首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
Type 1 and type 2 diabetes result from a deficit in insulin production and beta-cell mass. Methods to expand beta-cell mass are under intensive investigation for the treatment of type 1 and type 2 diabetes. We tested the hypothesis that cholecystokinin (CCK) can promote beta-cell proliferation. We treated isolated mouse and human islets with an adenovirus containing the CCK cDNA (AdCMV-CCK). We measured [(3)H]thymidine and BrdU incorporation into DNA and additionally, performed flow cytometry analysis to determine whether CCK overexpression stimulates beta-cell proliferation. We studied islet function by measuring glucose-stimulated insulin secretion and investigated the cell cycle regulation of proliferating beta-cells by quantitative RT-PCR and Western blot analysis. Overexpression of CCK stimulated [(3)H]thymidine incorporation into DNA 5.0-fold and 15.8-fold in mouse and human islets, respectively. AdCMV-CCK treatment also stimulated BrdU incorporation into DNA 10-fold and 21-fold in mouse and human beta-cells, respectively. Glucose-stimulated insulin secretion was unaffected by CCK expression. Analysis of cyclin and cdk mRNA and protein abundance revealed that CCK overexpression increased cyclin A, cyclin B, cyclin E, cdk1, and cdk2 with no change in cyclin D1, cyclin D2, cyclin D3, cdk4, or cdk6 in mouse and human islets. Additionally, AdCMV-CCK treatment of CCK receptor knockout and wild-type mice resulted in equal [(3)H]thymidine incorporation. CCK is a beta-cell proliferative factor that is effective in both mouse and human islets. CCK triggers beta-cell proliferation without disrupting islet function, up-regulates a distinct set of cell cycle regulators in islets, and signals independently of the CCK receptors.  相似文献   

3.
A cDNA termed reg was recently isolated by differential screening of a library prepared from regenerating islets isolated from pancreatic remnants of rats subjected to 90% pancreatectomy and nicotinamide treatment. This led to speculation that this gene may be involved in expansion of beta-cell mass. In the current study we have measured reg expression after implantation and resection of a solid insulinoma tumor into rats, maneuvers known, respectively, to reduce and reexpand the volume of beta-cells in the islet. Animals with an implanted insulinoma tumor became profoundly hypoglycemic. Islet beta-cells declined from the normal 75% of total islet volume to less than 30%, in concert with a marked reduction in the reg mRNA level. Removal of the tumor resulted in a sharp increase in beta-cell replication, as measured by [3H]thymidine incorporation and a return to normal beta-cell volume within 4 days of tumor resection. This was associated with a transient induction in reg expression compared to that in tumor-bearing animals, effectively returning the amount of reg mRNA to the levels found in normal animals within 48 h; at later time points after tumor removal (3-7 days) reg expression declined, but then rose toward normal. In situ hybridization analysis localized the initial induction in reg mRNA expression to the exocrine pancreas. Continuous infusion of insulin into normal rats for 4 days, a maneuver that does not significantly reduce beta-cell mass, resulted in dramatically reduced insulin mRNA in islets, but no change in the levels of reg mRNA. We conclude that the diminution in pancreatic beta-cell mass caused by subcutaneous implantation of an insulinoma is associated with reduced reg gene expression and that the increase in beta-cell replication after resection of the tumor is preceded by return of reg gene expression toward normal.  相似文献   

4.
To study the effects of growth hormone (GH) on the in vitro maturation of fetal islets, the fetal islets were cultured for 7 days in RPMI 1640 containing 10% fetal bovine serum and 11.1 mM glucose with or without GH. Culture with 1 microgram/ml of bovine GH increased the DNA content of the islets and [3H]thymidine incorporation into DNA confirming results of other investigators. In addition, however, the insulin secretory dynamics and ultrastructural morphometrics were investigated. It was found that GH-treated islets demonstrated increased insulin release during acute glucose stimulation when expressed as microunits per islet per minute. However, when insulin release during acute glucose stimulation was expressed as microunits per microgram of DNA per minute to compensate for the increased DNA content of GH-treated islets, no change in insulin release was observed compared to control islets. When GH-treated islets were perifused with a linear glucose gradient, the insulin secretory response was suppressed as indicated by changes in the threshold level, plateau level, and half-maximal response. Ultrastructural morphometric data showed that the average beta-cell volume in control and GH-treated islets was the same, eliminating the possibility that beta-cell hypertrophy occurred. Similarly, the nuclear volumes of the beta cells in control and GH-treated islets remained unchanged. This finding coupled with the observed increased DNA content and [3H]thymidine incorporation suggests that GH functions by increasing cell multiplication within the islets and not by inducing polyploidy. Finally, the volumes of cytoplasmic organelles in control and GH-treated islets were the same indicating that cytodifferentiation did not occur.  相似文献   

5.
We investigated the influence of transforming growth factor-beta (TGF-beta) on DNA synthesis in human fetal fibroblasts, as measured by the incorporation of [3H]thymidine and cell replication. In serum-free medium, without additional peptide growth factors, TGF-beta had no action on thymidine incorporation. However, in the presence of 0.1% v/v fetal calf serum, TGF-beta exhibited a bi-functional action on the cells. A dose-dependent stimulation of [3H]thymidine incorporation, and an increase in cell number, occurred with fibroblasts established from fetuses under 50 g body weight, with a maximum stimulation seen at 1.25 ng/ml. For fibroblasts from fetuses of 100 g or greater body weight, TGF-beta caused a dose-related decrease in thymidine uptake with a maximal inhibition at 2.5 ng/ml, and a small decrease in cell number. When DNA synthesis was stimulated by the addition of somatomedin-C/insulin-like growth factor I, epidermal growth factor, or platelet-derived growth factor, their actions were potentiated by the presence of TGF-beta on cells derived from fetuses under 50 g body weight, but inhibited on cells obtained from the larger fetuses weighing more than 100 g. Similar results were found for changes in cell number in response to TGF-beta when stimulated by SM-C/IGF I. The ability of TGF-beta to modulate [3H] thymidine incorporation did not involve a change in the time required for growth-restricted cells to enter the S phase of the replication cycle. These data suggest that TGF-beta may exert either a growth-promoting or growth-inhibiting action on human fetal connective tissues in the presence of other peptide growth factors, which is dependent on fetal age and development.  相似文献   

6.
In our studies of the growth-promoting effect of a cytokine, interleukin-1 (IL-1), on cultured porcine granulosa cells, we found that the potency of IL-1 action correlated with the serum concentration in the culture medium and that IL-1 acted synergistically with insulin to increase the number of cells in the presence of low serum concentrations (0.1-1%). With granulosa cells maintained in a quiescent state under serum-free conditions, we therefore examined the effects of combined treatment with IL-1 and peptide growth factors, including insulin, on [3H]thymidine incorporation by these cells. IL-1 by itself enhanced [3H]thymidine incorporation in a concentration-dependent manner. Moreover, IL-1 acted synergistically with insulin, epidermal growth factor (EGF), or fibroblast growth factor (FGF) to enhance [3H]thymidine incorporation. Combinations of maximally effective concentrations of insulin (1 micrograms/ml), EGF (1 ng/ml), or FGF (50 ng/ml) with the maximally effective concentration of IL-1 (10 ng/ml) increased the levels of [3H]thymidine incorporation to 10-, 22-, and 20-fold, respectively, over the control values. Whereas IL-2 (0.1-100 ng/ml) did not affect [3H]thymidine incorporation, tumor necrosis factor alpha (TNF alpha) stimulated [3H]thymidine incorporation by itself and reproduced the actions of IL-1 to act synergistically with insulin, EGF, or FGF. When IL-1 and TNF alpha were added together in relatively low concentrations (1 ng/ml each), the combination had synergistic effects in enhancing [3H]thymidine incorporation. The present study demonstrates that cytokines and peptide growth factors act synergistically to markedly enhance porcine granulosa cell growth in vitro.  相似文献   

7.
Studies in vivo indicate that IRS2 plays an important role in maintaining functional beta-cell mass. To investigate if IRS2 autonomously affects beta-cells, we have studied proliferation, apoptosis, and beta-cell function in isolated rat and human islets after overexpression of IRS2 or IRS1. We found that beta-cell proliferation was significantly increased in rat islets overexpressing IRS2 while IRS1 was less effective. Moreover, proliferation of a beta-cell line, INS-1, was decreased after repression of Irs2 expression using RNA oligonucleotides. Overexpression of IRS2 in human islets significantly decreased apoptosis of beta-cells, induced by 33.3 mM D-glucose. However, IRS2 did not protect cultured rat islets against apoptosis in the presence of 0.5 mM palmitic acid. Overexpression of IRS2 in isolated rat islets significantly increased basal and D-glucose-stimulated insulin secretion as determined in perifusion experiments. Therefore, IRS2 is sufficient to induce proliferation in rat islets and to protect human beta-cells from D-glucose-induced apoptosis. In addition, IRS2 can improve beta-cell function. Our results indicate that IRS2 acts autonomously in beta-cells in maintenance and expansion of functional beta-cell mass in vivo.  相似文献   

8.
p8 protein expression is known to be upregulated in the exocrine pancreas during acute pancreatitis. Own previous work revealed glucose-dependent p8 expression also in endocrine pancreatic beta-cells. Here we demonstrate that glucose-induced INS-1 beta-cell expansion is preceded by p8 protein expression. Moreover, isopropylthiogalactoside (IPTG)-induced p8 overexpression in INS-1 beta-cells (p8-INS-1) enhances cell proliferation and expansion in the presence of glucose only. Although beta-cell-related gene expression (PDX-1, proinsulin I, GLUT2, glucokinase, amylin) and function (insulin content and secretion) are slightly reduced during p8 overexpression, removal of IPTG reverses beta-cell function within 24 h to normal levels. In addition, insulin secretion of p8-INS-1 beta-cells in response to 0-25 mM glucose is not altered by preceding p8-induced beta-cell expansion. Adenovirally transduced p8 overexpression in primary human pancreatic islets increases proliferation, expansion, and cumulative insulin secretion in vitro. Transplantation of mock-transduced control islets under the kidney capsule of immunosuppressed streptozotocin-diabetic mice reduces blood glucose and increases human C-peptide serum concentrations to stable levels after 3 days. In contrast, transplantation of equal numbers of p8-transduced islets results in a continuous decrease of blood glucose and increase of human C-peptide beyond 3 days, indicating p8-induced expansion of transplanted human beta-cells in vivo. This is underlined by a doubling of insulin content in kidneys containing p8-transduced islet grafts explanted on day 9. These results establish p8 as a novel molecular mediator of glucose-induced pancreatic beta-cell expansion in vitro and in vivo and support the notion of existing beta-cell replication in the adult organism.  相似文献   

9.
The role of endogenous arachidonic acid and its metabolites as mediators of cell growth was studied in rat mesangial cells. Inhibitors of the cytochrome P450 monooxygenase and lipoxygenase systems (nordihydroguaiaretic acid (NDGA), SK&F 525A, and ketoconazole) significantly reduced serum-stimulated cell growth as determined by cell counts and incorporation of [3H]thymidine. Inhibition of cyclooxygenase or lipoxygenases alone had no effect on cell growth. Stimulation with arginine vasopressin, epidermal growth factor, or phorbol myristate acetate increased [3H]thymidine incorporation and mRNA levels of the immediate-early response genes c-fos and Egr-1. These increases in [3H]thymidine incorporation and mRNA levels were reduced by NDGA and ketoconazole. NDGA, SK&F 525A, and ketoconazole had no effect on cellular ATP levels. Indomethacin had no effect upon cell growth. 14,15-Epoxyeicosatrienoic acid potentiated the effect of arginine vasopressin to enhance [3H]thymidine incorporation. Reverse-phase high pressure liquid chromatography analysis of lipid extracts from cells prelabeled with [3H]arachidonic acid resulted in the detection of a radioactive peak which eluted with lipoxygenase and monooxygenase products, with the same retention time as vicinal dihydroxyeicosatrienoic acids. This peak increased after stimulation with arginine vasopressin or epidermal growth factor and was reduced by preincubation with NDGA. Furthermore, analysis of unlabeled cell extracts by gas chromatography-mass spectrometry revealed the presence of a compound with epoxyeicosatrienoic acid-like characteristics. These results indicate that mesangial cells in culture likely produce products of the cytochrome P450 monooxygenase system that are important endogenous mediators of the growth response to mitogenic agents.  相似文献   

10.
The Irs2 branch of the insulin/insulin-like growth factor signaling cascade activates the phosphatidylinositol 3-kinase --> Akt --> Foxo1 cascade in many tissues, including hepatocytes and pancreatic beta-cells. The 3'-lipid phosphatase Pten ordinarily attenuates this cascade; however, its influence on beta-cell growth or function is unknown. To determine whether decreased Pten expression could restore beta-cell function and prevent diabetes in Irs2(-/-) mice, we generated wild type or Irs2 knock-out mice that were haploinsufficient for Pten (Irs2(-/-)::Pten(+/-)). Irs2(-/-) mice develop diabetes by 3 months of age as beta-cell mass declined progressively until insulin production was lost. Pten insufficiency increased peripheral insulin sensitivity in wild type and Irs2(-/-) mice and increased Akt and Foxo1 phosphorylation in the islets. Glucose tolerance improved in the Pten(+/-) mice, although beta-cell mass and circulating insulin levels decreased. Compared with Irs2(-/-) mice, the Irs2(-/-)::Pten(+/-) mice displayed nearly normal glucose tolerance and survived without diabetes, because normal but small islets produced sufficient insulin until the mice died of lymphoproliferative disease at 12 months age. Thus, steps to enhance phosphatidylinositol 3-kinase signaling can promote beta-cell growth, function, and survival without the Irs2 branch of the insulin/insulin-like growth factor signaling cascade.  相似文献   

11.
Despite treatment with agents that enhance beta-cell function and insulin action, reduction in beta-cell mass is relentless in patients with insulin resistance and type 2 diabetes mellitus. Insulin resistance is characterized by impaired signaling through the insulin/insulin receptor/insulin receptor substrate/PI-3K/Akt pathway, leading to elevation of negatively regulated substrates such as glycogen synthase kinase-3beta (Gsk-3beta). When elevated, this enzyme has antiproliferative and proapoptotic properties. In these studies, we designed experiments to determine the contribution of Gsk-3beta to regulation of beta-cell mass in two mouse models of insulin resistance. Mice lacking one allele of the insulin receptor (Ir+/-) exhibit insulin resistance and a doubling of beta-cell mass. Crossing these mice with those having haploinsufficiency for Gsk-3beta (Gsk-3beta+/-) reduced insulin resistance by augmenting whole-body glucose disposal, and significantly reduced beta-cell mass. In the second model, mice missing two alleles of the insulin receptor substrate 2 (Irs2-/-), like the Ir+/- mice, are insulin resistant, but develop profound beta-cell loss, resulting in early diabetes. We found that islets from these mice had a 4-fold elevation of Gsk-3beta activity associated with a marked reduction of beta-cell proliferation and increased apoptosis. Irs2-/- mice crossed with Gsk-3beta+/- mice preserved beta-cell mass by reversing the negative effects on proliferation and apoptosis, preventing onset of diabetes. Previous studies had shown that islets of Irs2-/- mice had increased cyclin-dependent kinase inhibitor p27(kip1) that was limiting for beta-cell replication, and reduced Pdx1 levels associated with increased cell death. Preservation of beta-cell mass in Gsk-3beta+/- Irs2-/- mice was accompanied by suppressed p27(kip1) levels and increased Pdx1 levels. To separate peripheral versus beta-cell-specific effects of reduction of Gsk3beta activity on preservation of beta-cell mass, mice homozygous for a floxed Gsk-3beta allele (Gsk-3(F/F)) were then crossed with rat insulin promoter-Cre (RIP-Cre) mice to produce beta-cell-specific knockout of Gsk-3beta (betaGsk-3beta-/-). Like Gsk-3beta+/- mice, betaGsk-3beta-/- mice also prevented the diabetes of the Irs2-/- mice. The results of these studies now define a new, negatively regulated substrate of the insulin signaling pathway specifically within beta-cells that when elevated, can impair replication and increase apoptosis, resulting in loss of beta-cells and diabetes. These results thus form the rationale for developing agents to inhibit this enzyme in obese insulin-resistant individuals to preserve beta-cells and prevent diabetes onset.  相似文献   

12.
Insulin-like growth factor I (IGF-I) is anabolic for chondrocytes and is thought to be important in regulating such normal cartilaginous tissues as the epiphyseal growth plate. In the present studies, we have investigated the role of IGF-I in the regulation of neoplastic cartilage. Chondrocytes cultured from a transplantable rat chondrosarcoma were analyzed for responsiveness to IGF-I with respect to DNA and glycosaminoglycan synthesis as determined by labeling with radioactive thymidine and sulfate, respectively. Stimulation of [3H]thymidine and [35S]sulfate incorporation by IGF-I was two to four times that in serum-free controls, with half-maximal stimulation at 1 × 10-9M. The efficacy of IGF-I was approximately one-half of that of serum in stimulating [3H]thymidine incorporation and was comparable to that of serum for [35S]sulfate incorporation. When Swarm rat chondrosarcoma chondrocytes were cultured in the presence of IGF-I and exposed to graded concentrations of anti-IGF-I antibody, [3H]thymidine incorporation and [35S]sulfate incorporation were attenuated in a dose-dependent fashion to 29 and 25% of antibody-free controls, respectively. Nonspecific antibody not raised against IGF-I was not inhibitory. These observations suggest that the majority of IGF-I action on these cells is susceptible to immunoinhibition. To estimate the contribution of IGF-I to the regulation of these cells by serum, Swarm rat chondrosarcoma chondrocytes were cultured with graded concentrations of either calf serum or fetal calf serum in the presence of anti-IGF-I antibody, nonspecific antibody, or no other additives. Specific antibody attenuated the effect of calf serum on both [3H]thymidine and [35S]sulfate incorporation with overall inhibition of 52% (P < 0.01) and 48% (P < 0.001), respectively. Nonspecific antibody superimposed small, variably stimulatory or inhibitory effects on those of calf serum. When chondrosarcoma chondrocytes were incubated with fetal calf serum, anti-IGF-I antibody exerted a minimal inhibitory effect, reducing both [3H]thymidine and [35S]sulfate incorporation by less than 25%. The immunoinhibition of both pre- and postnatal serum could be overcome in a dose-dependent fashion by increasing serum concentrations. These results suggest that the factors influencing Swarm rat chondrosarcoma chondrocytes may be developmentally regulated and that the contribution of IGF-I to the action of serum increases between fetal and postnatal life. These data support the hypothesis that chondrosarcoma is a somatomedin-responsive neoplasm and suggest that this tumor may be susceptible to interventions directed toward mechanisms that block insulin-like growth factor action.  相似文献   

13.
Summary Thymic epithelial cells were grown in defined medium without unknown serum factors and without concurrent growth of other cell types. Thymic tissue was obtained from 1- to 4-wk-old mice, disaggregated, and incubated in a mixture of collagenase-dispase-DNAse. The resulting organoids were seeded on collagen-coated flasks. The culture medium consisted of DME-F12 with low or high concentration of Ca2+ supplemented with insulin, epidermal growth factor, cholera toxin, hydrocortisone, and transferrin. Under these conditions, explants attached to the substrate within 2 d, and expanding epithelioid monolayer islets emerged from the organoids during the following days. [3H]Thymidine incorporation revealed a growth fraction of the cells close to 5%. By omitting either epidermal growth factor, insulin, or cholera toxin from the medium, pronounced reduction in sizes of islets and in [3H]thymidine incorporation was found. Throughout the culture period, the islets appeared as continuous sheets of polygonal cells. The epithelial nature of the expanding cell islets was confirmed by demonstration of cytokeratins and of desmosomes. Ultrastructural evaluation of early cultures revealed clusters of epithelial cells intermixed with lymphocytes, and late cultures showed a typical pattern of stratified keratinizing epithelium. However, squamous metaplasia was avoided by the use of low Ca2+ medium, which also proved essential for cell transfer. MHC class II antigen was detected on the majority of the cultured cells, and culture supernatants contained co-mitogenic activity for thymocytes and GM-colony stimulating activity. This work supported by The Danish Research Council, grant 12-8148.  相似文献   

14.
C3H10T1/2 murine fibroblasts overexpressing chicken pp60c-src showed a two- to fivefold enhanced incorporation of [3H]thymidine into DNA in response to epidermal growth factor (EGF) relative to that of the parent line. No difference in growth characteristics, number and affinity of EGF receptors, or hormone potency was attributable to c-src overexpression. These results suggest that pp60c-src may interact with the mitogenic signal transduction pathway of EGF in some event distal to hormone binding.  相似文献   

15.
Normal guinea-pig endometrial cells, grown in primary culture, were made quiescent by serum depletion. Quiescent cells cultured in the control medium (containing 1% fetal calf serum treated with dextran-coated charcoal, DCC-FCS) showed a steady and weak rate of [3H]thymidine incorporation, but the addition of 15% fetal calf serum (FCS) or 10% DCC-FCS to the control medium induced a significant increase of DNA synthesis, demonstrating the responsiveness of the quiescent cells to stimulation. A lower but significant increase in [3H]thymidine incorporation was elicited by epidermal growth factor (EGF, 100 ng/ml) or insulin (10 micrograms/ml) added to the basal medium. Oestradiol-17 beta added to the control medium at concentrations ranging from 10(-10) to 10(-5) mol/l not only failed to increase but even inhibited [3H]thymidine incorporation at the highest concentrations tested. An additive effect was noticed when quiescent cells were incubated with oestradiol-17 beta (10(-9) mol/l) in the presence of 10% DCC-FCS, but no synergistic effect occurred when 2 x 10(-9) mol oestradiol-17 beta/l was combined with either EGF (100 ng/ml) or insulin (10 micrograms/ml). Oestradiol-17 beta appears unable alone to stimulate DNA synthesis in normal endometrial cells, but requires factor(s) present in fetal calf serum.  相似文献   

16.
We studied the effect of several growth factors on DNA synthesis and function of FRTL-5 rat thyroid cells by simultaneous measurement of [3H]thymidine incorporation and [125I]iodide uptake. Endothelial cell growth factor, fibroblast growth factor, platelet-derived growth factor, and insulin-like growth factor I stimulated thymidine incorporation in a dose-dependent manner without the parallel increase of [125I]iodide uptake. These growth factors had an additive effect with thyroid-stimulating hormone (TSH) on thymidine incorporation, but they inhibited TSH-stimulated iodide uptake. Bombesin stimulated thymidine incorporation and inhibited TSH-stimulated iodide uptake; epidermal growth factor and gastrin-releasing peptide 10 had neither effect. None of the growth factors studied affected iodide uptake in the absence of TSH. Of the growth factors tested, endothelial cell growth factor, fibroblast growth factor, insulin-like growth factor bombesin, and platelet-derived growth factor all share similar differential effects on FRTL-5 cells: stimulation of DNA synthesis, potentiation of the effects of TSH on DNA synthesis, and attenuation of the effects of TSH on cell function. The data suggest that these growth factors may play important roles in regulation of thyroid function.  相似文献   

17.
Three forms of DNA polymerase (alpha, beta and gamma) were separated from isolated rat myocardial cells on the basis of template, pH and ionic requirements, sensitivity to N-ethylmaleimide and position on sucrose gradients. Tri-iodothyronine administration (20mug/100g intraperitoneally) to 3-week-old rats resulted in selective stimulation of DNA polymerase-alpha (198+/-7.1 versus 102+/-5.8pmol of [(3)H]dTMP/30min per mg of protein in untreated controls, P<0.01), with no change in polymerases-beta and -gamma. [(3)H]Thymidine incorporation into myocardial DNA was also enhanced in tri-iodothyronine-treated neonatal rats (132+/-11.2 versus 53+/-4.1c.p.m./mug of DNA in controls, P<0.001). Increased incorporation was associated with an expansion of deoxyribonucleoside 5'-triphosphate pools, especially that of dTTP (24+/-1.6 versus 10+/-1.1pmol/mg of DNA, P<0.01). Neither DNA polymerase activities nor [(3)H]thymidine incorporation were changed in 6-month-old rats in response to tri-iodothyronine. Unstimulated adult myocardial cells had DNA polymerase activities comparable with those in 3-week-old animals, but significantly lower [(3)H]-thymidine incorporation and deoxyribonucleoside triphosphate concentrations. Enhancement of both DNA polymerase-alpha activity and [(3)H]thymidine incorporation in tri-iodothyronine-treated young rats was prevented by concomitant administration of either vinblastine (1mug/g) or daunomycin (2mug/g); actinomycin D (0.1mug/g) or cycloheximide (8mug/g), on the other hand, prevented the increase in [(3)H]thymidine incorporation, but not DNA polymerase-alpha activation. These results demonstrate an age-dependent stimulation of myocardial DNA replication by tri-iodothyronine and suggest an inter-relationship between DNA synthesis and subsequent entry into mitosis.  相似文献   

18.
The aim of this study was to define metabolic signaling pathways that mediate DNA synthesis and cell cycle progression in adult rodent islets to devise strategies to enhance survival, growth, and proliferation. Since previous studies indicated that glucose-stimulated activation of mammalian target of rapamycin (mTOR) leads to [3H]thymidine incorporation and that mTOR activation is mediated, in part, through the K(ATP) channel and changes in cytosolic Ca2+, we determined whether glyburide, an inhibitor of K(ATP) channels that stimulates Ca2+ influx, modulates [3H]thymidine incorporation. Glyburide (10-100 nm) at basal glucose stimulated [3H]thymidine incorporation to the same magnitude as elevated glucose and further enhanced the ability of elevated glucose to increase [3H]thymidine incorporation. Diazoxide (250 microm), an activator of KATP channels, paradoxically potentiated glucose-stimulated [3H]thymidine incorporation 2-4-fold above elevated glucose alone. Cell cycle analysis demonstrated that chronic exposure of islets to basal glucose resulted in a typical cell cycle progression pattern that is consistent with a low level of proliferation. In contrast, chronic exposure to elevated glucose or glyburide resulted in progression from G0/G1 to an accumulation in S phase and a reduction in G2/M phase. Rapamycin (100 nm) resulted in an approximately 62% reduction of S phase accumulation. The enhanced [3H]thymidine incorporation with chronic elevated glucose or glyburide therefore appears to be associated with S phase accumulation. Since diazoxide significantly enhanced [3H]thymidine incorporation without altering S phase accumulation under chronic elevated glucose, this increase in DNA synthesis also appears to be primarily related to an arrest in S phase and not cell proliferation.  相似文献   

19.
The validity of using the incorporation of [3H]thymidine into DNA as an indicator of epidermal keratinocyte proliferation in vitro has been investigated. Other parameters of cell proliferation, direct count of cell number and measurement of DNA content, consistently fail to correlate with changes in [3H]thymidine incorporation into DNA in primary and first passage cultures of rabbit and human epidermal keratinocytes. Maximum incorporation of [3H]thymidine precedes the active growth period by three days. Incorporation declines markedly during the proliferative period. Thymidine kinase activity decreases during the proliferative growth phase. Incorporation of another pyrimidine nucleotide precursor, [14C]aspartic acid, suggests that in epidermal keratinocytes in vitro the extent of utilization of the salvage and the de novo pathways may be inversely related. In such cases [3H]thymidine incorporation into TCA precipitable material fails to reflect accurately cell proliferation.  相似文献   

20.
This study describes the effects of prednisolone, oestradiol-17B and progesterone on DNA replication and insulin biosynthesis and release of cultured foetal rat islets. Prednisolone significantly inhibited the incorporation of [3H]-thymidine into DNA of islets cultured at a physiological (5.5 mmol/l) but not at a high (22 mmol/l) glucose concentration. It also increased insulin biosynthesis and release of islets cultured at 5.5 mmol/l glucose. Oestradiol-17B reduced the incorporation of [3H]-thymidine into islet DNA at both glucose concentrations, but had no effect on insulin biosynthesis and release. Progesterone had no effect on either the growth or the function of the cultured foetal islets. The observations show a clear dissociation between the action of prednisolone on islet growth versus islet function. They also support the view that neither progesterone nor oestradiol is directly involved in the high rate of B-cell replication previously observed in islets of pregnant rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号