首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
兴奋-收缩偶联(E—C coupling)依赖纽胞膜二氢吡啶受体(DHPR)/L型电压门控Ca^2+通道和肌浆网兰诺定受体(RyR)/Ca^2+释放通道的相互作用。在骨骼肌细胞中,DHPR与RyRl在结构上二机械偶联,不依赖细胞外Ca^2+即可激活RyRl;在心肌细胞中,去极化激活DHPR,细胞外Ca^2+内流,内流的Ca^2+通过钙诱导钙释放(CICR)机制激活RyR2。最近的研究表明,DHPR与RyR之间的信号转导通常是双向的。DHPR与RyR机械和化学的双向偶联机制调节这两种Ca^2+通道的效率、精确度和活性。  相似文献   

2.
G蛋白偶联受体(GPCR)是最大的蛋白质受体超家族之一,参与调节各种生理过程,在信号识别和转导中起重要作用。GPCR的突变及基因多态性将引发各种疾病,目前已经发现有30多种单基因疾病与此相关。介绍了GPCR功能失调的分子基础,在此基础上对一些GPCR突变以及相关疾病做了综逑,并指出了其治疗意义。  相似文献   

3.
5-羟色胺(5-hydroxytryptamine, 5-HT)是昆虫体内一种重要的生物胺。5-HT在昆虫神经组织和非神经组织中均可合成,它可被5-HT转运体重吸收进入突触前结构中。5-HT通过结合特异性的G蛋白偶联受体在昆虫体内发挥不同的神经调控作用,调节昆虫主要的行为活动,比如取食、生物钟、聚集、学习和记忆等。昆虫体内5-HT受体有5种,分别为5-HT1A,5-HT1B, 5-HT2A,5-HT2B 和5-HT7。其中5-HT1A和5-HT1B偶联胞内cAMP的降低, 5-HT2A和5-HT2B偶联胞内Ca2+的释放, 5 HT7偶联胞内cAMP的升高。近年来,昆虫体内5-HT及其受体的研究有了很大的进展,昆虫体内越来越多的5-HT受体被克隆,并进行了功能和药理学性质分析。不同昆虫5 HT受体药理学性质存在差异,将为以5-HT受体为靶标,设计新型特异性杀虫剂提供理论基础。  相似文献   

4.
G蛋白偶联受体(GPCRs)在大脑信号传递中至关重要,而在阿尔兹海默症(AD)中,G蛋白偶联受体通过调控α-、β-及γ-分泌酶分泌、淀粉样前体蛋白(APP)生成及β-淀粉样蛋白(Aβ)降解,直接影响β-淀粉样蛋白在神经系统信号级联反应;另外,阿尔兹海默症中β-淀粉样蛋白的生成可以扰乱G蛋白偶联受体功能.因此,阐明G蛋白偶联受体与阿尔兹海默症发病之间的关联有助于开发以G蛋白偶联受体为靶点的阿尔兹海默症治疗药物.  相似文献   

5.
雌激素受体(estrogen receptorα,ERα)是依赖配体活化转录因子的核受体家族成员之一,参与靶细胞的增殖和分化。ERα活化的经典途径是与雌激素结合后直接作用于靶基因上游的雌激素受体反应元件(ERE),从而诱导靶基因转录。雌激素受体的功能受许多因子调节,包括与之结合的配体、DNA上的顺式元件、募集的辅助调节因子及细胞环境等。在雌激素受体相关疾病中,除乳腺癌和子宫内膜癌外,近年研究表明心血管疾病、骨质疏松症、阿尔茨海默氏病等疾病也与雌激素受体密切相关。雌激素的生物效应与多种疾病的发生、转归和预后密切相关。本文将综述几类辅助调节因子对雌激素受体介导的基因转录的调控,雌激素受体相关疾病,及环境有害物质对ERα功能的影响。  相似文献   

6.
G蛋白偶联受体(G protein-coupled receptors,GPCRs)是一类重要的细胞膜表面跨膜蛋白受体超家族,具有7个跨膜螺旋结构。GPCRs的细胞内信号由G蛋白介导,可将激素、神经递质、药物、趋化因子等多种物理和化学的细胞外刺激穿过细胞膜转导到细胞内不同的效应分子,激活相应的信号级联系统进而影响恶性肿瘤的生长迁移过程。虽然目前药物市场上有很多治疗癌症的小分子药物属于G蛋白受体相关药物,但所作用的靶点集中于少数特定G蛋白偶联受体。因此,新的具有成药性的G蛋白偶联受体的开发具有很大的研究价值和市场潜力。本文主要以在癌症发生、发展中起重要作用的溶血磷脂酸(LPA),G蛋白偶联受体30(GPR30)、内皮素A受体(ETAR)等不同G蛋白偶联受体为分类依据,综述其与相关的信号通路在癌症进程中的作用,并对相应的小分子药物的临床应用和研究进展进行展望。  相似文献   

7.
受体是存在于效应细胞中的重要功能蛋白,它和配体具有高亲和力,受体异常亦称受体病,拟就近年来细胞受体和受体病的研究进展作一综述。  相似文献   

8.
痒是一种引起机体产生抓挠欲望的不愉快感觉.与疼痛一样,痒觉也是机体的一种自我防护反应,可以促使机体及时避免有害刺激,但持续较长时间的慢性痒往往是一种病理性特征,严重影响人的生活质量.目前已发现两条痒觉传导通路,组胺依赖的信号通路和组胺非依赖的信号通路.组胺、阿片类物质、大麻素、一些肽类物质及氯喹均可刺激相关受体诱导痒觉产生.痒觉产生的机制,有多种学说,比较有影响的是选择性学说和特异性学说.本文综述了近年来痒觉信号通路及其相关受体的研究进展.  相似文献   

9.
中枢神经系统损伤后其再生能力较弱已被人们所熟知,原因在于髓磷脂抑制物如Nogo、MAG、Omgp等抑制因子的作用,这些抑制因子通过与神经元上的Nogo受体(NgR)特异性结合,发挥对神经轴突再生的抑制作用。Nogo是一种存在于中枢神经系统少突胶质细胞上的髓磷脂蛋白,其作用主要在于神经细胞损伤后抑制其突触再生,这同时也是对损伤部位其他细胞免于进一步损伤的保护作用。存在于细胞表面的Nogo-66结构是与NgR特异性结合的功能域。NgR是一种存在于神经元表面,传递抑制轴突生长信号的复合共受体。近年来随着对NgR、Nogo及其下游信号通路其他相关蛋白研究的深入,提示多种神经系统疾病与之相关。我们简要综述近年来关于NgR的研究进展。  相似文献   

10.
甘丙肽受体的研究进展   总被引:6,自引:0,他引:6  
目前已经克隆了3种甘丙肽受体(GalR1, GalR2, GalR3),它们都是与G蛋白相偶联的受体.3种甘丙肽受体的氨基酸序列、药理学特性以及第二信使系统各不相同.GalR1/3受体可以抑制腺苷酸环化酶并可以激活钾通道,GalR2受体可以激活磷脂酶C并增加胞内钙离子浓度.用RNA印迹、反转录PCR以及原位杂交等技术对上述3种甘丙肽受体在人、大鼠和小鼠中的分布进行了研究,发现它们具有不同的分布特征,提示不同的甘丙肽受体可能参与不同的生理过程.  相似文献   

11.
S-Adenosyl-l-methionine (SAM) is the biological methyl-group donor for the enzymatic methylation of numerous substrates including proteins. SAM has been reported to activate smooth muscle derived ryanodine receptor calcium release channels. Therefore, we examined the effects of SAM on the cardiac isoform of the ryanodine receptor (RyR2). SAM increased cardiac sarcoplasmic reticulum [3H]ryanodine binding in a concentration-dependent manner by increasing the affinity of RyR2 for ryanodine. Activation occurred at physiologically relevant concentrations. SAM, which contains an adenosine moiety, enhanced ryanodine binding in the absence but not in the presence of an ATP analogue. S-Adenosyl-l-homocysteine (SAH) is the product of the loss of the methyl-group from SAM and inhibits methylation reactions. SAH did not activate RyR2 but did inhibit SAM-induced RyR2 activation. SAH did not alter adenine nucleotide activation of RyR2. These data suggest SAM activates RyR2 via a site that interacts with, but is distinct from, the adenine nucleotide binding site.  相似文献   

12.
The mammalian ryanodine receptor Ca2+ release channel (RyR) has a single conserved high affinity calmodulin (CaM) binding domain. However, the skeletal muscle RyR1 is activated and cardiac muscle RyR2 is inhibited by CaM at submicromolar Ca2+. This suggests isoform-specific domains are involved in RyR regulation by CaM. To gain insight into the differential regulation of cardiac and skeletal muscle RyRs by CaM, RyR1/RyR2 chimeras and mutants were expressed in HEK293 cells, and their single channel activities were measured using a lipid bilayer method. All RyR1/RyR2 chimeras and mutants were inhibited by CaM at 2 μM Ca2+, consistent with CaM inhibition of RyR1 and RyR2 at micromolar Ca2+ concentrations. An RyR1/RyR2 chimera with RyR1 N-terminal amino acid residues (aa) 1–3725 and RyR2 C-terminal aa 3692–4968 were inhibited by CaM at <1 μM Ca2+ similar to RyR2. In contrast, RyR1/RyR2 chimera with RyR1 aa 1–4301 and RyR2 4254–4968 was activated at <1 μM Ca2+ similar to RyR1. Replacement of RyR1 aa 3726–4298 with corresponding residues from RyR2 conferred CaM inhibition at <1 μM Ca2+, which suggests RyR1 aa 3726–4298 are required for activation by CaM. Characterization of additional RyR1/RyR2 chimeras and mutants in two predicted Ca2+ binding motifs in RyR1 aa 4081–4092 (EF1) and aa 4116–4127 (EF2) suggests that both EF-hand motifs and additional sequences in the large N-terminal regions are required for isoform-specific RyR1 and RyR2 regulation by CaM at submicromolar Ca2+ concentrations.  相似文献   

13.
A 25 amino acid segment (Glu666-Pro691) of the II-III loop of the alpha1 subunit of the skeletal dihydropyridine receptor, but not the corresponding cardiac segment (Asp788-Pro814), activates skeletal ryanodine receptors. To identify the structural domains responsible for activation of skeletal ryanodine receptors, we systematically replaced amino acids of the cardiac II-III loop with their skeletal counterparts. A cluster of five basic residues of the skeletal II-III loop (681RKRRK685) was indispensable for activation of skeletal ryanodine receptors. In the cardiac segment, a negatively charged residue (Glu804) appears to diminish the electrostatic potential created by this basic cluster. In addition, Glu800 in the group of negatively charged residues 798EEEEE802 of the cardiac II-III loop may serve to prevent the binding of the activation domain.  相似文献   

14.
Calcium is a crucial element for striated muscle function. As such, myoplasmic free Ca2+ concentration is delicately regulated through the concerted action of multiple Ca2+ pathways that relay excitation of the plasma membrane to the intracellular contractile machinery. In skeletal muscle, one of these major Ca2+ pathways is Ca2+ release from intracellular Ca2+ stores through type-1 ryanodine receptor/Ca2+ release channels (RyR1), which positions RyR1 in a strategic cross point to regulate Ca2+ homeostasis. This major Ca2+ traff ic point appears to be highly sensitive to the intracellular environment, which senses through a plethora of chemical and protein-protein interactions. Among these modulators, perhaps one of the most elusive is Triadin, a musclespecif ic protein that is involved in many crucial aspect of muscle function. This family of proteins mediates complex interactions with various Ca2+ modulators and seems poised to be a relevant modulator of Ca2+ signaling in cardiac and skeletal muscles. The purpose of this review is to examine the most recent evidence and current understanding of the role of Triadin in muscle function, in general, with particular emphasis on its contribution to Ca2+ homeostasis.  相似文献   

15.
Excitation-contraction coupling in both skeletal and cardiac muscle depends on structural and functional interactions between the voltage-sensing dihydropyridine receptor L-type Ca2+ channels in the surface/transverse tubular membrane and ryanodine receptor Ca2+ release channels in the sarcoplasmic reticulum membrane. The channels are targeted to either side of a narrow junctional gap that separates the external and internal membrane systems and are arranged so that bi-directional structural and functional coupling can occur between the proteins. There is strong evidence for a physical interaction between the two types of channel protein in skeletal muscle. This evidence is derived from studies of excitation–contraction coupling in intact myocytes and from experiments in isolated systems where fragments of the dihydropyridine receptor can bind to the ryanodine receptors in sarcoplasmic reticulum vesicles or in lipid bilayers and alter channel activity. Although micro-regions that participate in the functional interactions have been identified in each protein, the role of these regions and the molecular nature of the protein–protein interaction remain unknown. The trigger for Ca2+ release through ryanodine receptors in cardiac muscle is a Ca2+ influx through the L-type Ca2+ channel. The Ca2+ entering through the surface membrane Ca2+ channels flows directly onto underlying ryanodine receptors and activates the channels. This was thought to be a relatively simple system compared with that in skeletal muscle. However, complexities are emerging and evidence has now been obtained for a bi-directional physical coupling between the proteins in cardiac as well as skeletal muscle. The molecular nature of this coupling remains to be elucidated.  相似文献   

16.
Triadin in the junctional sarcoplasmic reticulum (SR) of skeletal muscle cells has been suggested to interact with ryanodine receptor 1 (RYR1) via its KEKE motifs. Recently, we showed that amino acid residues D4878, D4907, and E4908 in RYR1 are critical for triadin-binding in vitro [J.M. Lee, S.H. Rho, D.W. Shin, C. Cho, W.J. Park, S.H. Eom, J. Ma, D.H. Kim, Negatively charged amino acids within the intraluminal loop of ryanodine receptor are involved in the interaction with triadin, J. Biol. Chem. 279 (2004) 6994-7000]. In order to test whether a disruption of the triadin-binding site(s) in RYR1 affects SR Ca(2+) release, alanine-substituted single (D4878A, D4907A, and E4908A) and triple (RYR1-TM) mutants of D4878, D4907, and E4908 were expressed in RYR1-null myotubes. Co-immunoprecipitation experiments showed a 50-60% decrease of triadin brought down in the D4907A and RYR1-TM complexes compared to the triadin-wtRYR1 complex. Ca(2+) imaging experiments using Fluo-4-AM showed atypical caffeine responses in myotubes expressing D4907A and RYR1-TM characterized by either a lack of or slower activation and faster inactivation of Ca(2+) transients. The results suggest that disruption of interaction between triadin and RYR1 impairs RYR1 function and SR Ca(2+) release.  相似文献   

17.
18.
Ryanodine receptors (RyR) regulate intracellular Ca2+ release in many cell types and have been implicated in a number of inherited human diseases. Over the past 15 years genetically engineered mouse models have been developed to elucidate the role that RyRs play in physiology and pathophysiology. To date these models have implicated RyRs in fundamental biological processes including excitation-contraction coupling and long term plasticity as well as diseases including malignant hyperthermia, cardiac arrhythmias, heart failure, and seizures. In this review we summarize the RyR mouse models and how they have enhanced our understanding of the RyR channels and their roles in cellular physiology and disease.  相似文献   

19.
Peptides based on the skeletal muscle DHPR II-III loop have been shown to regulate ryanodine receptor channel activity. The N-terminal region of this cytoplasmic loop is predicted to adopt an alpha-helical conformation. We have selected a peptide sequence of 26 residues (Ala(667)-Asp(692)) as the minimum sequence to emulate the helical propensity of the corresponding protein sequence. The interaction of this control peptide with skeletal and cardiac RyR channels in planar lipid bilayers was then assessed and was found to lack isoform specificity. At low concentrations peptide A(667)-D(692) increased RyR open probability, whilst at higher concentrations open probability was reduced. By replacing a region of clustered positive charge with a neutral sequence with the same predisposition to helicity, the inhibitory effect was ablated and activation was enhanced. This novel finding demonstrates that activation does not derive from the presence of positively charged residues adjacent in the primary structure and, although it may be mediated by the alignment of basic residues down one face of an amphipathic helix, not all of these residues are essential.  相似文献   

20.
The Ca2+-mobilizing metabolite cyclic ADP-ribose (cADPR) has been shown to release Ca2+ from ryanodine-sensitive stores in many cells. We show that this metabolite at a concentration of 17μM, but not its precursor β-NAD+ nor non-cyclic ADPR at the same concentration, is active in releasing Ca2+ from rabbit skeletal muscle sarcoplasmic reticulum. The release was not sensitive to Ruthenium red (1μM) nor to the ryanodine receptor-specific scorpion toxin Buthotus1-1 (10 μM). In planar bilayer single channel recordings, concentrations up to 50μM cADPR did not increase the open probability of Ruthenium red and toxin-sensitive Ca2+ release channels. Thus Ca2+ release induced by cADPR in skeletal muscle sarcoplasmic reticulum may not involve opening of ryanodine receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号