首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine the minimum requirements for substrate recognition and processing by proteasomes, the functional elements of a ubiquitin-independent degradation tag were dissected. The 37-residue C-terminus of ornithine decarboxylase (cODC) is a native degron, which also functions when appended to diverse proteins. Mutating the cysteine 441 residue within cODC impaired its proteasome association in the context of ornithine decarboxylase and prevented the turnover of GFP-cODC in yeast cells. Degradation of GFP-cODC with C441 mutations was restored by providing an alternate proteasome association element via fusion to the Rpn10 proteasome subunit. However, Rpn10-GFP was stable, unless extended by cODC or other peptides of similar size. In vitro reconstitution experiments confirmed the requirement for both proteasome tethering and a loosely structured region. Therefore, cODC and degradation tags in general must serve two functions: proteasome association and a site, consisting of an extended peptide region, used for initiating insertion into the protease.  相似文献   

2.
3.
4.
In eukaryotic cells, degradation of most intracellular proteins is realized by proteasomes. The substrates for proteolysis are selected by the fact that the gate to the proteolytic chamber of the proteasome is usually closed, and only proteins carrying a special “label” can get into it. A polyubiquitin chain plays the role of the “label”: degradation affects proteins conjugated with a ubiquitin (Ub) chain that consists at minimum of four molecules. Upon entering the proteasome channel, the polypeptide chain of the protein unfolds and stretches along it, being hydrolyzed to short peptides. Ubiquitin per se does not get into the proteasome, but, after destruction of the “labeled” molecule, it is released and labels another molecule. This process has been named “Ub-dependent protein degradation”. In this review we systematize current data on the Ub-proteasome system, describe in detail proteasome structure, the ubiquitination system, and the classical ATP/Ub-dependent mechanism of protein degradation, as well as try to focus readers’ attention on the existence of alternative mechanisms of proteasomal degradation and processing of proteins. Data on damages of the proteasome system that lead to the development of different diseases are given separately.  相似文献   

5.
6.
The low-density lipoprotein receptor (LDLR)-related protein (LRP) is a multiligand endocytic receptor that has broad cellular and physiological functions. Previous studies have shown that both tyrosine-based and di-leucine motifs within the LRP cytoplasmic tail are responsible for mediating its rapid endocytosis. Little is known, however, about the mechanism by which LRP is targeted for degradation. By examining both endogenous full-length and a minireceptor form of LRP, we found that proteasomal inhibitors, MG132 and lactacystin, prolong the cellular half-life of LRP. The presence of proteasomal inhibitors also significantly increased the level of LRP at the cell surface, suggesting that the delivery of LRP to the degradation pathway was blocked at a compartment from which recycling of the receptor to the cell surface still occurred. Immunoelectron microscopy analyses demonstrated a proteasomal inhibitor-dependent reduction in LRP minireceptor within both limiting membrane and internal vesicles of the multivesicular bodies, which are compartments that lead to receptor degradation. In contrast to the growth hormone receptor, we found that the initial endocytosis of LRP minireceptor does not require a functional ubiquitin-proteasome system. Finally, using truncated cytoplasmic mutants of LRP minireceptors, we found that a region of 19 amino acids within the LRP tail is required for proteasomal regulation. Taken together our results provide strong evidence that the cellular turnover of a cargo receptor, i.e., LRP, is regulated by the proteasomal system, suggesting a broader function of the proteasome in regulating the trafficking of receptors into the degradation pathway.  相似文献   

7.
Talbot NJ 《Current biology : CB》2003,13(18):R696-R698
Filamentous bacteria produce aerial structures to allow spores to be dispersed. A new class of secreted, surface-active proteins called chaplins has been identified in Streptomyces coelicolor. Chaplins form unusual amyloid-like fibrils and act cooperatively to bring about aerial development.  相似文献   

8.
Metabolically unstable proteins are involved in a multitude of regulatory networks, including those that control cell signaling, the cell cycle and in many responses to physiological stress. In the present study, we have determined the stability and characterized the degradation process of some members of the G(q) class of heterotrimeric G proteins. Pulse-chase experiments in HEK293 cells indicated a rapid turnover of endogenously expressed Galpha(q) and overexpressed Galpha(q) and Galpha(16) subunits. Pretreatment with proteasome inhibitors attenuated the degradation of both G alpha subunits. In contrast, pretreatment of cells with inhibitors of lysosomal proteases and nonproteasomal cysteine proteases had very little effect on the stability of the proteins. Significantly, the turnover of these proteins is not affected by transient activation of their associated receptors. Fractionation studies showed that the rates of Galpha(q) and Galpha16 degradation are accelerated in the cytosol. In fact, we show that a mutant Galpha(q) which lacks its palmitoyl modification site, and which is localized almost entirely in the cytoplasm, has a marked increase in the rate of degradation. Taken together, these results suggest that the G(q) class proteins are degraded through the proteasome pathway and that cellular localization and/or other protein interactions determine their stability.  相似文献   

9.
The HslUV protease-chaperone complex degrades specific protein substrates in an ATP-dependent reaction. Current models propose that the HslU chaperone, a AAA protein of the Clp/Hsp100 family, binds and unfolds substrates and translocates the polypeptide into the catalytic cavity of the HslV protease. These processes are being characterized using substrates that are targeted to HslUV with a carboxy-terminal fusion of the natural substrate SulA or the carboxy-terminal 11 amino acid residues thereof. In a tandem fusion of green fluorescent protein with SulA, HslUV degrades the SulA moiety but not green fluorescent protein. Wild type and mutant Arc repressor variants are degraded; over a range of substrate stabilities, the specific rate of degradation and its dependence on substrate stability is similar to that of ClpXP. For a hyperstable Arc variant having an intermolecular disulfide bond, the rate of degradation by HslUV is an order of magnitude slower than by ClpXP. Similarity in degradation rates for a subset of substrates by HslUV and ClpXP suggests a similarity in mechanism of the apparent rate-limiting steps of unfolding and translocation by the chaperone components HslU and ClpX. The fall-off in degradation by HslUV for the more stable substrates that are degraded by ClpXP is consistent with the two systems acting on different spectra of biological substrates.  相似文献   

10.
Damage to mitochondria can lead to the depolarization of the inner mitochondrial membrane, thereby sensitizing impaired mitochondria for selective elimination by autophagy. However, fusion of uncoupled mitochondria with polarized mitochondria can compensate for damage, reverse membrane depolarization, and obviate mitophagy. Parkin, an E3 ubiquitin ligase that is mutated in monogenic forms of Parkinson's disease, was recently found to induce selective autophagy of damaged mitochondria. Here we show that ubiquitination of mitofusins Mfn1 and Mfn2, large GTPases that mediate mitochondrial fusion, is induced by Parkin upon membrane depolarization and leads to their degradation in a proteasome- and p97-dependent manner. p97, a AAA+ ATPase, accumulates on mitochondria upon uncoupling of Parkin-expressing cells, and both p97 and proteasome activity are required for Parkin-mediated mitophagy. After mitochondrial fission upon depolarization, Parkin prevents or delays refusion of mitochondria, likely by the elimination of mitofusins. Inhibition of Drp1-mediated mitochondrial fission, the proteasome, or p97 prevents Parkin-induced mitophagy.  相似文献   

11.
Transcriptional activation: enter TFIIB   总被引:2,自引:0,他引:2  
  相似文献   

12.
The activity of Tsp, a periplasmic endoprotease of Escherichia coli, has been characterized by assaying the cleavage of protein and peptide substrates, determining the cleavage sites in several substrates, and investigating the kinetics of the cleavage reaction. Tsp efficiently cleaves substrates that have apolar residues and a free alpha-carboxylate at the C-terminus. Tsp cleaves its substrates at a discrete number of sites but with rather broad primary sequence specificity. In addition to preferences for residues at the C-terminus and cleavage sites, Tsp displays a preference for substrates that are not stably folded: unstable variants of Arc repressor are better substrates than a hyperstable mutant, and a peptide with little stable structure is cleaved more efficiently than a protein substrate. These data are consistent with a model in which Tsp cleavage of a protein substrate involves binding to the C-terminal tail of the substrate, transient denaturation of the substrate, and then recognition and hydrolysis of specific peptide bonds.  相似文献   

13.
Scientists enter the blogosphere   总被引:3,自引:0,他引:3  
Bonetta L 《Cell》2007,129(3):443-445
An agent that blocks tumor angiogenesis, growth, and metastasis without affecting normal tissues -- whether used alone or in combination with currently approved drugs -- would change the way we treat cancer. In this issue, Fischer et al. (2007) offer compelling evidence that a monoclonal antibody against placental growth factor (PlGF), a member of the VEGF family, has such potential in mice.  相似文献   

14.
15.
16.
17.
ClpXP is a protein machine composed of the ClpX ATPase, a member of the Clp/Hsp100 family of remodeling enzymes, and the ClpP peptidase. Here, ClpX and ClpXP are shown to catalyze denaturation of GFP modified with an ssrA degradation tag. ClpX translocates this denatured protein into the proteolytic chamber of ClpP and, when proteolysis is blocked, also catalyzes release of denatured GFP-ssrA from ClpP in a reaction that requires ATP and additional substrate. Kinetic experiments reveal that multiple reaction steps require collaboration between ClpX and ClpP and that denaturation is the rate-determining step in degradation. These insights into the mechanism of ClpXP explain how it executes efficient degradation in a manner that is highly specific for tagged proteins, irrespective of their intrinsic stabilities.  相似文献   

18.
To identify new components of the protein quality control and degradation pathway of the endoplasmic reticulum (ER), we performed a growth-based genome-wide screen of about 5000 viable deletion mutants of the yeast Saccharomyces cerevisiae. As substrates we used two misfolded ER membrane proteins, CTL* and Sec61-2L, chimeric derivatives of the classical ER degradation substrates CPY* and Sec61-2. Both substrates contain a cytosolic Leu2 protein fusion, and stabilization of these substrates in ER-associated degradation-deficient strains enables a restored growth of the transformed LEU2-deficient deletion mutants. We identified the strain deleted for the ubiquitin chain elongating ligase Hul5 among the mutant strains with a strong growth phenotype. Here we show that Hul5 is necessary for the degradation of two misfolded ER membrane substrates. Although the degradation of their N-terminal parts is Hul5-independent, the breakdown of their C-terminal fragments requires the ubiquitin chain elongating ligase activity of Hul5. In the absence of Hul5, a truncated form of CTL*myc remains to a large extent embedded in the ER membrane. Hul5 activity promotes the interaction of this truncated CTL*myc with the AAA-ATPase Cdc48, which is known to pull proteins out of the ER membrane. This study unravels the stepwise elimination of the ER membrane-localized CTL*myc substrate. First, N-terminal, lumenal CPY* is transferred to the cytoplasm and degraded by the proteasome. Subsequently, the remaining C-terminal membrane-anchored part requires Hul5 for its effective extraction out of the endoplasmic reticulum and proteasomal degradation.  相似文献   

19.
Hepatitis C virus (HCV) core protein plays an important role in the formation of the viral nucleocapsid and a regulatory protein involved in hepatocarcinogenesis. In this study, we have identified proteasome activator PA28gamma (11S regulator gamma) as an HCV core binding protein by using yeast two-hybrid system. This interaction was demonstrated not only in cell culture but also in the livers of HCV core transgenic mice. These findings are extended to human HCV infection by the observation of this interaction in liver specimens from a patient with chronic HCV infection. Neither the interaction of HCV core protein with other PA28 subtypes nor that of PA28gamma with other Flavivirus core proteins was detected. Deletion of the PA28gamma-binding region from the HCV core protein or knockout of the PA28gamma gene led to the export of the HCV core protein from the nucleus to the cytoplasm. Overexpression of PA28gamma enhanced the proteolysis of the HCV core protein. Thus, the nuclear retention and stability of the HCV core protein is regulated via a PA28gamma-dependent pathway through which HCV pathogenesis may be exerted.  相似文献   

20.
Glickman MH  Raveh D 《FEBS letters》2005,579(15):3214-3223
The 26S proteasome is responsible for regulated proteolysis of most intracellular proteins yet the focus of intense regulatory action itself. Proteasome abundance is responsive to cell needs or stress conditions, and dynamically localized to concentrations of substrates. Proteasomes are continually assembled and disassembled, and their subunits subject to a variety of posttranslational modifications. Furthermore, as robust and multi-tasking as this complex is, it does not function alone. A spattering of closely associating proteins enhances complex stability, fine-tunes activity, assists in substrate-binding, recycling of ubiquitin, and more. HEAT repeat caps activate proteasomes, yet share remarkable features with nuclear importins. Fascinating cross talk even occurs with ribosomes through common maturation factors. The dynamics of proteasome configurations and how they relate to diverse activities is the topic of this review.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号