首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complementation between P22 amber mutants and phage L   总被引:2,自引:0,他引:2  
Summary Complementation tests between the temperate Salmonella phages P22 and L were performed. The results obtained from mixed infection and superinfection complementation experiments suggest a high degree of genetic homology between both phages.  相似文献   

2.
The isolation and some properties of a virulent bacteriophage of Salmonella typhimurium, MB78, which is morphologically, serologically, and physiologically unrelated to P22, are reported. The phage has a noncontractile long tail with partite ends. It cannot multiply in minimal medium in the presence of citrate. MB78-infected cells are, however, killed in such medium. This phage cannot grow in rifampin-resistant mutants of the host. The latent period of growth of this phage is much shorter than that of P22. Both sieA and sieB genes of the resident P22 prophage are required to exclude the superinfecting MB78 phage, whereas all temperate phages related to P22 are excluded by either one or both of the genes individually. Restriction endonuclease cleavage patterns of P22 and MB78 are distinctly different. The absence of homology between the two phages P22 and MB78 suggests that MB78 is not related to phage P22.  相似文献   

3.
Mouse ribosomal protein L7 is encoded by a multigene family. Screening of two mouse genomic libraries with cloned L7 cDNA, has resulted in the isolation of nine independent lambda Charon 4A recombinant phages which include seven different L7 genes. Restriction enzyme mapping of six of these genes (L7-1, L7-16, L7-18, L7-28, L7-35 and L7- 16b ) reveals dissimilarity in sites within the L7 sequences as well as in the flanking regions. Electron microscopic analysis of heteroduplex and S1 nuclease mapping demonstrate that the first five genes contain the entire L7 mRNA sequence but lack introns. Based on these features we propose that these are processed genes. Of the L7 genes described here only one (L7- 16b ) exhibits a high degree of homology with L7 mRNA and contains introns. We discuss the possibility that this low representation of intron containing L7 genes may reflect the proportion of functional L7 genes in this multigene family.  相似文献   

4.
Transactivation experiments were performed involving the genetically related Salmonella phages P22, L and Px1 in order to find out if more than one positively acting regulatory product is engaged in the expression of vegetative gene functions of each of these phages. The results obtained with Px1- and L-lysogenic cells superinfected with P22 suggest the following conclusions: 1. The expression of the early genes 12 and 23 and of the late gene 19 (lysozyme synthesis) is positively regulated by two different regulatory products, since P22 transactivates in prophage Px1 both early and late genes (Prell, 1973), in prophage L only late genes. 2. The transactivation by P22 of the lysozyme gene of prophage L takes place in the presence of L repressor. This conclusion is suggested, since the superinfecting P22 does not derepress early gene expression (see 1.), and is confirmed by demonstration of replication inhibition for L phage in L lysogenic cells doubly superinfected with L and P22 phages (Thomas-Bertani-experiment). 3. The late gene regulatory protein seems to be synthesized by gene 23, as transactivation experiments with both L- and Px1 prophages suggest. 4. The expression of gene 23 itself is turned on by an early regulatory product. The gene which codes for it is still unidentified. However its product seems to by highly specific, since it is active on Px1- but not on L-prophage.  相似文献   

5.
The aim of this work was to identify genes responsible for host recognition in the lactococcal phages sk1 and bIL170 belonging to species 936. These phages have a high level of DNA identity but different host ranges. Bioinformatic analysis indicated that homologous genes, orf18 in sk1 and orf20 in bIL170, could be the receptor-binding protein (RBP) genes, since the resulting proteins were unrelated in the C-terminal part and showed homology to different groups of proteins hypothetically involved in host recognition. Consequently, chimeric bIL170 phages carrying orf18 from sk1 were generated. The recombinant phages were able to form plaques on the sk1 host Lactococcus lactis MG1614, and recombination was verified by PCR analysis directly with the plaques. A polyclonal antiserum raised against the C-terminal part of phage sk1 ORF18 was used in immunogold electron microscopy to demonstrate that ORF18 is located at the tip of the tail. Sequence analysis of corresponding proteins from other lactococcal phages belonging to species 936 showed that the N-terminal parts of the RBPs were very similar, while the C-terminal parts varied, suggesting that the C-terminal part plays a role in receptor binding. The phages investigated could be grouped into sk1-like phages (p2, fd13, jj50, and phi 7) and bIL170-like phages (P008, P113G, P272, and bIL66) on the basis of the homology of their RBPs to the C-terminal part of ORF18 in sk1 and ORF20 in bIL170, respectively. Interestingly, sk1-like phages bind to and infect a defined group of L. lactis subsp. cremoris strains, while bIL170-like phages bind to and infect a defined group of L. lactis subsp. lactis strains.  相似文献   

6.
Three lactic streptococcal bacteriophages were compared with one another by electron microscopic analysis of heteroduplex DNA molecules. The phages were almost identical in morphology and had been isolated over a period of 10 years on different strains of Streptococcus cremoris from cheese plants situated in different parts of New Zealand. There was a high degree of homology between the DNAs, in agreement with Southern blot hybridization data reported earlier. There were, however, distinct regions of nonhomology, mostly between 0.45 and 1.71 kilobases in length, suggestive of the occurrence of block recombination events. A deletion of 2.23 kilobases in the two more recently isolated phages, or an insertion in the first isolate, was found. All three phage DNAs showed differences in restriction endonuclease cleavage sites. Alignment of the restriction endonuclease maps with the heteroduplex maps showed that differences in cleavage sites occurred most frequently in regions of nonhomology. However, differences in cleavage sites in regions of apparent homology were also detected, indicating that point mutations may have occurred in addition to block recombination events.  相似文献   

7.
Three lactic streptococcal bacteriophages were compared with one another by electron microscopic analysis of heteroduplex DNA molecules. The phages were almost identical in morphology and had been isolated over a period of 10 years on different strains of Streptococcus cremoris from cheese plants situated in different parts of New Zealand. There was a high degree of homology between the DNAs, in agreement with Southern blot hybridization data reported earlier. There were, however, distinct regions of nonhomology, mostly between 0.45 and 1.71 kilobases in length, suggestive of the occurrence of block recombination events. A deletion of 2.23 kilobases in the two more recently isolated phages, or an insertion in the first isolate, was found. All three phage DNAs showed differences in restriction endonuclease cleavage sites. Alignment of the restriction endonuclease maps with the heteroduplex maps showed that differences in cleavage sites occurred most frequently in regions of nonhomology. However, differences in cleavage sites in regions of apparent homology were also detected, indicating that point mutations may have occurred in addition to block recombination events.  相似文献   

8.
The temperate Salmonella enterica bacteriophage L is a close relative of the very well studied bacteriophage P22. In this study we show that the L procapsid assembly and DNA packaging genes, which encode terminase, portal, scaffold, and coat proteins, are extremely close relatives of the homologous P22 genes (96.3 to 99.1% identity in encoded amino acid sequence). However, we also identify an L gene, dec, which is not present in the P22 genome and which encodes a protein (Dec) that is present on the surface of L virions in about 150 to 180 molecules/virion. We also show that the Dec protein is a trimer in solution and that it binds to P22 virions in numbers similar to those for L virions. Its binding dramatically stabilizes P22 virions against disruption by a magnesium ion chelating agent. Dec protein binds to P22 coat protein shells that have expanded naturally in vivo or by sodium dodecyl sulfate treatment in vitro but does not bind to unexpanded procapsid shells. Finally, analysis of phage L restriction site locations and a number of patches of nucleotide sequence suggest that phages ST64T and L are extremely close relatives, perhaps the two closest relatives that have been independently isolated to date among the lambdoid phages.  相似文献   

9.
J B Petri  H Backhaus 《Gene》1984,32(3):304-310
The homologous DNA regions of phages P22, lambda and lambdoid coliphages, which code for the amino-terminal portion of genes 18 or O, contain the ori signal. Both the lambdoid and P22 ori regions can be divided into sections, A, B and C. The four direct repeats with internal rotational symmetry of section A in P22 are less regularly organized than in the corresponding signals of the phi 80 and lambda ori sites and show greatest homology to coliphage phi 82. Section B is rich in adenines in the l strand, and section C can be recognized in the P22 ori by the occurrence of overlapping inverted repeats. The latter region is not homologous to the structurally similar section C, 'EcoRI-loop', of the lambdoid coliphages. The results further define the specificity determinants of lambdoid O protein-ori interactions and demonstrate the evolutionary relationship between these functional units.  相似文献   

10.
Actinophage phi C31 of Streptomyces coelicolor A3 (2) and two novel temperate actinophages phi C43 and phi C62 isolated from strains of blue actinomycetes group are homoimmune, serologically and functionally related. DNA molecules of phages phi C31, phi C43 and phi C62 have cohesive ends; sizes of DNAs of these phages and some mutants have been determined. The extent of homology between the DNAs of three phages is 93-96% as shown by heteroduplex analysis. The regions of non-homology are of a deletion-insertion type and of approximately 1500 base pairs in the length. Location of deletions in DNAs of mutant phages phi C31 vd and phi C31 c5 has been shown. Structural modifications in phage dnas have been found only to occur in the right part of molecules. Heteroduplex maps have been constructed for all phages studied.  相似文献   

11.
The aim of this work was to identify genes responsible for host recognition in the lactococcal phages sk1 and bIL170 belonging to species 936. These phages have a high level of DNA identity but different host ranges. Bioinformatic analysis indicated that homologous genes, orf18 in sk1 and orf20 in bIL170, could be the receptor-binding protein (RBP) genes, since the resulting proteins were unrelated in the C-terminal part and showed homology to different groups of proteins hypothetically involved in host recognition. Consequently, chimeric bIL170 phages carrying orf18 from sk1 were generated. The recombinant phages were able to form plaques on the sk1 host Lactococcus lactis MG1614, and recombination was verified by PCR analysis directly with the plaques. A polyclonal antiserum raised against the C-terminal part of phage sk1 ORF18 was used in immunogold electron microscopy to demonstrate that ORF18 is located at the tip of the tail. Sequence analysis of corresponding proteins from other lactococcal phages belonging to species 936 showed that the N-terminal parts of the RBPs were very similar, while the C-terminal parts varied, suggesting that the C-terminal part plays a role in receptor binding. The phages investigated could be grouped into sk1-like phages (p2, fd13, jj50, and 7) and bIL170-like phages (P008, P113G, P272, and bIL66) on the basis of the homology of their RBPs to the C-terminal part of ORF18 in sk1 and ORF20 in bIL170, respectively. Interestingly, sk1-like phages bind to and infect a defined group of L. lactis subsp. cremoris strains, while bIL170-like phages bind to and infect a defined group of L. lactis subsp. lactis strains.  相似文献   

12.
Crude extracts of Salmonella typhimurium lysogenic for phages P22 or L contain proteins that specifically retain phage DNA on nitrocellulose filters. Three DNA-binding activities were found after infection with P22. One is P22 specific, accounts for the largest proportion of DNA-binding proteins, and corresponds most likely to the c2 repressor. An early transient binding activity measured with both P22 and L DNA was found to be directly related to the expression of genes c1 and c3. A third, late binding activity for P22 and L DNA is related to phage production.  相似文献   

13.
DNA homology of thirteen R-plasmids of group P was examined by heteroduplex analysis and Southern blotting. Ten of these plasmids showed homology for extensive regions including all genes reported as necessary for replication and conjugational transfer. The differences between these plasmids could be explained by gain or loss of DNA sequences, many of which have been shown to be transposons. Of the other three plasmids, two showed unambiguous homology with the typical P-plasmids but this homology was imperfect, implying that these plasmids are products of lines which have evolved separately for long periods. One plasmid failed to produce heteroduplexes with the reference P plasmid.  相似文献   

14.
Organization and transcription of the dnaA and dnaN genes of Escherichia coli   总被引:13,自引:0,他引:13  
Y Sakakibara  H Tsukano  T Sako 《Gene》1981,13(1):47-55
  相似文献   

15.
Genomes of newly isolated Salmonella phages were analysed by comparison of their EcoRI restriction patterns and by hybridization. Characteristic hybridization probes from reference phages P22, ES18 and E. coli phage lambda were chosen. Four probes selected from the lysis region examined the dispersal of the lambdoid lysis genes. Other probes characterized were the replication genes and part of the structural genes. The complex immunity region was investigated by means of hybridization as well as biological tests. The results showed the relationship of the isolated phages to the P22 branch of the lambdoid phages and revealed their modular genome organization consisting of different proportions of P22-related sequences. DNA restriction patterns of phages released from Salmonella strains sampled in limited geographical areas were significantly less heterogeneous than those of phages released from the worldwide sampled SARA collection. The use of prophage restriction patterns as a tool for the typing of Salmonellae to support the epidemiologic classification of pathogenic strains is discussed.  相似文献   

16.
Seven temperature-sensitive rough mutants of Salmonella typhimurium were found to be sensitive to smooth-specific phages at low temperature (25 C, 30 C) and resistant or partially resistant to rough-specific phages, whereas at high temperatures (37 C, 45 C) they were resistant or partially resistant to smooth-specific phages but sensitive to rough-specific phages. These data indicate that at low temperature each strain makes lipopolysaccharide which is relatively normal, but at high temperatures O-specific side chains are not added to the lipopolysaccharide. At 45 C, these strains have the R-res-1 or R-res-2 phage sensitivity phenotype, and their genetic lesions map by P22-mediated transduction in the rfa gene cluster between cysE-pyrE, suggesting a mutation in genes with transferase functions. P22-mediated joint transduction with temperature-sensitive rfa mutants, leaky rfa mutants, and rfa P22 lysogens have shown the following order of genes in the S. typhimurium linkage map: xyl-mtlA-mtlB-cysE-rfaF-rfaG-pyrE. An rfaE allele was not jointly transduced in the cysE-pyrE segment.  相似文献   

17.
The complete genome sequences of two dairy phages, Streptococcus thermophilus phage 7201 and Lactobacillus casei phage A2, are reported. Comparative genomics reveals that both phages are members of the recently proposed Sfi21-like genus of Siphoviridae, a widely distributed phage type in low-GC-content gram-positive bacteria. Graded relatedness, the hallmark of evolving biological systems, was observed when different Sfi21-like phages were compared. Across the structural module, the graded relatedness was represented by a high level of DNA sequence similarity or protein sequence similarity, or a shared gene map in the absence of sequence relatedness. This varying range of relatedness was found within Sfi21-like phages from a single species as demonstrated by the different prophages harbored by Lactococcus lactis strain IL1403. A systematic dot plot analysis with 11 complete L. lactis phage genome sequences revealed a clear separation of all temperate phages from two classes of virulent phages. The temperate lactococcal phages share DNA sequence homology in a patchwise fashion over the nonstructural gene cluster. With respect to structural genes, four DNA homology groups could be defined within temperate L. lactis phages. Closely related structural modules for all four DNA homology groups were detected in phages from Streptococcus or Listeria, suggesting that they represent distinct evolutionary lineages that have not uniquely evolved in L. lactis. It seems reasonable to base phage taxonomy on data from comparative genomics. However, the peculiar modular nature of phage evolution creates ambiguities in the definition of phage taxa by comparative genomics. For example, depending on the module on which the classification is based, temperate lactococcal phages can be classified as a single phage species, as four distinct phage species, or as two if not three different phage genera. We propose to base phage taxonomy on comparative genomics of a single structural gene module (head or tail genes). This partially phylogeny-based taxonomical system still mirrors some aspects of the current International Committee on Taxonomy in Virology classification system. In this system the currently sequenced lactococcal phages would be grouped into five genera: c2-, sk1, Sfi11-, r1t-, and Sfi21-like phages.  相似文献   

18.
Summary Comparative restriction cleavage analysis of the genomes of bacteriophage P7, of several recombinant phages between P7 and P1, and of bacteriophage P1 allowed to draw PstI, BglII, BamHI and HindIII cleavage maps of all genomes studied. The data obtained complement Yun and Vapnek's (1977) conclusions with regard to areas of major nonhomology based on electron microscopical heteroduplex analysis and they identify several additional minor differences between P1 and P7. The use of hybrid phage strains allowed to locate the genes for particular functions on the physical genome map.Abbreviations Cm chloramphenicol - Ap ampicillin - bp base pairs - kb kilo-base pairs  相似文献   

19.
20.
A transducing phage, SE1, which is able to infect Salmonella typhimurium was isolated from a Salmonella enteritidis strain. SE1 is a temperate phage which is heteroimmune with respect to phages P22, L, KB1 and ES18. It is similar in morphology and size to phages P22, L and KB1 and is serologically related to phages P22 and L but not to KB1. Efficiencies of generalized transduction effected by phage SE1 are similar to those for P22HT (int7), a mutant which mediates a high frequency of chromosomal gene transduction. The lengths of chromosomal DNA transduced by SE1 and P22HT (int7) are similar. Furthermore, the SE1 prophage does not exclude the transducing particles from cells it has lysogenized; consequently it is possible to use both SE1 lysogens and non-lysogenic strains as recipients in SE1-mediated transduction experiments, and obtain similar transduction efficiencies. However, the SE1 prophage gives rise to a lysogenic conversion that decreases the rate of adsorption of SE1 and L phages by about 50%, but does not affect adsorption of P22. Altogether these results suggest that phage SE1 may be a useful tool in the genetic manipulation of S. typhimurium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号