首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phosphorylated intermediate (EP) of the Na,K-ATPase proteoliposomes (PL) prepared from the electric eel enzyme is composed of an ADP-sensitive K+-insensitive form (E1P), an ADP- and K+-sensitive form (E*P), and a K+-sensitive ADP-insensitive form (E2P). The composition of the intermediate varied with the cholesterol content of the lipid bilayer. The PL containing less than 30 mol % cholesterol (LCPL) formed E2P-rich EP in the presence of 10 mM Na+ on both sides at 15 degrees C, while the PL containing more than 35 mol % cholesterol (HCPL) formed E*P-rich EP under the same condition. In the presence of ionophore (monensin, nigericin, A23187), the HCPL formed E2P-rich EP as reported in the preceding paper. The turnover rate of Na-ATPase activity (the ratio of Na-ATPase to the EP level) in the LCPL was lower than that in the HCPL, and the addition of 20 microM monensin or A23187 to the HCPL reduced the Na-ATPase activity. The coupling ratio of Na+ influx (cellular efflux):Na+ efflux (cellular influx):ATP hydrolysis was 2.8:1.8:1 in the LCPL, although 1.6:0.6:1 in the HCPL. The coupling ratio of Na+ influx:ATP hydrolysis in the HCPL increased to 2.8:1 in the presence of A23187. Moreover, the increase of ATP concentration enhanced not only the Na-ATPase activity in the LCPL and HCPL with monensin but also the Na+ influx in the LCPL. This ATP enhancement was not found, however, in the HCPL without ionophores. The ADP enhancement of the Na+ influx was not observed in either the HCPL or the LCPL. We conclude from these observations that there are at least two different phosphorylation-dephosphorylation cycles (an E2P cycle and an E*P cycle) in the PL in the absence of K+. The E2P cycle transports three Na+ from the extravesicular (cytoplasmic) to the intravesicular (extracellular) side and two Na+ in the opposite direction per cycle and is similar to the ATP-dependent Na+-Na+ exchange system already reported (Blostein, R. (1983) J. Biol. Chem. 258, 7948-7953; Cornelius, F., and Skou, J. C. (1985) Biochim. Biophys. Acta 818, 211-221). However, the E*P cycle transports one Na+ from the extravesicular to the intravesicular side/cycle and has not yet been previously reported.  相似文献   

2.
Fragmental Na,K-ATPase from the electric eel forms three phosphorylated intermediates (EP) with MgATP and Na+: ADP-sensitive K+-insensitive EP (E1P), ADP- and K+-sensitive EP (E*P), and K+-sensitive ADP-insensitive EP (E2P). The EP composition varied with the Na+ concentration. In the reconstituted Na,K-ATPase proteoliposomes (PL), the EP composition of the inside-out form was controlled not only by the intravesicular (extracellular) Na+ concentration, but also by the temperature and the cholesterol content of the lipid bilayer. When the lipid bilayer of PL contained less than 30 mol % cholesterol, the E*P content did not change significantly while the E2P content increased with an elevation in temperature (3-20 degrees C). In contrast, when the lipid bilayer contains more than 35 mol % cholesterol, the E*P content increased while the E2P content stayed less than 10% under the same temperature change. These observations suggest that a high cholesterol content in the lipid bilayer interferes with the E*P to E2P conversion. This cholesterol effect was reversed by ionophores (monensin, nigericin, and A23187). Therefore, E1P-rich EP, E*P-rich EP, or E2P-rich EP could be obtained in the PL under a constant Na+ concentration by using various concentrations of cholesterol and ionophores. The reaction between the proteoliposomal EPs and digitoxigenin (lipid-soluble cardiac steroid) occurred in a single turnover, thereby avoiding unphysiologically high Na+ concentrations. The increase in the ADP- and K+-insensitive EP, which indicated formation of the digitoxigenin-Na,K-ATPase complex, was equivalent to the decrease in the E*P under six different sets of conditions, without any significant change in the E1P and E2P contents. This result indicated that E*P is the active intermediate of the Na,K-ATPase for cardiac steroid binding. Although the E2P has been thought to be the active form for binding, it cannot bind with the cardiac steroid in the presence of Na+ and in the absence of free Mg2+.  相似文献   

3.
In the phosphoenzyme (EP) of the electric eel Na,K-ATPase, the sum of the ADP-sensitive EP and the K+-sensitive EP exceeds 150% of EP in the presence of 100 mM Na+. This unusual phenomenon can be explained by the formation of three phosphoenzymes: ADP-sensitive K+-insensitive (E1P), K+-sensitive ADP-insensitive (E2P), and ADP- and K+-sensitive (E*P) phosphoenzymes, as proposed by N?rby et al. (N?rby, J. G., Klodos, I., and Christiansen, N. O. (1983) J. Gen. Physiol. 82, 725-757). By applying a simple approximation method for the assay of E1P, E*P, and E2P, it was found that the phosphorylation of the enzyme was much faster than the conversion among each EP and the phosphoenzyme changed as E1NaATP----E1P----E*P----E2P. In the fragmental eel enzyme, the step of E*P to E2P was much slower than the step of E1P to E*P. In the steady state, the E1P was predominant above 400 mM Na+, whereas E*P and E2P were predominant between 60 and 300 mM Na+ and below 60 mM Na+, respectively. The characteristic difference of the eel enzyme from the beef brain enzyme and probably from the kidney enzyme seems to be that the dissociation constant of Na+ on the E1P-E*P equilibrium is higher than that on the E*P-E2P. The E*P and E1P both interacted with ADP to form ATP without formation of inorganic phosphate in the absence of free Mg2+. In the Na,K-ATPase proteoliposomes, the vesicle membrane interfered with the conversion of E1P to E2P, especially the change of E1P to E*P, and furthermore, the E1P content increased. This barrier effect was partially counteracted by monensin or carbonyl cyanide m-chlorophenylhydrazone. Oligomycin reacted with E1P and probably with E*P, therefore inhibiting their conversion to E2P and interaction with K+.  相似文献   

4.
The effects of K+, Na+ and nucleotides (ATP or ADP) on the steady-state phosphorylation from [32P]Pi (0.5 and 1 mM) and acetyl [32P]phosphate (AcP) (5 mM) were studied in membrane fragments and in proteoliposomes with partially purified pig kidney Na,K-ATPase incorporated. The experiments were carried out at 20 degrees C and pH 7.0. In broken membranes, the Pi-induced phosphoenzyme levels were reduced to 40% by 10 mM K+ and to 20% by 10 mM K+ plus 1 mM ADP (or ATP); in the presence of 50 mM Na+, no E-P formation was detected. On the other hand, with AcP, the E-P formation was reduced by 10 mM K+ but was 30% increased by 50 mM Na+. In proteoliposomes E-P formation from Pi was (i) not influenced by 5-10 mM K+cyt or 100 mM Na+ext, (ii) about 50% reduced by 5, 10 or 100 mM K+ext and (iii) completely prevented by 50 mM Na+cyt. Enzyme phosphorylation from AcP was 30% increased by 10 mM K+cyt or 50 mM Na+cyt; these E-P were 50% reduced by 10-100 mM K+ext. However, E-P formed from AcP without K+cyt or Na+cyt was not affected by extracellular K+. Fluorescence changes of fluorescein isothiocyanate labelled membrane fragments, indicated that E-P from AcP corresponded to an E2 state in the presence of 10 mM Na+ or 2 mM K+ but to an E1 state in the absence of both cations. With pNPP, the data indicated an E1 state in the absence of Na+ and K+ and also in the presence of 20 mM Na+, and an E2 form in the presence of 5 mM K+. These results suggest that, although with some similarities, the reversible Pi phosphorylation and the phosphatase activity of the Na,K-ATPase do not share the whole reaction pathway.  相似文献   

5.
To determine the biochemical events of Na+ transport, we studied the interactions of Na+, Tris+, and K+ with the phosphorylated intermediates of Na,K-ATPase from ox brain. The enzyme was phosphorylated by incubation at 0 degrees C with 1 mM Mg2+, 25 microM [32P]ATP, and 20-600 mM Na+ with or without Tris+, and the dephosphorylation kinetics of [32P]EP were studied after addition of (1) 1 mM ATP, (2) 2.5 mM ADP, (3) 1 mM ATP plus 20 mM K+, and (4) 2.5 mM ADP plus Na+ up to 600 mM. In dephosphorylation types 2-4, the curves were bi- or multiphasic. "ADP-sensitive EP" and "K+-sensitive EP" were determined by extrapolation of the slow phase of the curves to the ordinate and their sum was always larger than Etotal. These results required a minimal model consisting of three consecutive EP pools, A, B, and C, where A was ADP sensitive and both B and C were K+ sensitive. At high [Na+], B was converted rapidly to A (type 4 experiment). The seven rate coefficients were dependent on [Na+], [Tris+], and [K+], and to explain this we developed a comprehensive model for cation interaction with EP. The model has the following features: A, B, and C are equilibrium mixtures of EP forms; EP in A has two to three Na ions bound at high-affinity (internal) sites, pool B has three, and pool C has two to three low-affinity (external) sites. The putative high-affinity outside Na+ site may be on E2P in pool C. The A leads to B conversion is blocked by K+ (and Tris+). We conclude that pool A can be an intermediate only in the Na-ATPase reaction and not in the normal operation of the Na,K pump.  相似文献   

6.
The effects of Na+ and K+ ions on the elementary steps in the reaction of Na+-K+-dependent ATPase (EC 3.6.1.3) were investigated in 0.5-600mM NaCL and 0-10mM KCL, at a fixed concentration (1mM) OF MgCL2, AT PH 8.5 and at 15 degrees. The data were analyzed on the basis of the reaction mechanism in which a phosphorylated intermediate, E ADP P (abbreviated as EP), is formed via two kinds of enzyme-substrate comples, E1ATP and E2ATP, and EP is in equilibrium with E2ATP, and is hydrolyzed to produce P1 and ADP. The following results were obtained: 1. The rate od E2ATP-formation, vf, increased with increase in the Na+ concentration, reached a maximum level, and then decreased with further increase in the Na+ concentration at various K+ concentrations. The value of vf was given as (see article). 2. The reciprocal of the equilibrium constants, K2, of the step E1ATPEQUILIBRIUM E ADP P in the presence of low concentrations of Na+ was larger than that in the presence of high concrntrations of Na+, indicating that the equilibrium shifted markedly toward E2ATP at low concentrations of Na+. The relation of K3 with Na concentration was rather complicated on varying the concentration of K+. However, generally speaking, it increased with increase in the K+ concentration. 3. The decomposition of EP was markedly activated by even low concentrations of K+, and inhibited by high concentrations of Na+. The inhibition by Na+ was partially suppressed by K+. The rate constant of EP-decomposition, vo/(EP), was given by (see article) where (vo/(EP) K+EQUALS0 was the value of vo/[EP] in the absence of K+.  相似文献   

7.
Previously, we proposed the following reaction machanism for the transport ATPase (EC 3.6.1.3) reaction in the presence of high concentrations of Mg2+ and Na+:(see article). Some kinetic and thermodynamic properties of steps 3 and 4 were investigated, and the following results were obtained. 1. When the reaction was started by adding ATP to the enzyme in the presence of 50 mM Na+ and 0.5 mM K+ or in the presence of 50mM Na+ and 0.5mM Rb+, the amount of E ADP P increased with time and maintained a constant level after reaching a maximum. We could not observe the initial burst of EP formation, which was observed by Post er al. in the presence of 8 mM Na+ and 0.01 mM Rb+. 2. The existence of quasi-equilibrium between E2ATP and E ADP P in the presence of low concentrations of Na+ was suggested by the fact that the values of the reciprocal of the equilibrium constant, K3 of step 3 obtained by the following three methods were almost the same. a) The value of 1+K3 was estimated from the ratio of vo/[EP] to kd, where vo is the rate of ATP hydrolysis in the steady state, [EP] the concentration of EP, and kd the first-order rate constant of EP disappearance after stopping EP formation. b) This value was also calculated from the ratio of the amount of P1 liberated to that of decrease in EP after stopping EP formation. c) The value of K3 was also calculated from the initial rapid decrease in EP on adding K+ and EDTA, assuming that the rapid decrease was due to a shift of the equilibrium toward E2ATP on adding K+. For example, the value of K3 with 10mM NaCL and 0.5mM KCL was 7--11. Although ATP formation due to a shift of the equilibrium toward E2ATP by a K+ jump in the presence of a low concentration of Na+ was observed at 0 degrees, the amount of ATP formed by a K+ jump at 15 degrees was less than the value expected from the shift of the equilibrium. 3. The values of delta H degrees and delta S degrees of step 3 were estimated in the presence of a sufficient amount of Na+ and in the absence of K+. They were +4--+5 kcal mole minus 1 and +15--+16 entropy units mole minus1, respectively. On the basis of kinetic studies of the elementary steps and the overall reaction of Na+-K+-dependent ATPase [EC 3.6.1.3], we (1--4) showed that a phosphorylated intermediate, EP, is formed via two kinds of enzyme-substrate complex, E1ATP and E2ATP, that the EP is in K+-dependent quasi-equilibrium with E2ATP, and that in the presence of high concentration of Mg2+, EP is in a high-energy state and contains bound ADP, E ADP P.(see article).  相似文献   

8.
The dephosphorylation kinetics of acid-stable phosphointermediates of (Na+ + K+)-ATPase from ox brain, ox kidney and pig kidney was studied at 0 degree C. Experiments performed on brain enzyme phosphorylated at 0 degree C in the presence of 20-600 mM Na+, 1 mM Mg2+ and 25 microM [gamma-32P]ATP show that irrespectively of the EP-pool composition, which is determined by Na+ concentration, all phosphoenzyme is either ADP- or K+-sensitive. After phosphorylation of kidney enzymes at 0 degree C with 1 mM Mg2+, 25 microM [gamma-32P]ATP and 150-1000 mM Na+ the amounts of ADP- and K+-sensitive phosphoenzymes were determined by addition of 1 mM ATP + 2.5 mM ADP or 1 mM ATP + 20 mM K+. Similarly to the previously reported results on brain enzyme, both types of dephosphorylation curves have a fast and a slow phase, so that also for kidney enzymes a slow decay of a part of the phosphoenzyme, up to 80% at 1000 mM Na+, after addition of 1 mM ATP + 20 mM K+ is observed. The results obtained with the kidney enzymes seem therefore to reinforce previous doubts about the role played by E1 approximately P(Na3) as intermediate of (Na+ + K+)-ATPase activity. Furthermore, for both kidney enzymes the sum of ADP- and K+-sensitive phosphoenzymes is greater than E tot. In experiments on brain enzyme an estimate of dissociation rate constant for the enzyme-ATP complex, k-1, is obtained. k-1 varies between 1 and 4 s-1 and seems to depend on the ligands present during formation of the complex. The highest values are found for enzyme-ATP complex formed in the presence of Na+ or Tris+. The results confirm the validity of the three-pool model in describing dephosphorylation kinetics of phosphointermediates of Na+-ATPase activity.  相似文献   

9.
The rates of individual steps in the reaction cycle of dog kidney Na,K-ATPase labeled with iodoacetamidofluorescein (IAF) were measured using the fluorescence stopped-flow technique. The maximal rate of the fluorescence quenching accompanying ATP hydrolysis at 20 degrees C in the presence of K+ is 66.3 s-1, while the turnover rate in the same conditions is 15.5 s-1. The rate without K+ is slightly lower. Unexpectedly, at very high ionic strength, K+ accelerates the rate 2-fold. The fluorescence change appears to be associated with the E1P----E2P transition. The results are consistent with the classical Albers-Post scheme but do not support recent criticisms that E1P is kinetically incompetent in the presence of Na+ plus K+. As expected, in the absence of ATP the rate of E2(K)----E1Na was very slow (0.2 s-1) but was greatly accelerated by ATP (maximal rate 15.9 s-1) with low affinity (K0.5 = 196 microM). It was concluded that E2(K)----E1 is the slowest step of the cycle, even at nonlimiting ATP concentrations. The rate of E1K----E2(K) for both IAF- and fluorescein 5'-isothiocyanate-labeled enzyme was stimulated by K+ acting with low affinity, but not at all by ATP at 5 microM. Whereas the maximal rate with IAF-enzyme (271 s-1) was similar to previous work, the K+ affinity was significantly higher. Fluorescence signals accompanying hydrolysis of acetyl phosphate with both IAF- and fluorescein 5'-isothiocyanate-labeled enzyme have similar rates, 5.25 s-1 and 4.06 s-1, respectively. A species difference was observed between dog and pig kidney Na,K-ATPase in that both enzymes are labeled with IAF but only in dog enzyme were conformational transitions associated with fluorescence changes. Therefore, the IAF-labeled dog kidney enzyme is the preparation of choice for measuring fluorescence changes accompanying ATP hydrolysis.  相似文献   

10.
Showdomycin inhibited pig brain (Na+ + K+)-ATPase with pseudo first-order kinetics. The rate of inhibition by showdomycin was examined in the presence of 16 combinations of four ligands, i.e., Na+, K+, Mg2+ and ATP, and was found to depend on the ligands added. Combinations of ligands were divided into five groups in terms of the magnitude of the rate constant; in the order of decreasing rate constants these were: (1) Na+ + Mg2+ + ATP, (2) Mg2+, Mg2+ + K+, K+ and none, (3) Na+ + Mg2+, Na+, K+ + Na+ and Na+ + K+ + Mg2+, (4) Mg2+ + K+ + ATP, K+ + ATP and Mg2+ + ATP, (5) K+ + Na + + ATP, Na+ + ATP, Na+ + K+ + Mg2+ + ATP and ATP. The highest rate was obtained in the presence of Na+, Mg2+ and ATP. The apparent concentrations of Na+, Mg2+ and ATP for half-maximum stimulation of inhibition (KS0.5) were 3 mM, 0.13 mM and 4 MicroM, respectively. The rate was unchanged upon further increase in Na+ concentration from 140 to 1000 mM. The rates of inhibition could be explained on the basis of the enzyme forms present, including E1, E2, ES, E1-P and E2-P, i. e., E2 has higher reactivity with showdomycin than E1, while E2-P has almost the same reactivity as E1-P. We conclude that the reaction of (Na+ + K+)- ATPase proceeds via at least four kinds of enzyme form (E1, E2, E1 . nucleotide and EP), which all have different conformations.  相似文献   

11.
(Na+ + K+)-ATPase from kidney outer medulla was incorporated into artificial dioleoylphosphatidylcholine vesicles. In the reconstituted system the pump can be activated by adding ATP to the external medium. ATP-driven potassium extrusion by the Na+,K+-pump was studied using a voltage-sensitive dye in the presence of valinomycin. ADP strongly reduced the turnover rate of the pump with a concentration for half-maximal inhibition of cD,1/2 = 0.1 mM. cD,1/2 was found to be virtually independent of ATP concentration, indicating that the inhibition is non-competitive with respect to ATP. The non-competitive inhibition by ADP can be explained on the basis of the Post-Albers reaction cycle of the Na+,K+-pump, assuming that the main action of ADP is the reversal of the phosphorylation step. A similar 'product inhibition' was observed with inorganic phosphate, but at much higher concentrations (cP,1/2 = 14 mM).  相似文献   

12.
Treatment of the canine renal Na,K-ATPase with N-(2-nitro-4-isothiocyanophenyl)-imidazole (NIPI), a new imidazole-based probe, results in irreversible loss of enzymatic activity. Inactivation of 95% of the Na,K-ATPase activity is achieved by the covalent binding of 1 molecule of [3H]NIPI to a single site on the alpha-subunit of the Na,K-ATPase. The reactivity of this site toward NIPI is about 10-fold greater when the enzyme is in the E1Na or sodium-bound form than when it is in the E2K or potassium-bound form. K+ ions prevent the enhanced reactivity associated with Na+ binding. Labeling and inactivation of the enzyme is prevented by the simultaneous presence of ATP or ADP (but not by AMP). The apparent affinity with which ATP prevents the inactivation by NIPI at pH 8.5 is increased from 30 to 3 microM by the presence of Na+ ions. This suggests that the affinity with which native enzyme binds ATP (or ADP) at this pH is enhanced by Na+ binding to the enzyme. Modification of the single sodium-responsive residue on the alpha-subunit of the Na,K-ATPase results in loss of high affinity ATP binding, without affecting phosphorylation from Pi. Modification with NIPI probably alters the adenosine binding region without affecting the region close to the phosphorylated carboxyl residue aspartate 369. Tightly bound (or occluded) Rb+ ions are not displaced by ATP (4 mM) in the inactivated enzyme. Thus modification of a single residue simultaneously blocks ATP acting with either high or low affinity on the Na,K-ATPase. These observations suggest that there is a single residue on the alpha-subunit (probably a lysine) which drastically alters its reactivity as Na+ binds to the enzyme. This lysine residue is essential for catalytic activity and is prevented from reacting with NIPI when ATP binds to the enzyme. Thus, the essential lysine residue involved may be part of the ATP binding domain of the Na,K-ATPase.  相似文献   

13.
Several experiments were carried out to study the difference between two isozymes (alpha(+) and alpha) of (Na+ + K+)-ATPase in the conformational equilibrium. Rat brain (Na+ + K+)-ATPase was much more thermolabile than the kidney enzyme. Both enzymes were protected from heat inactivation not only by Na+ and K+, but also by choline in varying degrees, though there was a difference between the two enzymes in the protection by the ligands. The brain enzyme was partially protected from N-ethylmaleimide (NEM) inactivation by both Na+ and K+, but the effects of the ligands on NEM inactivation of the kidney enzyme were more complex. Though ligands differentially affected the thermostability and NEM sensitivity of the two enzymes, the effects were not simply related to the conformational states. The sensitivity of phosphoenzyme (EP) formed in the presence of ATP, Na+, and Mg2+ to ADP or K+ and K+-p-nitrophenyl phosphatase (pNPPase) was then studied as a probe of the differences in the conformational equilibrium between the two isozymes. The EP of the brain enzyme was partially sensitive to ADP, while those of the heart and kidney enzymes were not. At physiological Na+ concentrations the percentages of E1P formed by the brain and kidney enzymes were determined to be about 40-50 and 10-20% of the total EP, respectively. The hydrolytic activity of pNPP in the presence of Li+, a selective activator at catalytic sites of the reaction, was much higher in the kidney enzyme than in the brain enzyme. The inhibition of K+-stimulated pNPPase by ATP and Na+ was greater in the latter enzyme than in the former. These results suggest that neuronal and nonneuronal (Na+ + K+)-ATPases differ in their conformational equilibrium: the E1 or E1P may be more stable in the alpha(+) than in the alpha during the turnover, and conversely the E2 or E2P may be more stable in the latter than in the former.  相似文献   

14.
The highly conserved amino acids of rat Na,K-ATPase, Thr-774 in the transmembrane helices M5, Val-920 and Gln-923 in M8, and Glu-953 and Glu-954 in M9, the side chains of which appear to be in close proximity, were mutated, and the resulting proteins, T774A, E953A/K, and E954A/K, V920E and Q923N/E/D/L, were expressed in HeLa cells. Ouabain-resistant cell lines were obtained from T774A, V920E, E953A, and E954A, whereas Q923N/E/D/L, E953K, and E954K could only be transiently expressed as fusion proteins with an enhanced green fluorescent protein. The apparent K0.5 values for Na+, as estimated by the Na+-dependent phosphoenzyme formation (K0.5(Na,EP)) or Na,K-ATPase activity (K(0.5)(Na,ATPase)), were increased by around 2 approximately 8-fold in the case of T774A, V920E, and E954A. The apparent K0.5 values for K+, as estimated by the Na,K-ATPase (K0.5(K,ATPase)) or p-nitrophenylphosphatase activity (K0.5(K,pNPPase)), were affected only slightly by the 3 mutations, except that V920E showed a 1.7-fold increase in the K0.5(K,ATPase). The apparent K0.5 values for ATP (K0.5(EP)), as estimated by phosphorylation (a high affinity ATP effect), were increased by 1.6 approximately 2.6-fold in the case of T774A, V920E, and E954A. Those estimated by Na,K-ATPase activity (K0.5(ATPase)) and ATP-induced inhibition (K(i,0.5)(pNPPase)) of K-pNPPase activity (low affinity ATP effects) were, respectively, increased by 1.8-fold and unchanged in the case of T774A but decreased by 2- and 4.8-fold in the case of V920E and were slightly changed and increased by 1.7-fold in the case of E954A. The E953A showed little significant change in the apparent affinities. These results suggest that Gln-923 in M8 is crucial for the active transport of Na+ and/or K+ across membranes and that the side chain oxygen atom of Thr-774 in M5, the methyl group(s) of Val-920 in M8, and the carboxyl oxygen(s) of Glu-954 in M9 mainly play some role in the transport of Na+ and also in the high and low affinity ATP effects rather than the transport of K+.  相似文献   

15.
We have used renal (Na,K)-ATPase, covalently labeled with fluorescein, and phospholipid vesicles reconstituted with labeled enzyme, to detect conformational transitions induced by acetyl phosphate in the presence of Mg2+ and Na+ ions. Equilibrium fluorescence measurements show quenching of the fluorescein fluorescence, which is thought to reflect conversion of the initial E1 form to the phosphorylated E2P form. These fluorescence changes occur on inside-out-oriented pumps. The rates of acetyl phosphate-induced fluorescence changes have been measured using a stopped-flow fluorimeter. The rate of fluorescence quenching (1.5-3 s-1) is a measure of the rate of the E1P(Na)----E2P transition. The quenching is preceded by a fast fluorescence increase (12.3 +/- 4 s-1) associated with phosphorylation of E1 to E1P(Na), shown clearly in experiments with enzyme treated with oligomycin. Oligomycin greatly reduces the rate of the fluorescence quenching (0.044 +/- 0.01 s-1). Using potassium-loaded vesicles treated with valinomycin or lithium-loaded vesicles treated with Li+ ionophore N,N'-diheptyl-N,N'-didiethyl ether, 5,5-dimethyl-3,7-dioxanonanediamide in order to induce electrical diffusion potentials, negative inside, the rates of the fluorescence quenching are accelerated by up to 4-fold. The experiments demonstrate that the conformational transition E1P(Na)----E2P, associated with transport of 3 Na+ ions, is a voltage-sensitive reaction, carrying a net positive charge. This confirms a prediction based on transport experiments. In experiments with fluorescein-labeled (Na,K)-ATPase, the use of acetyl phosphate rather than ATP, which does not bind, provides a valuable tool to detect fluorescence signals accompanying steps in the turnover cycle.  相似文献   

16.
Purified Na+, K(+)-ATPase was phosphorylated by [gamma-32P]ATP in a medium containing dimethylsulfoxide and 5 mM Mg2+ in the absence of Na+ and K+. Addition of K+ increased the phosphorylation levels from 0.4 nmol phosphoenzyme/mg of protein in the absence of K+ to 1.0 nmol phosphoenzyme/mg of protein in the presence of 0.5 mM K+. Higher velocities of enzyme phosphorylation were observed in the presence of 0.5 mM K+. Increasing K+ concentrations up to 100 mM lead to a progressive decrease in the phosphoenzyme (EP) levels. Control experiments, that were performed to determine the contribution to EP formation from the Pi inevitably present in the assays, showed that this contribution was of minor importance except at high (20-100 mM) KCl concentrations. The pattern of EP formation and its KCl dependence is thus characteristic for the phosphorylation of the enzyme by ATP. In the absence of Na+ and with 0.5 mM K+, optimal levels (1.0 nmol EP/mg of protein) were observed at 20-40% dimethylsulfoxide and pH 6.0 to 7.5. Addition of Na+ up to 5 mM has no effect on the phosphoenzyme level under these conditions. At 100 mM Na+ or higher the full capacity of enzyme phosphorylation (2.2 nmol EP/mg of protein) was reached. Phosphoenzyme formed from ATP in the absence of Na+ is an acylphosphate-type compound as shown by its hydroxylamine sensitivity. The phosphate radioactivity was incorporated into the alpha-subunit of the Na+, K(+)-ATPase as demonstrated by acid polyacrylamide gel electrophoresis followed by autoradiography.  相似文献   

17.
Uncoupling the red cell sodium pump by proteolysis   总被引:1,自引:0,他引:1  
In situ proteolysis of Na,K-ATPase was studied using inside-out red cell membrane vesicles. Proteolysis of the enzyme in its "E1" conformation with either trypsin or chymotrypsin inactivated cation translocation more than ATP hydrolysis. This was evident both in the absence of intravesicular alkali cations when Na-ATPase was compared to ATP-dependent 22Na+ influx, and in the presence of K+ when Na+/K+ exchange was compared to (Na+ + K+)-activated ATPase. This differential loss in pump versus hydrolysis was observed also when the activities of only intact, non-leaky vesicles were compared and therefore reflects intramolecular uncoupling rather than nonspecific leakage. Although oligomycin and thimerosal, like trypsin and chymotrypsin, inhibit the enzyme's conformational step(s), neither effect uncoupling. It is concluded that specific cleavage(s) of Na,K-ATPase, at least as it exists in situ, alters the reaction sequence with respect to the normal ordered mechanism. Accordingly, cytoplasmic Na+ and extracellular K+ bind to the enzyme, stimulate phosphorylation (ATP + E1----E1P + ADP) and dephosphorylation (E2P----E2 + Pi), respectively, but each is then released to the same side from which it had bound; presumably release occurs prior to the conformational transitions of E1P to E2P and E2 to E1. This conclusion is supported by experiments showing that, ar micromolar ATP concentration, the hydrolytic activity (Na-ATPase) of the trypsinized but not the unmodified enzyme is stimulated by K+, consistent with earlier experiments (Hegyvary, C., and Post, R. L. (1971) J. Biol. Chem. 246, 5234-5240) showing that the K X E2 to K X E1 transition is slower than the E2 to E1 transition.  相似文献   

18.
The two phosphoenzymes (E1P and E2P) of Na+,K+-ATPase were measured as ADP-sensitive and K+-sensitive fractions. The sum of these fractions was nearly 1 in the range of 50 to 1,200 mM NaCl. The effects of Na+ on the levels of E1P and E2P, on the rate constant of E2P leads to E1P transition (k2), on the rate constant of E2P dephosphorylation (k3), on the rate constant of E1P leads to E2P transition (k1) and on the apparent equilibrium constant between E1P and E2P (Kapp) were examined. k1 was found to decrease with increasing Na+ concentration, whereas k2 increased. Kapp was found to be directly proportional to the third power of Na+ concentration. k3 increased with increasing Na+ concentration and saturated at about 1 M NaCl. These results are consistent with a simple model in which ATP hydrolysis occurs through effectively only two phosphoenzyme intermediates in the absence of K+ and three sodium ions are discharged cooperatively from the enzyme during the E1P leads to E2P conversion.  相似文献   

19.
Na,K-ATPase from rabbit kidney outer medulla was reconstituted in large unilamellar lipid vesicles by detergent dialysis. Vesicles prepared in the presence or absence of potassium allowed to study two different transport modes: the (physiological) Na,K-mode in buffers containing Na+ and K+ and the Na-only mode in buffers containing Na+ but no K+. The ATP hydrolysis activity was obtained by determination of the liberated inorganic phosphate, Pi, and the inward directed Na+ flux was measured by 22Na-tracer flux. Electrogenic transport properties were studied using the membrane potential sensitive fluorescence-dye oxonol VI. The ratio upsilon(Na,K)/upsilon(Na) of the turnover rates in the Na,K-mode and in the Na-only mode is 6.6 +/- 2.0 under otherwise identical conditions and nonlimiting Na+ concentrations. Strong evidence is found that the Na-only mode exhibits a stoichiometry of 3Na+cyt/2Na+ext/1ATP, i.e. the extracellular (= intravesicular) Na+ has a potassium-like effect. In the Na-only mode one high-affinity binding side for ATP (KM congruent to 50 nM) was found, in the Na,K-mode a high- and low-affinity binding side with equilibrium dissociation constants, KM, of 60 nM and 13 microM, respectively. The sensitivity against the noncompetitively inhibiting ADP (KI = 6 microM) is higher by a factor of 20 in the Na-only mode compared to the Na,K-mode. From the temperature dependence of the pumping activity in both transport modes, activation energies of 160 kJ/mol for the Na,K-mode and 110 kJ/mol for the Na-only mode were determined.  相似文献   

20.
Glycation of the Na,K-ATPase in vitro (formation of Schiff base with glucose followed by reduction with NaCNBH3) shows the presence of three classes of reactive amino groups that differentially affect catalysis and cation binding. Reaction in the absence of ATP results in irreversible inhibition of enzyme activity with a t1/2 of 53 min. This is due to modification of one class of amino groups that affect the catalytic domain of the enzyme. In the presence of ATP, glycation first results in a shift in the steady state kinetics of ATP hydrolysis from substrate activation to Michaelis-Menten kinetics accompanied by an increase in the apparent affinity for K+ in the p-nitrophenylphosphatase reaction. This change in kinetic properties occurs with a t1/2 of 9 min and results in the complete loss of K+ occlusion. Incorporation of glucose is into the catalytic subunit, remote from the N-terminal end. Apparent total inhibition of K+ occlusion occurs with a stoichiometry 0.8 mol of glucose incorporated per mol of enzyme. Therefore, there is a rapidly reacting amino group that affects the cation binding domain of the Na,K-ATPase. More slowly, with a t1/2 of 9 h, the ATP hydrolysis kinetics change from Michaelis-Menten to substrate inhibition without recovery of K+ occlusion, showing that, in the E1 conformation, there is a third, slower reacting class of amino groups in the Na,K-ATPase that affects low affinity nucleotide interaction with the catalytic subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号