首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of different dietary fat intake on the lipid composition and enzyme behaviour of sarcolemmal (Na+ + K+)ATPase and sarcoplasmic reticulum Ca2+-ATPase from rat heart were investigated. Rat diets were supplemented with either sunflower seed oil (unsatd./satd. 5.6) or sheep kidney fat (unsatd./satd. 0.8). Significant changes in the phospholipid fatty acid composition were observed in both membranes after 9 weeks dietary lipid treatment. For both membranes, the total saturated/unsaturated fatty acid levels were unaffected by the dietary lipid treatment, however the proportions of the major unsaturated fatty acids were altered. Animals fed the sunflower seed oil diet exhibited an increase in n-6 fatty acids, including linoleic (18:2(n-6] and arachidonic (20:4(n-6] while the sheep kidney fat dietary rats were higher in n-3 fatty acids, principally docosahexaenoic (22:6), with the net result being a higher n-6/n-3 ratio in the sunflower seed oil group compared to sheep kidney fat dietary animals. Fluorescence polarization indicated that the fluidity of sarcoplasmic reticular membrane was greater than that of sarcolemmal membrane, with a dietary lipid-induced decrease in fluidity being observed in the sarcoplasmic reticular membrane from sheep kidney fat dietary animals. Despite these significant changes in membrane composition and physical properties, neither the specific activity nor the temperature-activity relationship (Arrhenius profile) of the associated ATPases were altered. These results suggest that with regard to the parameters measured in this study, the two ion-transporting ATPases are not modulated by changes which occur in the membrane lipid composition as a result of the diet.  相似文献   

2.
This study investigated the effects of dietary omega-3 polyunsaturated fatty acids on calcium handling mechanisms in cardiac myocytes, with the hypothesis that this effect underlies some of the antiarrhythmic properties of these compounds. Adult male Sprague Dawley rats had their standard chow supplemented with either lard (57% saturated and 40% monounsaturated fat), canola oil (60% monounsaturated, 33% polyunsaturated) or fish oil (78% polyunsaturated). Isolated cardiac atrial myocytes from these animals were loaded with fluo-3AM and examined with laser scanning confocal microscopy. The dietary interventions resulted in considerable changes in the membrane phospholipid composition of cardiac cell membranes, particularly the ratio of n-6 to n-3 (2.17 with lard supplement and 1.28 with fish oil supplement). Calcium sparks in myocytes from rats which received saturated fat were significantly more prolonged than those from rats which received fish oil. (Lard = 105.4 +/- 18.9 ms; Fish oil = 43.5 +/- 4.7 ms: mean +/- s.e.m). The results for canola oil were intermediate (56.4 +/- 9.0 ms). The prolongation of the sparks in rats fed lard was primarily due to a higher proportion of sparks with long plateaus and/or slowed kinetics in this group. The frequency of sparks was not significantly different in cells from any group. We conclude that calcium handling mechanisms in rat atrial myocytes are affected by inclusion of different fats in the diet, correlated with changes in the cell membrane phospholipid composition, and speculate that this may underlie some of the antiarrhythmic properties of these dietary compounds.  相似文献   

3.
Recent research has implicated dietary fish oils in the reduction of eicosanoids formed from arachidonic acid and amelioration of chronic diseases such as coronary heart disease, atherosclerosis and inflammation. Feeding studies were conducted to determine if the efficacy of dietary n-3 polyunsaturated fatty acids (PUFA) from fish oils was influenced by the quantity of n-6 polyunsaturated fatty acids and the total level of fat in the diet. Groups of mice were fed diets composed of 5 and 20% total fat with varying proportions of linoleic acid as a source of n-6 PUFA. Menhaden oil as a source of n-3 PUFA was fed at two levels of n-6 at each level of total fat. Eicosanoid biosynthesis was stimulated and assayed in the mouse peritoneum using zymosan as an inflammatory stimulus. Production of LTE4 and PGE2 was enhanced by increasing n-6 PUFA in the diet at both levels of total fat. High dietary fat significantly suppressed leukotriene (LT) synthesis. Dietary menhaden oil reduced LTE4 and PGE2 synthesis at both levels of dietary n-6 in the low fat study. In animals on 20% dietary fat menhaden oil significantly reduced LT synthesis only at a relatively low dietary n-6 PUFA. On a high n-6 PUFA high fat diets, menhaden oil did not significant affect LTE4 synthesis in response to zymosan stimulation. The results suggest that the effectiveness of fish oils in reducing eicosanoids in response to specific stimulation is influenced by the level of n-6 and the total quantity of fat in the diet.  相似文献   

4.
The influence of dietary polyunsaturated fatty acids on fatty acid composition, cholesterol and phospholipid content as well as 'fluidity' (assessed by fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) probes) of brain synaptic plasma membranes (SPM) and their interactions with chronic ethanol effects were studied in rats fed for two generations with diets either devoid of (n-3) fatty acids (sunflower oil diet), rich in alpha-linolenic acid (soya oil diet) or in long chain (n-3) fatty acids (sunflower + cod liver oil diet). Results were compared with rats fed standard lab chow. Sunflower oil led to an increase in the (n-6)/(n-3) ratio in the membranes with an increase of the 'fluidity' at membrane apolar level; sunflower + cod liver oil decreased the (n-6)/(n-3) ratio without affecting membrane 'fluidity' while no difference was seen between the SPM of rats fed soya oil and standard diet. After 3 weeks alcohol intoxication in rat fed the standard diet: oleic alpha-linoleic acids and cholesterol levels were increased, arachidonic acid and the double bond index/saturated fatty acids were decreased and there was a decrease of 'fluidity' in the lipid core of the SPM. Soya oil almost totally abolished these usually observed changes in the SPM fatty acids composition but increased oleic acid and cholesterol without any change in fluidity. Sunflower oil led to the same general alterations of fatty acid as seen with standard diet but to a greater extent, with decrease of the 'fluidity" at the apolar level and in the region probed by TMA-DPH. When sunflower oil was supplemented with cod liver oil, oleic and alpha-linoleic acids were increased while the 'fluidity' of the apolar core of SPM was decreased. So, the small changes in fatty acid pattern seem able to modulate neural properties i.e. the responses to a neurotoxic like ethanol. A structurally specific role of PUFA is demonstrated by the pernicious effects of the alpha-linolenic acid deficient diet which are not totally prevented by the supply of long chain (n-3) PUFA.  相似文献   

5.
The purpose of the present study was to compare the influence of adding no or 8% fat of varying sources (coconut oil, fish oil, rapeseed oil and sunflower oil) to diets for sows 1 week prior to farrowing and during lactation on the composition of fatty acids in plasma and tissues of the progeny while sucking and 3 weeks after weaning from the sow. A control diet without supplemental fat and four diets supplemented with 8% of coconut oil, rapeseed oil, fish oil or sunflower oil were provided to lactating sows (n = 15), and during the post-weaning period the same weaner diet was provided to all piglets (n = 15 litters), which were housed litterwise. The dietary ratio of n-6:n-3 fatty acids of the maternal diets largely influenced the progeny, as the ratio varying from 1.2 (fish oil) to 12.2 (sunflower oil) in the sow milk was reflected in plasma and adipose tissues of the sucking progeny. The liver showed similar variations according to dietary treatments, but a lower n-6:n-3 fatty acids ratio. From day 4 to later on during the suckling period, the concentration of C14:0, C16:0 and C18:1 in the liver of the piglets decreased, irrespective of the dietary treatments of sows. In plasma and liver, the total concentration of saturated fatty acids (SAFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA) did not differ markedly in piglets sucking sows fed different dietary fatty acids, whereas the adipose tissue of piglets sucking sows fed sunflower oil and coconut oil showed the highest proportion of PUFA and SAFA, respectively. Weaning lowered the concentration of lipid-soluble extracts in plasma and the concentration of fatty acids in the liver of the piglets. Within the post-weaning period, dietary treatments of sows, rather than age of piglets, influenced the fatty acid composition of plasma and adipose tissue of the piglets, whereas the hepatic fatty acid profile was more affected by the age of the piglets during the post-weaning period. This study shows that the fatty acid profile of plasma and tissues of the progeny is highly dependent on the maternal dietary composition, and that the dietary impact persists for up to 3 weeks after the suckling period.  相似文献   

6.
This study examined the effect of dietary polyunsaturated fatty acids (PUFA) that were supplemented with vitamin E on lipid peroxidation, glutathione-dependent detoxifying enzyme system activity, and lipogenic fatty acid synthase (FAS) expression in rat liver. Male Sprague-Dawley rats were fed semipurified diets containing either 1% (w/w) corn oil or 10% each of beef tallow, corn oil, perilla oil, and fish oil for 4 wk. Alpha-tocopherol was supplemented in perilla oil (0.015%) and fish oil (0.019%). Hepatic thiobarbituric acid reactive substances, an estimate of lipid peroxidation, were not significantly different among the dietary groups. The glutathione peroxidase, glutathione reductase, and glutathione S-transferase activities were all elevated by the polyunsaturated fats, especially fish oil. The activity of FAS was reduced in the polyunsaturated fat-fed groups in the order of fish oil, perilla oil, and corn oil. The mRNA contents decreased in rats that were fed the 10% fat diets, particularly polyunsaturated fats, compared with the rats that were fed the 1% corn oil diet. Similarly, the inhibitory effect was the greatest in fish oil. These results suggest that lipid peroxidation can be minimized by vitamin E; PUFA in itself has a suppressive effect on lipogenic enzyme.  相似文献   

7.
Four strains of rat (Dark Agouti, DA; Ginger Hooded, GH; Portion, P; Hooded Wistar, HW) were fed elemental diets containing different sources of fat at the 10% (w/w) level. The dietary fats used included the following oils; olive (rich in oleate), sunflower (rich in linoleate), linseed (rich in alpha-linolenate) and fish (rich in eicosapentaenoate and docosahexaenoate). Differences between strains in response to individual diets were modest compared with the much greater differences achieved by the dietary treatments. In general, the changes in polyunsaturated fatty acid (PUFA) levels in the plasma lipids of all rat strains followed the major PUFA in the diet. There were, however, strong interactions between dietary n-6 and n-3 PUFA which affected not only the level of particular PUFA in lipid fractions but also the lipid fraction in which a particular PUFA appeared. Our findings indicate that a response to dietary fats in the plasma lipids of one strain of rat can be expected to occur with relatively minor variations in other commonly used rat strains.  相似文献   

8.
Moderate physical training induced a decrease in arterial blood pressure in fish oil-fed rats as compared to sunflower seed oil-fed rats. The purpose of this study was to determine if these changes were due to modifications of the left ventricular function of the heart. Forty rats were fed a semi-purified diet containing either 10% sunflower seed oil or 10% fish oil (EPAX 3000TG, Pronova). Each dietary group was assigned to two sub-groups, one being constituted by sedentary animals and the other by trained animals. Training was achieved by daily running for 60 minutes at moderate intensity for three weeks. At the end of the training period, the animals were sacrificed and their hearts were immediately perfused according to the working mode. The phospholipid fatty acid composition and parameters of the left ventricular function were determined. Feeding fish oil markedly reduced the proportion of n-6 polyunsaturated fatty acids (PUFA, 18:2 n-6, 20:4 n-6, 22:4 n-6 and 22:5 n-6) in cardiac phospholipids. The n-6 PUFA were replaced by n-3 PUFA (mainly docosahexaenoic acid). In sedentary animals, the fluid dynamic (aortic and coronary flow, cardiac output) was not modified by the diet. The heart rate was reduced (-10%) in n-3 PUFA-rich hearts. Physical training did not markedly alter the polyunsaturated fatty acid profile of cardiac phospholipids. Conversely, it reduced the heart rate, aortic flow and cardiac output (-11, -21 and -14%, respectively) at a similar extent in the two dietary groups. In a second set of experiments, the training period was repeated in animals fed a commercially available diet (A103, UAR) which simultaneously provided n-6 and n-3 fatty acids. In these dietary conditions, neither the aortic flow nor the heart rate was decreased by physical exercise. These results suggest that both n-6 and n-3 PUFA in the diet are necessary to ensure a good cardiac adaptation to moderate physical training. Furthermore, the fish oil-induced decrease in arterial blood pressure in trained animals was not related to changes in cardiac contractility, but to a decrease in vascular resistances. Moderate physical training + dietary n-3 PUFA might be used to prevent hypertension and cardiovascular diseases.  相似文献   

9.
Endocannabinoids and N-acylethanolamines are lipid mediators regulating a wide range of biological functions including food intake. We investigated short-term effects of feeding rats five different dietary fats (palm oil (PO), olive oil (OA), safflower oil (LA), fish oil (FO) and arachidonic acid (AA)) on tissue levels of 2-arachidonoylglycerol, anandamide, oleoylethanolamide, palmitoylethanolamide, stearoylethanolamide, linoleoylethanolamide, eicosapentaenoylethanolamide, docosahexaenoylethanolamide and tissue fatty acid composition. The LA-diet increased linoleoylethanolamide and linoleic acid in brain, jejunum and liver. The OA-diet increased brain levels of anandamide and oleoylethanolamide (not 2-arachidonoylglycerol) without changing tissue fatty acid composition. The same diet increased oleoylethanolamide in liver. All five dietary fats decreased oleoylethanolamide in jejunum without changing levels of anandamide, suggesting that dietary fat may have an orexigenic effect. The AA-diet increased anandamide and 2-arachidonoylglycerol in jejunum without effect on liver. The FO-diet decreased liver levels of all N-acylethanolamines (except eicosapentaenoylethanolamide and docosahexaenoylethanolamide) with similar changes in precursor lipids. The AA-diet and FO-diet had no effect on N-acylethanolamines, endocannabinoids or precursor lipids in brain. All N-acylethanolamines activated PPAR-alpha. In conclusion, short-term feeding of diets resembling human diets (Mediterranean diet high in monounsaturated fat, diet high in saturated fat, or diet high in polyunsaturated fat) can affect tissue levels of endocannabinoids and N-acylethanolamines.  相似文献   

10.
Both estrogen and dietary n-3 polyunsaturated fatty acids are known to be hypocholesterolemic, but appear to exert their effects by different mechanisms. In this study, the interaction between dietary fish oil (rich in n-3 polyunsaturated fatty acids) and estrogen in the regulation of hepatic cholesterol metabolism and biliary lipid secretion in rats was studied. Rats fed a low fat or a fish oil-supplemented diet for 21 days were injected with 17alpha-ethinyl estradiol (5 mg/kg body weight) or the vehicle only (control rats) once per day for 3 consecutive days. Estrogen-treatment led to a marked reduction in plasma cholesterol levels in fish oil-fed rats, which was greater than that observed with either estrogen or dietary fish oil alone. The expression of mRNA for cholesterol 7alpha-hydroxylase was decreased by estrogen in rats fed a low fat or a fish oil-supplemented diet, while the output of cholesterol (micromol/h/kg b.wt.) in the bile was unchanged in both groups. Cholesterol levels in the liver were increased by estrogen in rats given either diet, but there was a significant shift from cholesterol esterification to cholesteryl ester hydrolysis only in the fish oil-fed animals. Estrogen increased the concentration of cholesterol (micromol/ml) in the bile in rats fed the fish oil, but not the low fat diet. However, the cholesterol saturation index was unaffected. The output and concentration of total bile acid was also unaffected, but changes in the distribution of the individual bile acids were observed with estrogen treatment in both low fat and fish oil-fed groups. These results show that interaction between estrogen-treatment and dietary n-3 polyunsaturated fatty acids causes changes in hepatic cholesterol metabolism and biliary lipid secretion in rats, but does not increase the excretion of cholesterol from the body.  相似文献   

11.
The effect of dietary lipid on the thermotropic properties of acetylcholinesterase activity was examined in rat synaptosomal membrane preparations after feeding diets containing soya-bean oil, sunflower oil or soya-bean phosphatidylcholine as the dietary fats. Arrhenius plots and energies of activation were altered by the duration of feeding as a function of time, as well as by the composition of diet fat fed. Animals fed sunflower oil had the highest maximal velocity for acetylcholinesterase activity. The observations of this study suggest that dietary fat is an important determinant of the physicokinetic properties of lipid-dependent functions in brain synaptosomal membranes.  相似文献   

12.
The objective was to examine the effect of polyunsaturated fatty acid type (plant vs fish oil-derived n-3, compared to n-6 fatty acids in the presence of constant proportions of saturated, monounsaturated and polyunsaturated fatty acids) on obesity, insulin resistance and tissue fatty acid composition in genetically obese rats. Six-week-old fa/fa and lean Zucker rats were fed with a 10% (w/w) mixed fat diet containing predominantly flax-seed, menhaden or safflower oils for 9 weeks. There was no effect of dietary lipid on obesity, oral glucose tolerance (except t=60 min insulin), pancreatic function or molecular markers related to insulin, glucose and lipid metabolism, despite increased n-3 fatty acids in muscle and adipose tissue. The menhaden oil diet reduced fasting serum free fatty acids in both fa/fa and lean rats. These data suggest that n-3 composition does not alter obesity and insulin resistance in the fa/fa Zucker rat model when dietary lipid classes are balanced.  相似文献   

13.
Dietary fat plays a major role in obesity, lipid metabolism, and cardiovascular diseases. To determine whether the intake of different types of dietary fats affect the muscle fiber types that govern the metabolic and contractile properties of the skeletal muscle, we fed male Wistar rats with a 15% fat diet derived from different fat sources. Diets composed of soybean oil (n-6 polyunsaturated fatty acids (PUFA)-rich), fish oil (n-3 PUFA-rich), or lard (low in PUFAs) were administered to the rats for 4 weeks. Myosin heavy chain (MyHC) isoforms were used as biomarkers to delineate the skeletal muscle fiber types. Compared with soybean oil intake, fish oil intake showed significantly lower levels of the fast-type MyHC2B and higher levels of the intermediate-type MyHC2X composition in the extensor digitorum longus (EDL) muscle, which is a fast-type dominant muscle. Concomitantly, MyHC2X mRNA levels in fish oil-fed rats were significantly higher than those observed in the soybean oil-fed rats. The MyHC isoform composition in the lard-fed rats was an intermediate between that of the fish oil and soybean oil-fed rats. Mitochondrial uncoupling protein 3, pyruvate dehydrogenase kinase 4, and porin mRNA showed significantly upregulated levels in the EDL of fish oil-fed rats compared to those observed in soybean oil-fed and lard-fed rats, implying an activation of oxidative metabolism. In contrast, no changes in the composition of MyHC isoforms was observed in the soleus muscle, which is a slow-type dominant muscle. Fatty acid composition in the serum and the muscle was significantly influenced by the type of dietary fat consumed. In conclusion, dietary fat affects the expression of genes related to the contractile and metabolic properties in the fast-type dominant skeletal muscle, where the activation of oxidative metabolism is more pronounced after fish oil intake than that after soybean oil intake.  相似文献   

14.
The modulation of rat brain microsomal and synaptosomal membrane lipid by diet fat was examined. Brain synaptosomal and microsomal membrane composition was compared for rats fed on diets containing either soya-bean oil (SBO), SBO plus choline, SBO lecithin, sunflower oil (SFO), chow or low-erucic acid rape-seed oil (LER) for 24 days. Cholesterol and phosphatidylcholine levels in both membranes were altered by diet. Diet fat also affected the microsomal content of sphingomyelin. Change in membrane phosphatidylcholine level was related to the relative balance of omega-6, omega-3 and monounsaturated fatty acids within the diets fed. The highest phosphatidylcholine levels appeared in membranes of animals fed on SBO lecithin and the lowest in those fed on LER. Microsomal membrane cholesterol and sphingomyelin content increased by feeding on SBO lecithin. In both synaptosomal and microsomal membranes a highly significant correlation was observed between membrane phosphatidylcholine and cholesterol content. The fatty acyl composition of phospholipids from both membranes also altered with diet and age. Alteration in fatty acid composition was observed in response to dietary levels of omega-6, omega-3 and monounsaturated fatty acids, but the unsaturation index of each phospholipid remained constant for all diet treatments. These changes in lipid composition suggest that dietary fat may be a significant modulator in vivo of the physicobiochemical properties of brain synaptosomal and microsomal membranes.  相似文献   

15.
The effect of dietary n-6/n-3 fatty acid ratio on alpha-tocopherol homeostasis was investigated in rats. Animals were fed diets containing fat (17% w/w) in which the n-6/n-3 ratio varied from 50 to 0.8. This was achieved by combining corn oil, fish oil, and lard. The polyunsaturated to saturated ratio and total alpha-tocopherol remained constant in all diets. Results showed that enrichment of n-3 polyunsaturated fatty acids in the diet, even at a low amount (3.9% w/w), resulted in a dramatic reduction of blood alpha-tocopherol concentration, which, in fact, is the result of a decrease in plasma lipids, since the alpha-tocopherol to total lipids ratio was not significantly altered. The most striking effect observed was a considerable alpha-tocopherol enrichment (x 4) of the heart as its membranes became enriched with n-3 polyunsaturated fatty acids. This process appeared even with a low amount of fish oil (3.9% w/w) added to the diet. Accordingly, a strong positive correlation was found between heart alpha-tocopherol and docosahexaenoic acid (r = 0.86) or docosahexaenoic acid plus eicosapentaenoic acid levels (r = 0.84). Conversely, the liver alpha-tocopherol level dropped dramatically when n-3 polyunsaturated fatty acids were gradually added to the diet. It is concluded that fish oil intake dramatically alters the alpha-tocopherol homeostasis in rats.  相似文献   

16.
Diets supplemented with high levels of saturated fatty acids derived from sheep kidney (perirenal) fat or unsaturated fatty acids derived from sunflower seed oil were fed to rats and the effect on heart mitochondrial lipid composition and membrane-associated enzyme behaviour was determined. The dietary lipid treatments did not change the overall level of membrane lipid unsaturation but did alter the proportion of various unsaturated fatty acids. This led to a change in the omega 6/omega 3 unsaturated fatty acid ratio, which was highest in the sunflower seed oil fed rats. Arrhenius plots of the mitochondrial membrane associated enzymes succinate-cytochrome c reductase and oligomycin-sensitive adenosinetriphosphatase (ATPase) after dietary lipid treatment revealed different responses in their critical temperature. For succinate-cytochrome c reductase, the critical temperature was 29 degrees C for rats fed the sheep kidney fat diet and 20 degrees C for rats fed the sunflower seed oil diet. In contrast, no shift in the critical temperature for the mitochondrial ATPase was apparent as a result of the differing dietary lipid treatments. The results suggest that the discontinuity in the Arrhenius plot of succinate-cytochrome c reductase is induced by some change in the physical properties of the membrane lipids. In contrast, mitochondrial ATPase appears insensitive, in terms of its thermal behaviour, to changes occurring in the composition of the membrane lipids. However, the specific activity of the mitochondrial ATPase was affected by the dietary lipid treatment being highest for the rats fed the sheep kidney fat diet. No dietary lipid effect was observed for the specific activity of succinate-cytochrome c reductase. This differential response of the two mitochondrial membrane enzymes to dietary-induced changes in membrane lipid composition may affect mitochondrial oxidative phosphorylation.  相似文献   

17.
Epidemiological studies in humans have shown that perinatal nutrition affects health later in life. We have previously shown that the ratio of n-6 to n-3 polyunsaturated fatty acids (PUFA) in the maternal diet affects serum leptin levels and growth of the suckling pups. The aim of the present study was to investigate the long-term effects of various ratios of the dietary n-6 and n-3 PUFA during the perinatal period on serum leptin, insulin, and triacylglycerol, as well as body growth in the adult offspring. During late gestation and throughout lactation, rats were fed an isocaloric diet containing 7 wt% fat, either as linseed oil (n-3 diet), soybean oil (n-6/n-3 diet), or sunflower oil (n-6 diet). At 3 wk of age, the n-6/n-3 PUFA ratios in the serum phospholipids of the offspring were 2.5, 8.3, and 17.5, respectively. After weaning, all pups were given a standard chow. At the 28th postnatal wk, mean body weight and fasting insulin levels were significantly increased in the rats fed the n-6/n-3 diet perinatally compared with the other groups. The systolic blood pressure and serum triacylglycerol levels were only increased in adult male rats of the same group. These data suggest that the balance between n-6 and n-3 PUFA during perinatal development affects several metabolic parameters in adulthood, especially in the male animals.  相似文献   

18.
To measure the effects of dietary n-3 polyunsaturated fatty acid (PUFA) supplementation on the reproductive capacity of adult male turkeys in industrial flocks, the males of 22 commercial farms were fed either a standard diet or a fish oil diet enriched in n-3 PUFAs. The fatty acid composition of the spermatozoa and reproductive performance were measured throughout the reproductive period. The fish oil diet very effectively increased the percentage of n-3 fatty acids (FA) (22:5n-3 and 22:6n-3) in spermatozoa and correspondingly decreased the percentage of n-6 PUFAs (20:4-6 and 22:4n-6): the n-3/n-6 ratio in spermatozoa fatty acids were 0.04-0.07 with the standard diet and 0.32-0.4 with the fish oil diet. These changes did not affect the spermatozoa content of n-9 PUFAs, particularly of 22:3n-9 which is abundant in turkey spermatozoa (9-12% of the total fatty acids). The supplementation was effective in the middle as at the end of the reproductive period. The reproductive capacity of males was modified by the diet and the positive effect of the n-3 supplemented diet increased with age (increase in hatching rates of nearly 2 points at 48-58 weeks for males fed fish oil diet). These results indicate that an increase in the dietary ratio of n-3/n-6 PUFAs is valuable to sustain the reproductive capacity of male turkeys especially when they are getting older.  相似文献   

19.
The timing of dietary fat intake may modify breast cancer risk. In addition, n-3 fatty acids reduce, and n-6 fatty acids increase, the risk of breast cancer and a maternal high n-6 fat diet results in a greater risk of breast cancer in the female offspring. We hypothesized that the timing of n-3 fatty acid-enriched fish oil supplementation would be important for reducing the risk of breast cancer. Female rats were fed to a high n-6 fat diet containing 20% of the sunflower oil by weight during pregnancy and lactation, and the female offspring were exposed to fish oil by oral gavage either during the perinatal period via maternal intake or during puberty or adulthood. Exposure during the perinatal period to a maternal high n-6 fat diet with fish oil supplementation significantly reduced the incidence of carcinogen-induced mammary tumors in the female offspring compared to a maternal high n-6 fat diet with no fish oil supplementation or fish oil supplementation later in life (P=.0228 by Cox proportional hazards model). We found that a maternal high n-6 fat diet during pregnancy is more important in increasing the risk of mammary tumors in the female offspring than a maternal high n-6 fat diet during lactation. This study suggests that fish oil supplementation during the perinatal period decreases the effect of a maternal high n-6 fat diet on subsequent carcinogen-induced mammary tumor risk, whereas fish oil supplementation during puberty or adulthood does not.  相似文献   

20.
The present study was conducted to assess whether the partial replacement of feed energy by vegetable oils containing high medium-chain saturated fatty acids (MCFA) and n-6 polyunsaturated fatty acids (PUFA) would modify lipogenic gene expression and other parameter of fat metabolism in pigs. Eighteen pigs (17-19 kg body weight) received one of three experimental diets for 60 days (six animals per group): (i) Control diet; (ii) a diet with sunflower oil (SO) or (iii) a diet with coconut oil (CO). In diets SO and CO, 10% of the feed energy was replaced by the respective oils. The experimental treatment did not influence the performance of the pigs. In blood serum, an increased content of total cholesterol was observed for SO and CO fed animals, whereas no significant changes for total triglycerides and different lipoprotein fractions were detected. The fatty acid composition of adipose tissue was significantly modified, with an increased content of MCFA and n-6 PUFA in CO and SO fed pigs, respectively. The gene expression for fatty acid synthase was decreased for SO and CO fed pigs; for stearoyl CoA desaturase and sterol regulatory element binding protein, a depression was observed in SO but not in CO fed pigs. The results of present study suggest that the type of dietary fat can modulate the adipose tissue gene expression and fatty acid composition differentially, with minimal effect on serum lipid profile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号