首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The matrix metalloproteinases (MMPs) play a pivotal role in adverse left ventricular (LV) myocardial remodeling. The transmembrane protein extracellular MMP inducer (EMMPRIN) causes increased MMP expression in vitro, and elevated levels occur in patients with LV failure. However, the direct consequences of a prolonged increase in the myocardial expression of EMMPRIN in vivo remained unexplored. Cardiac-restricted EMMPRIN expression (EMMPRINexp) was constructed in mice using the full-length human EMMPRIN gene ligated to the myosin heavy chain promoter, which yielded approximately a twofold increase in EMMPRIN compared with that of the age/strain-matched wild-type (WT) mice; EMMPRINexp (n=27) and WT (n=33) mice were examined at 3.2+/-0.1 or at 13.3+/-0.5 mo of age (n=43 and 26, respectively). LV end-diastolic volume (EDV) was similar in young EMMPRINexp and WT mice (54+/-2 vs. 57+/-3 microl), but LV ejection fraction (EF) was reduced (51+/-1 vs. 57+/-1%; P<0.05). In old EMMPRINexp mice, LV EDV was increased compared with WT mice values (76+/-3 vs. 58+/-3 microl; P<0.05) and LV EF was significantly reduced (45+/-1 vs. 57+/-2%; P<0.05). In EMMPRINexp old mice, myocardial MMP-2 and membrane type-1 MMP levels were increased by >50% from WT values (P<0.05) and were accompanied by a twofold higher collagen content (P<0.05). Persistent myocardial EMMPRINexp in aging mice caused increased levels of both soluble and membrane type MMPs, fibrosis, and was associated with adverse LV remodeling. These findings suggest that EMMPRIN is an upstream signaling pathway that can play a mechanistic role in adverse remodeling within the myocardium.  相似文献   

2.
The objective of this study was to determine whether elevated circulating levels of endothelin (ET)-1 are capable of mediating left ventricular (LV) mast cell degranulation and thereby induce matrix metalloproteinase (MMP) activation. After the administration of 20 pg/ml ET-1 to blood-perfused isolated rat hearts, LV tissue was analyzed for signs of mast cell degranulation and MMP activation. Relative to control, ET-1 produced extensive mast cell degranulation as well as a significant increase in myocardial water content (78.8 +/- 1.5% vs. 74.2 +/- 2.2%, P <0.01), a marked 107% increase in MMP-2 activity (P <0.05), and a substantial decrease in collagen volume fraction (0.69 +/- 0.09% vs. 0.99 +/- 0.04%, P <0.001). Although the myocardial edema would be expected to increase ventricular stiffness, compliance was not altered, and moderate ventricular dilatation was observed (end-diastolic volume at end-diastolic pressure of 0 mmHg of 330.2 +/- 22.1 vs. 298.9 +/- 17.4 microl in ET-1 treated vs. control, respectively, P=0.07). Additionally, pretreatment with the mast cell stabilizer nedocromil prevented ET-1-induced changes in MMP-2 activity, myocardial water content, collagen volume fraction, and end-diastolic volume. These findings demonstrate that ET-1 is a potent cardiac mast cell secretogogue and further indicate that ET-1-mediated mast cell degranulation is a potential mechanism responsible for myocardial remodeling.  相似文献   

3.
Matrix metalloproteinases (MMPs) contribute to the progression of left ventricular (LV) dysfunction and remodeling associated with heart failure (HF). The present study examined the long-term effects of a selective MMP inhibitor PG-530742 (PG) on the progression of LV dysfunction and remodeling in dogs with HF. Chronic HF [LV ejection fraction (LVEF), 相似文献   

4.
Recent studies have been directed at modulating the heart failure process through inhibition of activated matrix metalloproteinases (MMPs). We hypothesized that a loss of MMP inhibitory control by tissue inhibitor of MMP (TIMP)-1 deficiency alters the course of postinfarction chamber remodeling and induced chronic myocardial infarction (MI) in wild-type (WT) and TIMP-1(-/-) mice. Left ventricular (LV) pressure-volume loops obtained from WT and TIMP-1(-/-) mice demonstrated that LV end-diastolic volume [52 +/- 4 (WT) vs. 71 +/- 6 (TIMP-1(-/-)) microl] and LV end-diastolic pressure [9.0 +/- 1.2 (WT) vs. 12.7 +/- 1.4 (TIMP-1(-/-)) mmHg] were significantly increased in the TIMP-1(-/-) mice 2 wk after MI. LV contractility was reduced to a similar degree in the WT and TIMP-1(-/-) groups after MI, as indicated by a significant fall in the LV end-systolic pressure-volume relationship. Ventricular weight and cross-sectional areas of LV myocytes were significantly increased in TIMP-1(-/-) mice, indicating that the hypertrophic response was more pronounced. The observed significant loss of fibrillar collagen in the TIMP-1(-/-) controls may have been an important contributory factor for the observed LV alterations in the TIMP-1(-/-) mice after MI. These findings demonstrate that TIMP-1 deficiency amplifies adverse LV remodeling after MI in mice and emphasizes the importance of local endogenous control of cardiac MMP activity by TIMP-1.  相似文献   

5.
Although cardiac myocyte apoptosis has been detected in explanted hearts from patients with end-stage dilated and ischemic cardiomyopathy, the relative contribution of apoptotic cell death to left ventricular (LV) remodeling and cardiac decompensation is not known. To determine whether progressive cardiac myocyte apoptosis contributes to the transition from a hypertrophic to a dilated cardiac phenotype that is observed in transgenic myosin heavy chain secreted TNF (MHCsTNF) mice with cardiac restricted overexpression of tumor necrosis factor (TNF), we assessed cardiac myocyte apoptosis (using a DNA ligase technique) in MHCsTNF mice and littermate control mice in relation to serial changes in LV structure, which was assessed using MRI. The prevalence of cardiac myocyte apoptosis increased progressively from 4 to 12 wk as the hearts of the MHCsTNF mice underwent the transition from a concentric hypertrophic to a dilated cardiac phenotype. Treatment of the MHCsTNF mice with the broad-based caspase inhibitor N-[(1,3-dimethylindole-2-carbonyl)-valinyl]-3-amino4-oxo-5-fluoropentanoic acid significantly decreased cardiac myocyte apoptosis and significantly attenuated LV wall thinning and adverse cardiac remodeling. Additional studies suggested that the TNF-induced decrease in Bcl-2 expression and activation of the intrinsic mitochondrial death pathway were responsible for the cardiac myocyte apoptosis observed in the MHCsTNF mice. These studies show that progressive cardiac myocyte apoptosis is sufficient to contribute to adverse cardiac remodeling in the adult mammalian heart through progressive LV wall thinning.  相似文献   

6.
Alterations in matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs) have been implicated in adverse left ventricular (LV) remodeling after myocardial infarction (MI). However, the direct mechanistic role of TIMPs in the post-MI remodeling process has not been completely established. The goal of this project was to define the effects of altering endogenous MMP inhibitory control through combined genetic and pharmacological approaches on post-MI remodeling in mice. This study examined the effects of MMP inhibition (MMPi) with PD-166793 (30 mg.kg(-1).day(-1)) on LV geometry and function (conductance volumetry) after MI in wild-type (WT) mice and mice deficient in the TIMP-1 gene [TIMP-1 knockout (TIMP1-KO)]. At 3 days after MI (coronary ligation), mice were randomized into four groups: WT-MI/MMPi (n = 10), TIMP1-KO-MI/MMPi (n = 10), WT-MI (n = 22), and TIMP1-KO-MI (n = 23). LV end-diastolic volume (EDV) and ejection fraction were determined 14 days after MI. Age-matched WT (n = 20) and TIMP1-KO (n = 28) mice served as reference controls. LVEDV was similar under control conditions in WT and TIMP1-KO mice (36 +/- 2 and 40 +/- 2 microl, respectively) but was greater in TIMP1-KO-MI than in WT-MI mice (48 +/- 2 vs. 61 +/- 5 microl, P < 0.05). LVEDV was reduced from MI-only values in WT-MI/MMPi and TIMP1-KO-MI/MMPi mice (42 +/- 2 and 36 +/- 2 microl, respectively, P < 0.05) but was reduced to the greatest degree in TIMP1-KO mice (P < 0.05). LV ejection fraction was reduced in both groups after MI and increased in TIMP1-KO-MI/MMPi, but not in WT-MI/MMPi, mice. These unique results demonstrated that myocardial TIMP-1 plays a regulatory role in post-MI remodeling and that the accelerated myocardial remodeling induced by TIMP-1 gene deletion can be pharmacologically "rescued" by MMP inhibition. These results define the importance of local endogenous control of MMP activity with respect to regulating LV structure and function after MI.  相似文献   

7.
The cardiac extracellular matrix (ECM) maintains the structural and mechanical integrity of the myocardium. We determined the alterations in the composition of the ECM coincident with the transition from compensated left ventricular (LV) hypertrophy (LVH) to symptomatic congestive heart failure (CHF) and the mechanisms underlying such changes. Heart failure was induced in ferrets by aortic banding. Myocardial collagen content was assessed by HPLC and histological analysis. Matrix metalloproteinase (MMP) activity and tissue inhibitor of metalloproteinase (TIMP) expression were evaluated using gelatin zymography and Western blotting, respectively. LV free wall thickness increased by 29% in asymptomatic LVH and was associated with a 20% increase in interstitial fibrosis (P < 0.05). CHF was coincident with increased plasma angiotensin II levels (149 +/- 48, 40 +/- 19, and 5.6 +/- 1 pg/ml for CHF, LVH, and sham, respectively; P < 0.01, CHF vs. sham and LVH), ventricular dilatation (LV internal diameter = 15 +/- 0.4 vs. 9 +/- 0.1 mm, P < 0.05), increased active MMP-9 (3.0- and 2.2-fold increase over sham and LVH, respectively, n = 5-10 animals per group, P < 0.01), and reduced myocardial total collagen content (3.5 +/- 0.4, 2.6 +/- 0.3, and 2.2 +/- 0.3% in sham, LVH, and CHF, respectively, P < 0.05). In CHF the distribution of collagen was markedly altered, becoming punctate in nature. No difference in MMP-2 activity, TIMP-1, TIMP-2, TIMP-3, or TIMP-4 expression, or collagen cross-linking was found at any time. The present work demonstrates structural reorganization and loss of collagen from cardiac ECM during the transition to decompensated CHF. The enhanced MMP-9 activity coincident with the transition to CHF provides potential therapeutic opportunities for managing the progression from asymptomatic LVH to symptomatic CHF.  相似文献   

8.
Previously, we demonstrated that intact female rats fed a standard rodent diet containing soybean products exhibit essentially no adverse left ventricular (LV) remodeling in response to aortocaval fistula-induced chronic volume overload. We hypothesized that phytoestrogenic compounds in the diet contributed to the female cardioprotection. To test this hypothesis, four groups of female rats were studied: sham-operated (Sham) and fistula (Fist) rats fed a diet with [P(+)] or without [P(-)] phytoestrogens. Eight weeks postfistula, systolic and diastolic cardiac function was assessed by using a blood-perfused, isolated heart preparation. High-phytoestrogen diet had no effect on body, heart, and lung weights, or cardiac function in Sham rats. Fistula groups developed LV hypertrophy, which was not reduced by dietary phytoestrogens [1,184 +/- 229 mg Fist-P(-) and 1,079 +/- 199 mg Fist-P(+) vs. 620 +/- 47 mg for combined Sham groups, P < 0.05]. Unstressed LV volume increased in Fist-P(-) rats (428 +/- 16 vs. 300 +/- 14 microl Sham, P < 0.0001), but it was not different from Sham for Fist-P(+) animals (286 +/- 17 microl). Fist-P(-) rats developed increased ventricular compliance (5.3 +/- 0.8 vs. 2.3 +/- 0.3 microl/mmHg Sham, P < 0.01), whereas Fist-P(+) rats had no change in compliance (2.8 +/- 0.4 mul/mmHg). Intrinsic ventricular contractility was maintained in the Fist-P(+) rats, but it was reduced (P < 0.001) in the Fist-P(-) rats [systolic pressure-volume slope: 1.04 +/- 0.03, 0.60 +/- 0.06, and 0.99 +/- 0.08 mmHg/microl, for Fist-P(+), Fist-P(-), and Sham, respectively]. These data indicate that dietary phytoestrogens contribute significantly to female cardioprotection against volume overload-induced adverse ventricular remodeling and that studies evaluating gender differences in cardiovascular remodeling must consider the influence of dietary phytoestrogens.  相似文献   

9.
Matrix metalloproteinase-2 (MMP-2) is prominently overexpressed both after myocardial infarction (MI) and in heart failure. However, its pathophysiological significance in these conditions is still unclear. We thus examined the effects of targeted deletion of MMP-2 on post-MI left ventricular (LV) remodeling and failure. Anterior MI was produced in 10- to 12-wk-old male MMP-2 knockout (KO) and sibling wild-type (WT) mice by ligating the left coronary artery. By day 28, MI resulted in a significant increase in mortality in association with LV cavity dilatation and dysfunction. The MMP-2 KO mice had a significantly better survival rate than WT mice (56% vs. 85%, P < 0.05), despite a comparable infarct size (50 +/- 3% vs. 51 +/- 3%, P = not significant), heart rate, and arterial blood pressure. The KO mice had a significantly lower incidence of LV rupture (10% vs. 39%, P < 0.05), which occurred within 7 days of MI. The KO mice exerted less LV cavity dilatation and improved fractional shortening after MI by echocardiography. The LV zymographic MMP-2 level significantly increased in WT mice after coronary artery ligation; however, this was completely prevented in KO mice. In contrast, the increase in the LV zymographic MMP-9 level after MI was similar between KO and WT mice. MMP-2 activation is therefore considered to contribute to an early cardiac rupture as well as late LV remodeling after MI. The inhibition of MMP-2 activation may therefore be a potentially useful therapeutic strategy to manage post-MI hearts.  相似文献   

10.
Tetracycline is a powerful tool for controlling the expression of specific transgenes (TGs) in various tissues, including heart. In these mouse systems, TG expression is repressed/enhanced by adding doxycycline (Dox) to the diet. However, Dox has been shown to attenuate matrix metalloproteinase (MMP) expression and activity in various tissues, and MMP inactivation mitigates left ventricular (LV) remodeling in animal models of heart failure. Therefore, we examined the influence of Dox on LV remodeling and MMP expression in mice after transverse aortic constriction (TAC). One month after TAC, cardiac hypertrophy (99% vs. 67%) and the proportion of mice exhibiting congestive heart failure (CHF, 74% vs. 32%) were higher in the TAC + Dox group than in the TAC group (P < 0.05). These differences were no longer seen 2 mo after TAC, although LV was more severely dilated in TAC + Dox mice than in TAC mice (P < 0.05). One month after TAC, the increase in brain natriuretic peptide and beta-myosin heavy chain mRNA levels was 1.6 and 1.7 times higher, respectively, in TAC + Dox mice than in TAC mice (P < 0.01). MMP-2 gelatin zymographic activity increased 1.9- and 2.4-fold in TAC and TAC + Dox mice, respectively (P < 0.01 and P < 0.05 relative to respective sham-operated animals), but the difference between TAC + Dox and TAC mice did not reach statistical significance. Dox did not significantly alter TAC-associated perivascular and interstitial myocardial fibrosis. These findings demonstrate that Dox accelerates the onset of cardiac hypertrophy and the progression to CHF following TAC in mice. Accordingly, care should be taken when designing and interpreting studies based on TG mouse models of LV hypertrophy using the tetracycline-regulated (tet)-on/tet-off system.  相似文献   

11.
Matrix metalloproteinase (MMP)-9 has been consistently identified in the lungs of patients with chronic obstructive pulmonary disease (COPD). However, its role in the development of the disease remains undefined. Mice that specifically express human MMP-9 in their macrophages were generated, and morphometric, biochemical, and histological analyses were conducted on the transgenic and littermate control mice over 1 yr to determine the effect of macrophage MMP-9 expression on emphysema formation and lung matrix content. Lung morphometry was normal in transgenic mice at 2 mo of age (mean linear intercept = 50+/-3 littermate mice vs. 51+/-2 transgenic mice). However, after 12 mo of age, the MMP-9 transgenic mice developed significant air space enlargement (mean linear intercept = 53+/-3 littermate mice vs. 61+/-2 MMP-9 transgenic mice; P<0.04). Lung hydroxyproline content was not significantly different between wild-type and transgenic mice, but MMP-9 did significantly decrease alveolar wall elastin at 1 yr of age (4.9+/-0.3% area of alveolar wall in the littermate mice vs. 3.3+/-0.3% area of alveolar wall in the MMP-9 mice; P<0.004). Thus these results establish a central role for MMP-9 in the pathogenesis of this disease by demonstrating that expression of this protease in macrophages can alter the extracellular matrix and induce progressive air space enlargement in mice.  相似文献   

12.
Myocardial remodeling after myocardial infarction (MI) is associated with increased levels of the matrix metalloproteinases (MMPs). Levels of two MMP species, MMP-2 and MMP-9, are increased after MI, and transgenic deletion of these MMPs attenuates post-MI left ventricular (LV) remodeling. This study characterized the spatiotemporal patterns of gene promoter induction for MMP-2 and MMP-9 after MI. MI was induced in transgenic mice in which the MMP-2 or MMP-9 promoter sequence was fused to the beta-galactosidase reporter, and reporter level was assayed up to 28 days after MI. Myocardial localization with respect to cellular sources of MMP-2 and MMP-9 promoter induction was examined. After MI, LV diameter increased by 70% (P < 0.05), consistent with LV remodeling. beta-Galactosidase staining in MMP-2 reporter mice was increased by 1 day after MI and increased further to 64 +/- 6% of LV epicardial area by 7 days after MI (P < 0.05). MMP-2 promoter activation occurred in fibroblasts and myofibroblasts in the MI region. In MMP-9 reporter mice, promoter induction was detected after 3 days and peaked at 7 days after MI (53 +/- 6%, P < 0.05) and was colocalized with inflammatory cells at the peri-infarct region. Although MMP-2 promoter activation was similarly distributed in the MI and border regions, activation of the MMP-9 promoter was highest at the border between the MI and remote regions. These unique findings visually demonstrated that activation of the MMP-2 and MMP-9 gene promoters occurs in a distinct spatial relation with reference to the MI region and changes in a characteristic time-dependent manner after MI.  相似文献   

13.
The objective of this study was to investigate the effect a nonselective endothelin-1 (ET-1) receptor antagonist (bosentan) had on the acute myocardial remodeling process including left ventricular (LV) mast cells and matrix metalloproteinase (MMP) activity secondary to volume overload. Additionally, we investigated the overall functional outcome of preventative endothelin receptor antagonism during 14 days of chronic volume overload. LV tissue from sham-operated (Sham), untreated-fistula (Fist), and bosentan (100 mg.kg(-1).day(-1))-treated animals (Fist + Bos) was analyzed for mast cell density, MMP activity, and myocardial collagen volume fraction at 1 and 5 days after the creation of an aortocaval fistula. When compared with untreated fistulas, bosentan treatment prevented the marked increase in LV mast cell density at 1 day postfistula (3.1 +/- 0.3 vs. 1.3 +/- 0.3 LV mast cells/mm2, Fist vs. Fist + Bos, P 相似文献   

14.
Anesthetic regimens commonly administered during studies that assess cardiac structure and function in mice are xylazine-ketamine (XK) and avertin (AV). While it is known that XK anesthesia produces more bradycardia in the mouse, the effects of XK and AV on cardiac function have not been compared. We anesthetized normal adult male Swiss Webster mice with XK or AV. Transthoracic echocardiography and closed-chest cardiac catheterization were performed to assess heart rate (HR), left ventricular (LV) dimensions at end diastole and end systole (LVDd and LVDs, respectively), fractional shortening (FS), LV end-diastolic pressure (LVEDP), the time constant of isovolumic relaxation (tau), and the first derivatives of LV pressure rise and fall (dP/dt(max) and dP/dt(min), respectively). During echocardiography, HR was lower in XK than AV mice (250 +/- 14 beats/min in XK vs. 453 +/- 24 beats/min in AV, P < 0.05). Preload was increased in XK mice (LVDd: 4.1 +/- 0.08 mm in XK vs. 3.8 +/- 0.09 mm in AV, P < 0.05). FS, a load-dependent index of systolic function, was increased in XK mice (45 +/- 1.2% in XK vs. 40 +/- 0.8% in AV, P < 0.05). At LV catheterization, the difference in HR with AV (453 +/- 24 beats/min) and XK (342 +/- 30 beats/min, P < 0.05) anesthesia was more variable, and no significant differences in systolic or diastolic function were seen in the group as a whole. However, in XK mice with HR <300 beats/min, LVEDP was increased (28 +/- 5 vs. 6.2 +/- 2 mmHg in mice with HR >300 beats/min, P < 0.05), whereas systolic (LV dP/dt(max): 4,402 +/- 798 vs. 8,250 +/- 415 mmHg/s in mice with HR >300 beats/min, P < 0.05) and diastolic (tau: 23 +/- 2 vs. 14 +/- 1 ms in mice with HR >300 beats/min, P < 0.05) function were impaired. Compared with AV, XK produces profound bradycardia with effects on loading conditions and ventricular function. The disparate findings at echocardiography and LV catheterization underscore the importance of comprehensive assessment of LV function in the mouse.  相似文献   

15.
Cardiac rupture is more prevalent in elderly patients with first onset of acute myocardial infarct (MI), but the mechanism remains unexplored. We investigated the differences in the incidence of cardiac rupture and early left ventricular (LV) remodeling following coronary artery ligation between old (12-mo) and young (3-mo) C57Bl/6 male mice and explored responsible mechanisms. The incidence of rupture within 1 wk after MI was significantly higher in old than in young mice (40.7 vs. 18.3%, P = 0.013) despite a similar infarct size in both age groups. Old mice dying of rupture had more severe infarct expansion than young counterparts. Echocardiography and catheterization at day 7 revealed more profound LV chamber dilatation and dysfunction as well as higher blood pressures in aged mice. At day 3 after MI immediately before the peak of rupture occurrence, we observed significantly higher content of type I and III collagen, a greater density of macrophage and neutrophil, and markedly enhanced mRNA expression of inflammatory cytokines in the infarcted myocardium in old than in young mice. Furthermore, a more dramatic increment of matrix metalloproteinase (MMP)-9 activity was found in old than in young infarcted hearts, in keeping with enhanced inflammatory response. Collectively, these results revealed that old mice had a higher risk of post-MI cardiac rupture despite a higher level of collagen content and cross-linking. Enhanced inflammatory response and subsequent increase in MMP-9 activity together with higher blood pressure are important factors responsible for the higher risk of cardiac rupture and more severe LV remodeling in the aged heart following acute MI.  相似文献   

16.
The agonists of peroxisome proliferator-activated receptor-gamma (PPARgamma) ameliorate cardiovascular complications associated with diabetes mellitus. We tested the hypothesis that recovery from ailing to failing myocardium in diabetes by PPARgamma agonist is in part due to decreased matrix metalloproteinase-9 (MMP-9) activation and left ventricular (LV) tissue levels of homocysteine (Hcy). C57BL/6J mice were made diabetic (D) by feeding them a high-fat calorie diet. PPARgamma was activated by adding pioglitazone (Pi) to the diet. After 6 wk, mice were grouped into: normal calorie diet (N), D, N + Pi and D + Pi (n = 6 in each group). LV variables were measured by echocardiography, endothelial-myocyte (E-M) coupling was measured in cardiac rings, and MMP-9 activation was measured by zymography. Blood glucose levels were twofold higher in D mice compared with N mice. Pi decreased the levels of glucose in D mice to the levels in N mice. LV Hcy levels were 3.5 +/- 0.5 microM in N groups compared with 12.4 +/- 0.6 microM in D groups. Treatment with Pi normalized the LV levels of Hcy but had no effect on plasma levels of Hcy. In the D group, LV contraction was reduced compared with that of the N group and was ameliorated by treatment with Pi. LV wall thickness was reduced to 0.25 +/- 0.02 mm in the D group compared with 0.42 +/- 0.01 mm in the N group. LV diastolic diameter was 3.05 +/- 0.01 mm in the D group compared with 2.20 +/- 0.02 mm in the N group. LV systolic diameter was 1.19 +/- 0.02 mm in the D group and 0.59 +/- 0.01 mm in the N group. Pi normalized the LV variables in D mice. The responses to ACh and nitroprusside were attenuated in diabetic hearts, suggesting that there was E-M uncoupling in the D group compared with the N group, which was ameliorated by Pi. Plasma and LV levels of MMP-2 and -9 activities were higher in the D group than in the N group but normalized after Pi treatment. These results suggest that E-M uncoupling in the myocardium, in part, is due to increased MMP activities secondary to suppressing PPARgamma activity in high-fat, calorie-induced Type 2 diabetes mellitus.  相似文献   

17.
Rac1-GTPase activation plays a key role in the development and progression of cardiac remodeling. Therefore, we engineered a transgenic mouse model by overexpressing cDNA of a constitutively active form of Zea maize Rac gene (ZmRacD) specifically in the hearts of FVB/N mice. Echocardiography and MRI analyses showed cardiac hypertrophy in old transgenic mice, as evidenced by increased left ventricular (LV) mass and LV mass-to-body weight ratio, which are associated with relative ventricular chamber dilation and systolic dysfunction. LV hypertrophy in the hearts of old transgenic mice was further confirmed by an increased heart weight-to-body weight ratio and histopathology analysis. The cardiac remodeling in old transgenic mice was coupled with increased myocardial Rac-GTPase activity (372%) and ROS production (462%). There were also increases in α(1)-integrin (224%) and β(1)-integrin (240%) expression. This led to the activation of hypertrophic signaling pathways, e.g., ERK1/2 (295%) and JNK (223%). Pravastatin treatment led to inhibition of Rac-GTPase activity and integrin signaling. Interestingly, activation of ZmRacD expression with thyroxin led to cardiac dilation and systolic dysfunction in adult transgenic mice within 2 wk. In conclusion, this is the first study to show the conservation of Rho/Rac proteins between plant and animal kingdoms in vivo. Additionally, ZmRacD is a novel transgenic model that gradually develops a cardiac phenotype with aging. Furthermore, the shift from cardiac hypertrophy to dilated hearts via thyroxin treatment will provide us with an excellent system to study the temporal changes in cardiac signaling from adaptive to maladaptive hypertrophy and heart failure.  相似文献   

18.
Left ventricular (LV) remodeling, including cardiomyocyte necrosis, scar formation, LV geometric changes, and cardiomyocyte hypertrophy, contributes to cardiac dysfunction and mortality after myocardial infarction (MI). Although precise cellular signaling mechanisms for LV remodeling are not fully elucidated, G(q) protein-coupled receptor signaling pathway, including diacylglycerol (DAG) and PKC, are involved in this process. DAG kinase (DGK) phosphorylates DAG and controls cellular DAG levels, thus acting as a negative regulator of PKC and subsequent cellular signaling. We previously reported that DGK inhibited angiotensin II and phenylephrine-induced activation of the DAG-PKC signaling and subsequent cardiac hypertrophy. The purpose of this study was to examine whether DGK modifies LV remodeling after MI. Left anterior descending coronary artery was ligated in transgenic mice with cardiac-specific overexpression of DGKzeta (DGKzeta-TG) and wild-type (WT) mice. LV chamber dilatation (4.12 +/- 0.10 vs. 4.53 +/- 0.32 mm, P < 0.01), reduction of LV systolic function (34.8 +/- 8.3% vs. 28.3 +/- 4.8%, P < 0.01), and increases in LV weight (95 +/- 3.6 vs. 111 +/- 4.1 mg, P < 0.05) and lung weight (160 +/- 15 vs. 221 +/- 25 mg, P < 0.05) at 4 wk after MI were attenuated in DGKzeta-TG mice compared with WT mice. In the noninfarct area, fibrosis fraction (0.51 +/- 0.04, P < 0.01) and upregulation of profibrotic genes, such as transforming growth factor-beta1 (P < 0.01), collagen type I (P < 0.05), and collagen type III (P < 0.01), were blocked in DGKzeta-TG mice. The survival rate at 4 wk after MI was higher in DGKzeta-TG mice than in WT mice (61% vs. 37%, P < 0.01). In conclusion, these results demonstrate the first evidence that DGKzeta suppresses LV structural remodeling and fibrosis and improves survival after MI. DGKzeta may be a potential novel therapeutic target to prevent LV remodeling after MI.  相似文献   

19.
Although exercise training-induced changes in left ventricular (LV) structure are well characterized, adaptive functional changes are incompletely understood. Detailed echocardiographic assessment of LV systolic function was performed on 20 competitive rowers (10 males and 10 females) before and after endurance exercise training (EET; 90 days, 10.7 +/- 1.1 h/wk). Structural changes included LV dilation (end-diastolic volume = 128 +/- 25 vs. 144 +/- 28 ml, P < 0.001), right ventricular (RV) dilation (end-diastolic area = 2,850 +/- 550 vs. 3,260 +/- 530 mm2, P < 0.001), and LV hypertrophy (mass = 227 +/- 51 vs. 256 +/- 56 g, P < 0.001). Although LV ejection fraction was unchanged (62 +/- 3% vs. 60 +/- 3%, P = not significant), all direct measures of LV systolic function were altered. Peak systolic tissue velocities increased significantly (basal lateral S'Delta = 0.9 +/- 0.6 cm/s, P = 0.004; and basal septal S'Delta = 0.8 +/- 0.4 cm/s, P = 0.008). Radial strain increased similarly in all segments, whereas longitudinal strain increased with a base-to-apex gradient. In contrast, circumferential strain (CS) increased in the LV free wall but decreased in regions adjacent to the RV. Reductions in septal CS correlated strongly with changes in RV structure (DeltaRV end-diastolic area vs. DeltaLV septal CS; r2 = 0.898, P < 0.001) and function (Deltapeak RV systolic velocity vs. DeltaLV septal CS, r2 = 0.697, P < 0.001). EET leads to significant changes in LV systolic function with regional heterogeneity that may be secondary to concomitant RV adaptation. These changes are not detected by conventional measurements such as ejection fraction.  相似文献   

20.
Recently, we showed that compared with the A/J inbred mouse strain, C57BL/6J (B6) mice have an athlete's cardiac phenotype. We postulated that strain differences would result in greater left ventricular (LV) hypertrophy in response to isoproterenol in B6 than A/J mice and tested the hypothesis that a differential response could be explained partly by differences in beta-adrenergic receptor (beta-AR) density and/or coupling. A/J and B6 mice were randomized to receive daily isoproterenol (100 mg/kg sc) or isovolumic vehicle for 5 days. Animals were studied using echocardiography, tail-cuff blood pressure, histopathology, beta-AR density and percent high-affinity binding, and basal and stimulated adenylyl cyclase activities. One hundred twenty-eight mice (66 A/J and 62 B6) were studied. Isoproterenol-treated A/J mice demonstrated greater percent increases in echocardiographic LV mass/body weight (97 +/- 11 vs. 20 +/- 10%, P = 0.001) and in gravimetric heart mass/body weight versus same-strain controls than B6 mice. Histopathology scores (a composite of myocyte hypertrophy, nuclear changes, fibrosis, and calcification) were greater in isoproterenol-treated A/J vs. B6 mice (2.8 +/- 0.2 vs.1.9 +/- 0.3, P < 0.05), as was quantitation of myocyte damage (22.3 +/- 11.5 vs. 4.3 +/- 3.5%). Interstrain differences in basal beta-AR density, high-affinity binding, and adenylyl cyclase activity were not significant. However, whereas isoproterenol-treated A/J mice showed nonsignificant increases in all beta-AR activity measures, isoproterenol-treated B6 mice had lower beta-AR density (57 +/- 6 vs. 83 +/- 8 fmol/mg, P < 0.05), percent high-affinity binding (15 +/- 2 vs. 26 +/- 3%, P < 0.005), and GTP + isoproterenol-stimulated adenylyl cyclase activity (10 +/- 1.1 vs. 5.8 +/- 1.5 pmol cAMP.mg(-1).min(-1)) compared with controls. High-dose, short-term isoproterenol produces greater macro- and microscopic cardiac hypertrophy and injury in A/J than B6 mice. A/J mice, unlike B6 mice, do not experience beta-AR downregulation or uncoupling in response to isoproterenol. Abnormalities in beta-adrenergic regulation may contribute to strain-related differences in the vulnerability to isoproterenol-induced cardiac changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号