environmental fluctuation affects the species replacement as a trigger. Environmental fluctuation does not determine the next dominant species but greatly affects when the next replacement occurs.  相似文献   

6.
Does diet in Celtic Sea fishes reflect prey availability?   总被引:1,自引:0,他引:1  
Feeding preferences of Celtic Sea fishes were investigated using a database of stomach content records, collected between 1977 and 1994. The diet of cod Gadus morhua , hake Merluccius merluccius , megrim Lepidorhombus whiffiagonis , whiting Merlangius merlangus and saithe Pollachius virens changed markedly as the animals grew larger, and although large predators generally chose larger bodied prey, the variability of prey sizes consumed also increased. Large predators continued to select small, low value, benthic prey ( e.g . Callionymus spp. and Trisopterus spp.) which were easier to catch, rather than larger, more energy lucrative pelagic prey ( e.g . mackerel Scomber scombrus ), even though these pelagic prey‐fishes were nearly always available and were often very abundant. Stock estimates of the International Council for the Exploration of the Sea and U.K. groundfish survey catches were used as indices of prey abundance. Blue‐whiting Micromesistius poutassou and other small pelagic fishes ( Argentina spp. and clupeoids) were identified as being particularly important, and were consumed by some predators more often than would be expected given the abundance of these prey in the environment. There was no evidence for density‐dependent feeding by predators on mackerel and only hake exhibited density‐dependent feeding on horse‐mackerel. Hake, cod and megrim consumed more blue‐whiting when this prey was at higher abundance in the environment. In choosing what prey to consume, predators must balance costs and benefits, considering the quality of prey and the energy expended during search, capture and handling.  相似文献   

7.
We performed a captive feeding experiment using California sea lions to assess biases associated with estimating pinniped diet using scats and spews. Sea lions were fed nine of their natural prey species: anchovy, sardine, Pacific mackerel, jack mackerel, hake, steelhead smolts, shortbelly rockfish, pink salmon, and market squid. Recovery percentages varied among prey species using otoliths and were improved for adult salmon and sardine using the all‐structure method. Numerical and graded length correction factors provided better estimates of number and size of prey consumed. Four models used to determine the proportions of prey species consumed by a sea lion population were tested. The all‐structure method and variable biomass reconstruction model, in conjunction with numerical and graded length correction factors, provided more accurate estimates than without. We provide numerical correction factors for all prey species, including correction factors for specific salmon bones: vertebrae, branchials, radials, teeth, gill rakers, and hypurals.  相似文献   

8.
Distributional pattern and qualitative composition of ichthyoplankton in waters of the Southern Pacific in September 2002?CJanuary 2003 and in August?CNovember 2009 are analyzed. We noted approximately 70 species of fish pelagic eggs and larvae of fishes belonging to 34 families in this region. Change in distribution of the basic object of commercial fishery of this region, i.e., Peruvian-Chilean jack mackerel Trachurus murphyi, in early ontogenesis are considered in detail. The obtained data on the species composition, distribution, and abundance of ichthyoplankton in this region are compared with the results of investigations in the past years. The spawning biomass of jack mackerel is also estimated in the work by the amount of the eggs spawned by females in the places of their greatest concentrations.  相似文献   

9.
Infection patterns of trophically transmitted helminth parasites were compared with feeding ecology in two sympatric whitefish Coregonus lavaretus morphs from two lake systems in northern Norway. In both lakes, the pelagic morph was an obligate zooplanktivore, while the benthic morph utilized both the benthivore and zooplanktivore trophic niches. The differences in niche utilization between the two morphs were associated with differences in trophic morphology (gill raker numbers), suggesting that they were genetically dissimilar and reproductively isolated. The benthic morph had the highest number of helminth species, probably because they exhibited a broader niche width compared to the pelagic morph. In both lakes, the species composition and intensities of helminths reflected the trophic diversification of the whitefish ecotypes with respect to different habitat choice (benthic v . pelagic) and dietary specialization (benthivore v . zooplanktivore feeding strategies within the benthic whitefish morph). Zooplanktivorous fish from both morphs acquired parasites mainly from pelagic copepods and in almost equal quantities. The benthivore feeders within the benthic morph had the highest proportion of parasites with transmission stages from benthic organisms. Host feeding behaviour seemed to be a major determinant of the helminth community structure, and helminths appeared to be useful indicators of long-term trophic specialization of whitefish ecotypes.  相似文献   

10.
The meso-scale trophic dynamics of cod Gadus morhua were examined based upon tri-monthly stomach sample collections from a nearshore, localized ( c. 800 km2) region off Cape Cod, Massachusetts, U.S.A. The major objective for this work was to relate any changes in cod diet and amount of food eaten to seasonal variations in prey availability, water temperature and spawning at a spatial scale between broad-scale and laboratory studies. Results suggested that the type and amount of food eaten by cod was generally consistent throughout a year and repeatable across years. Cod feeding was marked by two periods of increased feeding, corresponding to the arrival of small pelagic fishes in the area. This pelagic migration and subsequent increased feeding by cod occurred during important periods in the life history of cod ( e.g . spawning and overwintering). Similar annual patterns in food consumption and diet composition were remarkably consistent over the 2·5 years of the project, suggesting important feeding periods for cod that correspond to environmental and biological events. The diet of cod was composed primarily of several species of forage fishes [ e.g. herrings (predominantly Atlantic herring Clupea harengus ), sand lance Ammodytes sp. and Atlantic mackerel Scomber scombrus ], ophiuroids, Cancer sp. crabs and other small crustaceans. It was inferred that cod exhibited a maintenance diet on local forage fishes and benthic macroinvertebrates, augmenting their diet by seasonally gorge feeding upon migrating pelagic species.  相似文献   

11.
Dietary-morphological relationships of fishes in Liangzi Lake, China   总被引:6,自引:0,他引:6  
S. Xie  Y. Cui  Z. Li 《Journal of fish biology》2001,58(6):1714-1729
Species in Liangzi Lake were clustered into four trophic groups: Hemiramphus kurumeus and Hemiculter bleekeri bleekeri fed predominantly on terrestrial insects; Carassius auratus auratus and Abbottina rivularis on non-animal food; Hypseleotris swinhonis, Ctenogobius giurinus, Pseudorasbora parva and Toxabramis swinhonis on cladocerans or copepods; Culterichthys erythropterus on decapod shrimps. Gut length, mouth width, mouth height, gill raker length and gill raker spacing, varied widely among species. With the exception of three species pairs ( H. swinhonis, C. giurinus; C. erythropterus, H. kurumeus; T. swinhonis, H. bleekeri bleekeri ), principal components analysis of morphological variables revealed over-dispersion of species. Canonical correspondence analysis of dietary and morphological data revealed five significant dietary-morphological correlations. The first three roots explained > 85% of the total variance. The first root reflected mainly the relationship of gut length to non-animal food, with an increase in gut length associated with an increase in non-animal food. The second root was influenced strongly by the relationship of the gill raker spacing to consumption of copepods, with an increase in gill raker spacing associated positively with copepods in the diet. The third root was influenced by the relationship of mouth gape to consumption of fish and decapod shrimps, with an increase in mouth gape associated with more fish and decapod shrimps in the diet. These significant dietary-morphological relationships supported the eco-morphological hypotheses that fish morphology influence food use, and morphological variation is important in determining ecological segregation of co-existing fish species.  相似文献   

12.
The Northeast Atlantic mackerel (Scomber scombrus) has been extending its summer feeding distribution north and west, including around Iceland, since around 2006. The objective of this study is to quantify the weight gain and total food consumption of mackerel and to evaluate the food competition between mackerel and herring (Clupea harengus) feeding in the marine ecosystem around Iceland during the summers 2009–2011. Mackerel feeding in Icelandic waters gained around 43% on average in weight during these summers. Based on swept-area abundance estimates of mackerel from an international survey in 2011 and available estimates of food conversion efficiency in mackerel, the weight gain in Icelandic waters in 2011 corresponded to a total consumption of around 3.4 (2.4?4.5) million tonnes. Overall, 98% of 2314 mackerel, 91% of 398 Icelandic summer-spawning herring and 96% of 424 Norwegian spring-spawning herring stomachs, collected over the summers 2009?2011, contained food. The mean weight of the stomach content of mackerel was higher than for herring in all the years. While the stomach content weight of mackerel was generally highest in southeastern and southwestern areas, it was highest for herring in western, eastern and northern areas. Analysis of stomach contents showed that Copepoda were the most important food of mackerel in most areas, while Copepoda and Euphausiacea were the most important food items for herring. Fish prey contributed a higher proportion in stomachs of mackerel than herring, although relatively low for both species.  相似文献   

13.
Synopsis Variability in the mean number of gill rakers was examined in 17 tropical (Panama) and 16 temperate (Canada) freshwater fishes. Ranges for an additional 16 temperate species were obtained from the literature. Variance in gill raker number within species was significantly greater in the tropical species. The tropical species also showed significantly greater dispersion of the species means when among-species variation was compared to an overall mean for each latitude. The reduced among-species variation observed in the temperate species appears to result from a scarcity of high raker means in small, stream species of Canada. This study offers no evidence for the existence of greater feeding specialization among small, primarily stream fishes in the neotropics. The data suggest that the food resource spectrum utilized by these species may be shorter at the higher latitudes examined.  相似文献   

14.
The oceanic bathypelagic realm (1000–4000m) is a nutrient-poor habitat. Most fishes living there have pelagic larvae using the rich waters of the upper 200m. Morphological and behavioural specializations necessary to occupy such contrasting environments have resulted in remarkable developmental changes and life-history strategies. We resolve a long-standing biological and taxonomic conundrum by documenting the most extreme example of ontogenetic metamorphoses and sexual dimorphism in vertebrates. Based on morphology and mitogenomic sequence data, we show that fishes currently assigned to three families with greatly differing morphologies, Mirapinnidae (tapetails), Megalomycteridae (bignose fishes) and Cetomimidae (whalefishes), are larvae, males and females, respectively, of a single family Cetomimidae. Morphological transformations involve dramatic changes in the skeleton, most spectacularly in the head, and are correlated with distinctly different feeding mechanisms. Larvae have small, upturned mouths and gorge on copepods. Females have huge gapes with long, horizontal jaws and specialized gill arches allowing them to capture larger prey. Males cease feeding, lose their stomach and oesophagus, and apparently convert the energy from the bolus of copepods found in all transforming males to a massive liver that supports them throughout adult life.  相似文献   

15.
Daily ration of juvenile Japanese Spanish mackerel Scomberomorus niphonius (32·1–33·1 mm standard length, L S) was estimated at three temperatures (18·6, 19·5 and 21·2° C) in the laboratory. Gastric evacuation rate ranged between 0·398 (18·6° C) and 0·431 (21·2° C). Diel change in instantaneous consumption rate indicated that juvenile Japanese Spanish mackerel are daylight feeders. The estimated values of the daily ration ranged between 66·1%(18·6° C) and 82·6%(21·2° C) of body mass. These per cent values of daily ration were converted to daily consumption in mg (28 mg at 18·6° C to 34 mg at 21·2° C) using the mean dry body mass of juvenile Japanese Spanish mackerel of 30 mm (42·1 mg). Stomach content analysis of wild specimens collected in the Seto Inland Sea, south‐western Japan, revealed that the majority of wild Japanese Spanish mackerel larvae and juveniles ingested fish larvae with a body size >50% of the predator L S. Based on the predator‐prey size relationship, the daily consumption of a Japanese Spanish mackerel juvenile of 30 mm was equivalent to 5·1 (18·6° C) to 6·4 (21·2° C) Japanese anchovy Engraulis japonicus larvae which was the dominant prey organism in stomachs of the wild Japanese Spanish mackerel.  相似文献   

16.
Optimal foraging and feeding mode shifts in fishes   总被引:1,自引:0,他引:1  
Synopsis Most optimal foraging models for fishes are based on particulate feeding behavior. But many obligate planktivores also filter zooplankton. I suggest that feeding mode shifts (e.g. from particulate feeding to filtering) may be predictable from the costs and benefits of foraging in various modes. Quantitative examples of feeding mode shifts in three species of fishes (northern anchovy, pacific mackerel and alewife) from 3 different families support this hypothesis. Feeding mode shifts seem to depend on relative profitability of each mode, but improvements in model predictions will need to include the effects of spatial and temporal patchiness on encounter rates of prey of various sizes.  相似文献   

17.
Priest  M. A.  Simpson  S. D.  & Dytham  C. 《Journal of fish biology》2003,63(S1):254-255
The Indo‐Pacific consists of extensive continuous coastlines and many island groups of varying sizes and isolation. The species ranges of coral reef fishes vary enormously from Indo‐Pacific wide to highly endemic. There is also great variation in the early life history characteristics of coral reef fishes ( e.g . pelagic larval durations, spawning strategies and swimming abilities). We use individual‐based models (IBMs) to simulate the dispersal of coral reef fishes in the Indo‐Pacific. The development of dispersal strategies is explored based on ecological and geographical constraints. Simulations are presented for climatic and anthropogenically‐induced events.  相似文献   

18.
Gill raker divergence is a general pattern in adaptive radiations of postglacial fish, but few studies have addressed the adaptive significance of this morphological trait in foraging and eco-evolutionary interactions among predator and prey. Here, a set of subarctic lakes along a diversifying gradient of coregonids was used as the natural setting to explore correlations between gill raker numbers and planktivory as well as the impact of coregonid radiation on zooplankton communities. Results from 19 populations covering most of the total gill raker number gradient of the genus Coregonus, confirm that the number of gill rakers has a central role in determining the foraging ability towards zooplankton prey. Both at the individual and population levels, gill raker number was correlated with pelagic niche use and the size of utilized zooplankton prey. Furthermore, the average body size and the abundance and diversity of the zooplankton community decreased with the increasing diversity of coregonids. We argue that zooplankton feeding leads to an eco-evolutionary feedback loop that may further shape the gill raker morphology since natural selection intensifies under resource competition for depleted prey communities. Eco-evolutionary interactions may thus have a central role creating and maintaining the divergence of coregonid morphs in postglacial lakes.  相似文献   

19.
A study on the feeding ecology of juvenile cod Gadus morhua, haddock Melanogrammus aeglefinus and whiting Merlangius merlangus during the pelagic to demersal transition was carried out on fishes sampled throughout their settlement season at a local nursery ground in the north-western North Sea, off the Scottish east coast. A comprehensive quantitative taxonomic analysis of the diets, as described in the paper, showed the emergence of distinctive feeding niches, minimizing the potential for competition between species and size categories. The diet of the juveniles changed with fish size, water depth, time of year and distance offshore. Small G. morhua were present in the study area earlier in the season, settled further inshore and ate a higher proportion of pelagic prey (copepods) and as size increased they moved into deeper waters and targeted larger, more benthic prey. As M. aeglefinus grew larger and moved into deeper waters, a diet of largely copepods, amphipods, pelagic Ammodytes spp., cyprids and pelagic gastropods evolved to one dominated predominantly by fishes and benthic invertebrates. In the case of M. merlangus, widespread ages and sizes throughout the sampling season, a consequence of their more protracted spawning season, resulted in dietary changes which were more likely to be influenced by seasonal changes in the prey field, in addition to developmental (size) changes, than the diets of the other two species.  相似文献   

20.
Pelagic fishes are among the most ecologically and economically important fish species in European seas. In principle, these pelagic fishes have potential to demonstrate rapid abundance and distribution shifts in response to climatic variability due to their high adult motility, planktonic larval stages, and low dependence on benthic habitat for food or shelter during their life histories. Here, we provide evidence of substantial climate‐driven changes to the structure of pelagic fish communities in European shelf seas. We investigated the patterns of species‐level change using catch records from 57 870 fisheries‐independent survey trawls from across European continental shelf region between 1965 and 2012. We analysed changes in the distribution and rate of occurrence of the six most common species, and observed a strong subtropicalization of the North Sea and Baltic Sea assemblages. These areas have shifted away from cold‐water assemblages typically characterized by Atlantic herring and European sprat from the 1960s to 1980s, to warmer‐water assemblages including Atlantic mackerel, Atlantic horse mackerel, European pilchard and European anchovy from the 1990s onwards. We next investigated if warming sea temperatures have forced these changes using temporally comprehensive data from the North Sea region. Our models indicated the primary driver of change in these species has been sea surface temperatures in all cases. Together, these analyses highlight how individual species responses have combined to result in a dramatic subtropicalization of the pelagic fish assemblage of the European continental shelf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号