首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The stiffness of glycerinated rabbit psoas fibers in the rigor state was measured at various sarcomere lengths in order to determine the distribution of the sarcomere compliance between the cross-bridge and other structures. The stiffness was determined by measuring the tension increment at one end of a fiber segment while stretching the other end of the fiber. The contribution of the end compliance to the rigor segments was checked both by laser diffractometry of the sarcomere length change and by measuring the length dependence of the Young's modulus; the contribution was found to be small. The stiffness in the rigor state was constant at sarcomere lengths of 2.4 microns or less; at greater sarcomere lengths the stiffness, when corrected for the contribution of resting stiffness, scaled with the amount of overlap between the thick and thin filaments. These results suggest that the source of the sarcomere compliance of the rigor fiber at the full overlapping of filaments is mostly the cross-bridge compliance.  相似文献   

2.
The effect of ionic strength on the kinetics of myosin cross-bridges in the presence of the ATP analogue PP, has been examined. It was found that increasing ionic strength from moderate values (mu approximately 100 mM) to high values (mu approximately 200 mM) has three effects. It causes a big decrease in the half time for the force decay after a small stretch, it causes a significant decrease in the sigmoidicity of the nucleotide analogue concentration dependence of the "apparent rate constant" of force decay after a small stretch, and it causes a big decrease in the range of rate constants necessary to describe the multiexponential force decay. It causes the last of these by causing a much larger increase in the slowest rate constants of the decay than in the fastest rate constants. The results suggest that whereas the behavior of cross-bridges in the presence of ATP is well-described by the simple independent-head equilibrium cross-bridge model of Schoenberg (1985. Biophys. J. 48:467-475), cross-bridges in the presence of the ATP analogue PPi require the more complicated double-headed equilibrium cross-bridge model of Anderson and Schoenberg (1987. Biophys. J. 52: 1077-1082) to describe their behavior.  相似文献   

3.
Collins and Edwards (1971, Am. J. Physiol., 221:1130-1133) have shown that a tissue potential can be measured with microelectrodes in glycerinated muscle and that this potential is consistent with a Donnan equilibrium of small ions due to the concentration of net fixed electric charge on the contractile proteins. This approach has been combined with x-ray and light diffraction measurements of the muscle lattice dimensions, and the data are used to determine the thick filament charge and thin filament charge under a variety of different conditions. The thick filament charge is a function of the bathing solution, in particular its pH and ionic composition. These parameters are important in determining the volume of the equilibrium lattice and possibly are involved in the contraction mechanism itself.  相似文献   

4.
Julian Borejdo  Susan Putnam 《BBA》1977,459(3):578-595
Single skinned glycerinated muscle fibers were labelled with the fluorescent dye N-(iodoacetylamino)-1-naphthylamine-5-sulfonic acid (1,5-IAEDANS). The heavy chain of myosin (EC 3.6.1.3) was labelled predominantly when the reaction was carried out in relaxation at 0 °C. Mechanical properties of skinned fibers were little affected by labelling with the fluorophore. Rigor tension developed upon transferring native or labelled skinned fibers from relaxing to rigor solutions lacking Ca2+ was very small but could be enhanced by progressively increasing Ca2+ concentration; the rigor tension decreased with increasing sarcomere length.Polarization of fluorescence of skinned fibers reacted with 1,5-IAEDANS was measured along the line of excitation as well as at 90° to it. The mean values of parallel and perpendicular components of polarization of labelled fibers measured at 0° were close to the values obtained for native fibers irrigated with 1,5-IAEDANS-labelled heavy meromyosin, fiber “ghosts” irrigated with labelled heavy meromyosin, and oriented bundles of myofibrils reacted with the same fluorophore. Skinned fibers stretched above the rest length and then irrigated with 1,5-IAEDANS-labelled heavy meromyosin gave rise to polarized fluorescence close to the values theoretically predicted for an assembly of helically arranged fluorophores. Using 90° detection system a satisfactory fit to the theory could be obtained from single fibers labelled with 1,5-IAEDANS and measured in rigor. The angle between the fiber axis and the direction of the emission dipole of 1,5-IAEDANS attached to subfragment-1 was estimated to be near 40°.  相似文献   

5.
We find that at 6 degrees C in the presence of 4 mM MgPPi, at low or moderate ionic strength, skinned rabbit psoas fibers exhibit a stiffness and an equatorial x-ray diffraction pattern similar to that of rigor fibers. As the ionic strength is increased in the absence of Ca2+, both the stiffness and the equatorial x-ray diffraction pattern approach those of the relaxed state. This suggests that, as in solution, increasing ionic strength weakens the affinity of myosin cross-bridges for actin, which results in a decrease in the number of cross-bridges attached. The effect is Ca2+-sensitive. Assuming that stiffness is a measure of the number of cross-bridge heads attached, in the absence of Ca2+, the fraction of attached cross-bridge heads varies from approximately 75% to approximately 25% over an ionic strength range where ionic strength in solution weakens the binding constant for myosin subfragment-1 binding to unregulated actin by less than a factor of 3. Therefore, this phenomenon appears similar to the cooperative Ca2+-sensitive binding of S1 to regulated actin in solution (Greene, L. E., and E. Eisenberg, 1980, Proc. Natl. Acad. Sci. USA, 77:2616). By comparing the binding constants in solution and in the fiber under similar conditions, we find that the "effective actin concentration," that is, the concentration that gives the same fraction of S1 molecules bound to actin in solution as cross-bridge heads are bound to actin in a fiber, is in the millimolar range.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Vanadate (Na3VO4) action of the isometric force of maximal Ca2(+)-activated fibre has been studied at pH from 6.3 to 7.3. Acidification was shown to decrease the force declining vanadate effect: appearance of the dissociation constant estimated from force--H2VO4--dependence increases about two-fold following the pH decreasing from 7.3 to 6.3. Therefore the well-known decline of the force at acidification is accompanied by a decrease of the sensitivity to vanadate. These both phenomena can have a common nature and reflect, for example, a decreasing complex AM.ADP+ responsible for the force and interaction with vanadate. Our findings permit to think that the changes in pH with fatigue increasing the diprotonated form of phosphate simultaneously reduce the sensitivity of the contractile system to this form.  相似文献   

7.
8.
The effect of sarcomere length and stretching on the tension and the rate of ATP splitting was studied using small fiber bundles from glycerinated rabbit psoas muscle. The rate of ATP slitting was determined by measuring ADP production, while the tension development in response to a contracting solution (at pCa 5.3) was recorded in the same preparation. The isometric tension developed by the preparation decreased when the sarcomere length was increased. The decrease of tension development was accompanied by a decrease in the rate of ATP splitting. If a preparation exerting steady isometric tension was stretched by 5--10% at a velocity of 0.1 mm/s, the rate of ATP splitting was increased after stretching, while the steady isometric tension attained after stretching was also higher than the initial value. The extent of the excess ATP splitting caused by stretching decreased with increasing sarcomere length. These results suggest that the rate of the interaction cycle between actin and myosin molecules may increase as a result of stretching.  相似文献   

9.
The elementary steps of the cross-bridge cycle in which troponin C (TnC) was partially extracted were investigated by sinusoidal analysis in rabbit psoas muscle fibers. The effects of MgATP and phosphate on the rate constants of exponential processes were studied at 200 mM ionic strength, pCa 4.20, pH 7.00, and at 20 degrees C. The results were analyzed with the following cross-bridge scheme: [formula: see text] where A is actin, M is myosin, S is MgATP, D is MgADP, and P is phosphate (Pi). When TnC was extracted so that the average remaining tension was 11% (range 8-15%), K1 (MgATP association constant) increased to 7x, k2 (rate constant of cross-bridge detachment) increased to 1.55x, k-2 (reversal of detachment) decreased to 0.27x, and K2 (= k2/k-2: equilibrium constant of cross-bridge detachment) increased to 6.6x, k4 (rate constant of force generation) decreased to 0.4x, k-4 (reversal of force generation) increased to 2x, K4 (= k4/k-4) decreased to 0.17x, and K5 (Pi association constant) did not change. The activation factor alpha, which represents the fraction of cross-bridges participating in the cycling, decreased from 1 to 0.14 with TnC extraction. The fact that K1 increased with TnC extraction implies that the condition of the thin filament modifies the contour of the substrate binding site on the myosin head and is consistent with the Fenn effect. The fact that alpha decreased to 0.14 is consistent with the steric blocking mechanism (recruitment hypothesis) and indicates that some of the cross-bridges disappear from the active cycling pool. The fact that the equilibrium constants changed is consistent with the cooperative activation mechanism (graded activation hypothesis) among thin-filament regulatory units that consist of troponin (TnC, Tnl, TnT), tropomyosin, and seven actin molecules, and possibly include cross-bridges.  相似文献   

10.
Structure of thick filaments in the chemically skinned fibre bundles of rabbit psoas muscle in a state of pseudorelaxation induced by adding 2 mM pyrophosphate (PP) and of PP-mixture with 40% ethyleneglycol to the bathing rigor solution was studied with the help of X-ray diffraction technique. Reduction in the isometric rigor tension by about 50-70% in a state of pseudorelaxation is accompanied by significant changes in the relative intensities of a number of meridional reflections, indicating that in situ the structure and location of S-2 segment may be regulated by the structural changes in the acto S-1-complex during its cyclic interaction with ATP.  相似文献   

11.
Isometric rigor tension development of glycerinated rabbit psoas muscle fibers in a medium, due to the formation of rigor complexes, was estimated at varying ATP concentrations from 0 to 2.5 mM and pH values from 6.75 to 8.20. The dissociation of rigor complexes was also estimated under the same conditions. When muscle fibers developed rigor tension from the relaxed and rigor states, the magnitude of rigor tension increased with increasing concentration of ATP. Transition between rigor and relaxation in single fibers occurred discontinuously at constant levels (critical levels) of ATP which were determined by pH. The critical concentrations of ATP necessary for inducing the transitions between rigor and relaxed states were also increased exponentially with increased pH. Incomplete repetition of tension development by the same fiber was also observed. This incomplete reversibility was divided into two types: one which showed a decay in rigor tension and another which showed no decay. The reason for the incomplete reversibility was discussed.  相似文献   

12.
The stiffness of single skinned rabbit psoas fibers was measured during rapid length changes applied to one end of the fibers. Apparent fiber stiffness was taken as the initial slope when force was plotted vs. change in sarcomere length. In the presence of MgATP, apparent fiber stiffness increased with increasing speed of stretch. With the fastest possible stretches, the stiffness of relaxed fibers at an ionic strength of 20 mM reached more than 50% of the stiffness measured in rigor. However, it was not clear whether apparent fiber stiffness had reached a maximum, speed independent value. The same behavior was seen at several ionic strengths, with increasing ionic strength leading to a decrease in the apparent fiber stiffness measured at any speed of stretch. A speed dependence of apparent fiber stiffness was demonstrated even more clearly when stiffness was measured in the presence of 4 mM MgPPi. In this case, stiffness varied with speed of stretch over about four decades. This speed dependence of apparent fiber stiffness is likely due to cross-bridges detaching and reattaching during the stiffness measurement (Schoenberg, 1985. Biophys. J. 48:467). This means that obtaining an estimate of the maximum number of cross-bridges attached to actin in relaxed fibers at various ionic strengths is not straightforward.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Single fibers from chemically skinned rabbit psoas muscle were treated with 1-ethyl-3-[3-dimethyl-amino)proyl]-carbodiimide (EDC) at 20 degrees C after rigor was induced. A 22-min treatment resulted in 18% covalent cross-linking between myosin heads and the thin filament as determined by stiffness measurements. This treatment also results in covalent cross-linking among rod portions of myosin molecules in the backbone of the thick filament. The fibers thus prepared are stable and do not dissolve in solutions at ionic strengths as high as 1,000 mM. The preparation was subjected to sinusoidal analysis, and the resulting complex modulus data were analyzed in terms of three exponential processes, (A), (B), and (C). Oscillatory work (process B) was much greater in the cross-linked fibers than in untreated ones in activating solutions of physiological ionic strength (200 mM); this difference was attributed to the decline of process (A) with EDC treatment. Consequently, the Nyquist plot of the EDC-treated preparation exhibited an insect-type response. We conclude that, under these conditions, both cross-linked and non-cross-linked myosin heads contribute to the production of oscillatory power. The cross-linked preparations also exhibited oscillatory work in high ionic strength (500-1,000 mM) solutions, indicating that cross-linked myosin heads are capable of utilizing ATP to produce work. We conclude that process (A) does not relate to an elementary step in a cross-bridge cycle, but it may relate to dynamics outside the cross-bridge such as filament sliding or sarcomere rearrangement.  相似文献   

14.
Y Zhao  M Kawai 《Biophysical journal》1994,67(4):1655-1668
The effect of temperature on elementary steps of the cross-bridge cycle was investigated with sinusoidal analysis technique in skinned rabbit psoas fibers. We studied the effect of MgATP on exponential process (C) to characterize the MgATP binding step and cross-bridge detachment step at six different temperatures in the range 5-30 degrees C. Similarly, we studied the effect of MgADP on exponential process (C) to characterize the MgADP binding step. We also studied the effect of phosphate (Pi) on exponential process (B) to characterize the force generation step and Pi-release step. From the results of these studies, we deduced the temperature dependence of the kinetic constants of the elementary steps and their thermodynamic properties. We found that the MgADP association constant (K0) and the MgATP association constant (K1) significantly decreased when the temperature was increased from 5 to 20 degrees C, implying that nucleotide binding became weaker at higher temperatures. K0 and K1 did not change much in the 20-30 degree C range. The association constant of Pi to cross-bridges (K5) did not change much with temperature. We found that Q10 for the cross-bridge detachment step (k2) was 2.6, and for its reversal step (k-2) was 3.0. We found that Q10 for the force generation step (Pi-isomerization step, k4) was 6.8, and its reversal step (k-4) was 1.6. The equilibrium constant of the detachment step (K2) was not affected much by temperature, whereas the equilibrium constant of the force generation step (K4) increased significantly with temperature increase. Thus, the force generation step consists of an endothermic reaction. The rate constant of the rate-limiting step (k6) did not change much with temperature, whereas the ATP hydrolysis rate increased significantly with temperature increase. We found that the force generation step accompanies a large entropy increase and a small free energy change; hence, this step is an entropy-driven reaction. These observations are consistent with the hypothesis that the hydrophobic interaction between residues of actin and myosin underlies the mechanism of force generation. We conclude that the force generation step is the most temperature-sensitive step among elementary steps of the cross-bridge cycle, which explains increased isometric tension at high temperatures in rabbit psoas fibers.  相似文献   

15.
Muscle contraction is highly dynamic and thus may be influenced by viscosity of the medium surrounding the myofilaments. Single, skinned fibers from rabbit psoas muscle were used to test this hypothesis. Viscosity within the myofilament lattice was increased by adding to solutions low molecular weight sugars (disaccharides sucrose or maltose or monosaccharides glucose or fructose). At maximal Ca2+ activation, isometric force (Fi) was inhibited at the highest solute concentrations studied, but this inhibition was not directly related to viscosity. Solutes readily permeated the filament lattice, as fiber diameter was unaffected by added solutes (except for an increased diameter with Fi < 30% of control). In contrast, there was a linear dependence upon 1/viscosity for both unloaded shortening velocity and also the kinetics of isometric tension redevelopment; these effects were unrelated to either variation in solution osmolarity or inhibition of force. All effects of added solute were reversible. Inhibition of both isometric as well as isotonic kinetics demonstrates that viscous resistance to filament sliding was not the predominant factor affected by viscosity. This was corroborated by measurements in relaxed fibers, which showed no significant change in the strain-rate dependence of elastic modulus when viscosity was increased more than twofold. Our results implicate cross-bridge diffusion as a significant limiting factor in cross-bridge kinetics and, more generally, demonstrate that viscosity is a useful probe of actomyosin dynamics.  相似文献   

16.
The relaxing effect of vanadate on active contractile system is found to be completely absent from rigor skinned fibres with ADP even on their stretching up to the forces comparable with the active ones, though vanadate is likely to bind not very firmly with crossbridges not containing inorganic phosphate. Probable reasons of such distinction are considered. The complex actomyosin-ADP in the rigor fibres is supposed to have significantly lower free energy independently of its deformation than the one of the same composition in the active ones. Possible role of different actomyosin-ADP states in the mechanochemical cycle of crossbridge is discussed.  相似文献   

17.
The actin-myosin lattice spacing of rabbit psoas fibers was osmotically compressed with a dextran T-500, and its effect on the elementary steps of the cross-bridge cycle was investigated. Experiments were performed at the saturating Ca (pCa 4.5-4.9), 200 mM ionic strength, pH 7.0, and at 20 degrees C, and the results were analyzed by the following cross-bridge scheme: [formula: see text] where A = actin, M = myosin head, S = MgATP, D = MgADP, and P = Pi = phosphate. From MgATP and MgADP studies on exponential process (C) and (D), the association constants of cross-bridges to MgADP (K0), MgATP (K1a), the rate constants of the isomerization of the AM S state (k1b and k-1b), and the rate constants of the cross-bridge detachment step (k2 and k-2) were deduced. From Pi study on process (B), the rate constants of the cross-bridge attachment (power stroke) step (k4- and k-4) and the association constant of Pi ions to cross-bridges (K5) were deduced. From ATP hydrolysis measurement, the rate constant of ADP-isomerization (rate-limiting) step (k6) was deduced. These kinetic constants were studied as functions of dextran concentrations. Our results show that nucleotide binding, the ATP-isomerization, and the cross-bridge detachment steps are minimally affected by the compression. The rate constant of the reverse power stroke step (k-4) decreases with mild compression (0-6.3% dextran), presumably because of the stabilization of the attached cross-bridges in the AM*DP state. The rate constant of the power stroke step (k4) does not change with mild compression, but it decreases with higher compression (> 6.3% dextran), presumably because of an increased difficulty in performing the power stroke. These results are consistent with the observation that isometric tension increases with a low level of compression and decreases with a high level of compression. Our results also show that the association constant K5 of Pi with cross-bridge state AM*D is not changed with compression. Our result further show that the ATP hydrolysis rate decreased with compression, and that the rate constants of the ADP-isomerization step (k6) becomes progressively less with compression. The effect of compression on the power stroke step and rate-limiting step implies that a large-scale molecular rearrangement in the myosin head takes place in these two slow reaction steps.  相似文献   

18.
The binding of Ca2+ to glycerinated rabbit psoas fibers of varying sarcomere length was measured with a double isotope technique and ethyleneglycol-bis-(beta-aminoethylether)-N,N'-tetraacetic acid buffers. Experiments were carried out under rigor conditions with fiber bundles pre-set at different lengths prior to extraction with detergent and glycerol. These experiments were designed to test whether rigor complex formation, determined by the degree of filament overlap, enhances Ca2+-receptor affinity in the intact filament lattice, as it does in reconstituted actomyosin systems. The Ca2+-receptor affinity, as indicated by the free Ca2+ concentration at half-saturation and by the slopes of Scatchard plots, was found to be relatively unaffected by variations in filament overlap. However, the maximum bound Ca2+ was significantly reduced in stretched fibers. With maximum filament overlap the bound Ca2+ was equivalent to 4 mol per mol troponin. When stretched to zero overlap the fibers bound a maximum of 3 mol Ca2+ per mol troponin. When fibers with maximum overlap were incubated in the presence of 5 mM MgATP there was a reduction in the number of Ca2+-binding sites equivalent to that caused by stretching the fibers. These findings, taken together with other data in the literature, suggest that in the intact filament lattice at least one of the Ca2+-binding sites is present only when cross-bridge attachments are formed.  相似文献   

19.
M Kawai  J S Wray    Y Zhao 《Biophysical journal》1993,64(1):187-196
Chemically skinned rabbit psoas muscle fibers/bundles were osmotically compressed with a macromolecule dextran T-500 (0-16%, g/100 ml) at 20 degrees C, 200 mM ionic strength, and pH 7.0. The lattice spacing of psoas bundles was measured by equatorial x-ray diffraction studies during relaxation and after rigor induction, and the results were compared with the fiber width measurements by optical microscopy. The purpose of the present study is to determine whether fiber width is a reliable measure of the lattice spacing, and to determine the available spacing for myosin cross-bridges between the thick and thin filaments. We observed that both the lattice spacing and the fiber width decreased with an increase in the dextran concentration during relaxation or after rigor induction, and that the spacing and the fiber width were proportionately related. We further observed that, in the absence of dextran, the lattice spacing (and the fiber width) shrank on a relax-to-rigor transition, whereas in the presence of 16% dextran, the spacing expanded on a relax-to-rigor transition. The cross-over of these plots occurred at the 4-7% dextran concentration. During Ca activation, the fiber width shrank in the absence of dextran, and it slightly expanded in the presence of 14.4% dextran. The degree of expansion was not as large as in the relax-to-rigor transition, and the cross-over occurred at about 11% dextran concentration. We also carried out experiments with dextran T-40 and T-10 to determine the upper limit of the molecular weight that enters the lattice space. We found that the upper limit is about 20 kD.  相似文献   

20.
The rate and association constants (kinetic constants) which comprise a seven state cross-bridge scheme were deduced by sinusoidal analysis in chemically skinned rabbit psoas muscle fibers at 20 degrees C, 200 mM ionic strength, and during maximal Ca2+ activation (pCa 4.54-4.82). The kinetic constants were then used to calculate the steady state probability of cross-bridges in each state as the function of MgATP, MgADP, and phosphate (Pi) concentrations. This calculation showed that 72% of available cross-bridges were (strongly) attached during our control activation (5 mM MgATP, 8 mM Pi), which agreed approximately with the stiffness ratio (active:rigor, 69 +/- 3%); active stiffness was measured during the control activation, and rigor stiffness after an induction of the rigor state. By assuming that isometric tension is a linear combination of probabilities of cross-bridges in each state, and by measuring tension as the function of MgATP, MgADP, and Pi concentrations, we deduced the force associated with each cross-bridge state. Data from the osmotic compression of muscle fibers by dextran T500 were used to deduce the force associated with one of the cross-bridge states. Our results show that force is highest in the AM*ADP.Pi state (A = actin, M = myosin). Since the state which leads into the AM*ADP.Pi state is the weakly attached AM.ADP.Pi state, we confirm that the force development occurs on Pi isomerization (AM.ADP.Pi --> AM*ADP.Pi). Our results also show that a minimal force change occurs with the release of Pi or MgADP, and that force declines gradually with ADP isomerization (AM*ADP -->AM.ADP), ATP isomerization (AM+ATP-->AM*ATP), and with cross-bridge detachment. Force of the AM state agreed well with force measured after induction of the rigor state, indicating that the AM state is a close approximation of the rigor state. The stiffness results obtained as functions of MgATP, MgADP, and Pi concentrations were generally consistent with the cross-bridge scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号