首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in genes encoding members of the GDNF and endothelin-3 (Et-3) signaling pathways can cause Hirschsprung's disease, a congenital condition associated with an absence of enteric neurons in the distal gut. GDNF signals through Ret, a receptor tyrosine kinase, and Et-3 signals through endothelin receptor B (Ednrb). The effects of Gdnf, Ret, and ET-3 haploinsufficiency and a null mutation in ET-3 on spontaneous motility patterns in adult and developing mice were investigated. Video recordings were used to construct spatiotemporal maps of spontaneous contractile patterns in colon from postnatal and adult mice in vitro. In Ret(+/-) and ET-3(+/-) mice, which have normal numbers of enteric neurons, colonic migrating motor complexes (CMMCs) displayed similar properties under control conditions and following inhibition of nitric oxide synthase (NOS) activity to wild-type mice. In the colon of Gdnf(+/-) mice and in the ganglionic region of ET-3(-/-) mice, there was a 50-60% reduction in myenteric neuron number. In Gdnf(+/-) mice, CMMCs were present, but abnormal, and the proportion of myenteric neurons containing NOS was not different from that of wild-type mice. In the ganglionic region of postnatal ET-3(-/-) mice, CMMCs were absent, and the proportion of myenteric neurons containing NOS was over 100% higher than in wild-type mice. Thus impairments in spontaneous motility patterns in the colon of Gdnf(+/-) mice and in the ganglionic region of ET-3(-/-) mice are correlated with a reduction in myenteric neuron density.  相似文献   

2.
The presence of 5-hydroxytryptamine in enteric neurons of the guinea-pig distal colon was demonstrated by immunohistochemistry and the projections of the neurons were determined. 5-Hydroxytryptamine-containing nerve cells were observed in the myenteric plexus but no reactive nerve cells were found in submucous ganglia. Varicose reactive nerve fibres were numerous in the ganglia of both the myenteric and submucous plexuses, but were infrequent in the longitudinal muscle, circular muscle, muscularis mucosae and mucosa. Reactivity also occurred in enterochromaffin cells. Lesion studies showed that the axons of myenteric neurons projected anally to provide innervation to the circular muscle and submucosa and to other more anally located myenteric ganglia. The results suggest that a major population of 5-hydroxytryptamine neurons in the colon is descending interneurons, most of which extend for 10 to 15 mm in the myenteric plexus and innervate both 5-hydroxytryptamine and non-5-hydroxytryptamine neurons.  相似文献   

3.
Cholinergic nerves are identified by labelling molecules in the ACh synthesis, release and destruction pathway. Recently, antibodies against another molecule in this pathway have been developed. Choline reuptake at the synapse occurs via the high-affinity choline transporter (CHT1). CHT1 immunoreactivity is present in cholinergic nerve fibres containing vesicular acetylcholine transporter (VAChT) in the human and rat central nervous system and rat enteric nervous system. We have examined whether CHT1 immunoreactivity is present in nerve fibres in human intestine and whether it is colocalised with markers of cholinergic, tachykinergic or nitrergic circuitry. Human ileum and colon were fixed, sectioned and processed for fluorescence immunohistochemistry with antibodies against CHT1, class III beta-tubulin (TUJ1), synaptophysin, common choline acetyl-transferase (cChAT), VAChT, nitric oxide synthase (NOS), substance P (SP) and vasoactive intestinal peptide (VIP). CHT1 immunoreactivity was present in many nerve fibres in the circular and longitudinal muscle, myenteric and submucosal ganglia, submucosa and mucosa in human colon and ileum and colocalised with immunoreactivity for TUJ1 and synaptophysin confirming its presence in nerve fibres. In nerve fibres in myenteric ganglia and muscle, CHT1 immunoreactivity colocalised with immunoreactivity for VAChT and cChAT. Some colocalisation occurred with SP immunoreactivity, but little with immunoreactivity for VIP or NOS. In the mucosa, CHT1 immunoreactivity colocalised with that for VIP and SP in nerve fibres and was also present in vascular nerve fibres in the submucosa and on epithelial cells on the luminal border of crypts. The colocalisation of CHT1 immunoreactivity with VAChT immunoreactivity in cholinergic enteric nerves in the human bowel thus suggests that CHT1 represents another marker of cholinergic nerves.  相似文献   

4.
The distribution and abundance of nitric oxide synthase (NOS)-containing neurons and their terminals in the gastrointestinal tract of the guinea-pig were examined in detail using NADPH diaphorase histochemistry and NOS immunohistochemistry. NOS-containing cell bodies were found in the myenteric plexus throughout the gastrointestinal tract and in the submucous plexus of the stomach, colon and rectum. NOS-containing neurons comprised between 12% (in the duodenum) and 54% (in the esophagus) of total myenteric neurons. In the ileum, NOS neurons represented 19% of total myenteric neurons. Most of the NOS neurons throughout the gastrointestinal tract possessed lamellar dendrites and a single axon. NOS-containing terminals were abundant in the circular muscle, including that of the sphincters, but were rare in the longitudinal muscle, except for the taeniae of the caecum. The muscularis mucosae of the esophagus, stomach, colon and rectum received a medium to dense innervation by NOS terminals. Within myenteric ganglia, NOS-containing terminals were extremely sparse in the esophagus, stomach and duodenum, common in the ileum and distal colon and extremely dense in the proximal colon and rectum. The submucous plexus in the ileum and large intestine contained a sparse plexus of NOS-containing terminals. NOS terminals were not observed in the mucosa of any region. We conclude that throughout the gastrointestinal tract of the guinea-pig, NOS neurons are inhibitory motor neurons to the circular muscle; in the ileum and large intestine, NOS neurons may also function as interneurons.  相似文献   

5.
In mammals that develop rectal aganglionosis, the aganglionic segment still exhibits spontaneous phasic contractions that contribute to dysmotility and pseudoobstruction in this region. However, almost nothing is known about the mechanisms that generate these myogenic contractions or the effects of aganglionosis on the generation of Ca(2+) waves that underlie contractions of the longitudinal muscle (LM) and circular muscle (CM). In a mouse model of Hirschsprung's disease [endothelin type B receptor-deficient (Ednrb(s-l)/Ednrb(s-l)) mice], the Ca(2+) indicator fluo-4 was used to simultaneously monitor the temporal activation and spread of intercellular Ca(2+) waves in the LM and CM during spontaneous colonic motor activities. During the intervals between colonic migrating motor complexes (CMMCs) in control mice, Ca(2+) waves discharged asynchronously between the LM and CM. However, in these same mice, during CMMCs, a burst of discreet Ca(2+) waves fired simultaneously in both muscle layers, where the propagation velocity of Ca(2+) waves significantly increased, as did the rate of initiation and number of collisions between Ca(2+) waves. Hexamethonium (300 microM) or atropine (1 microM) prevented synchronized firing of Ca(2+) waves. In the aganglionic distal colon of Ednrb(s-l)/Ednrb(s-l) mice, not only were CMMCs absent, but Ca(2+) waves between the two muscle layers fired asynchronously, despite increased propagation velocity. The generation of CMMCs in control mice involves synchronized firing of enteric motor nerves to both the LM and CM, explaining the synchronized firing of discreet Ca(2+) waves between the two muscle layers. Aganglionosis results in a sporadic and sustained asynchrony in Ca(2+) wave firing between the LM and CM and an absence of CMMCs.  相似文献   

6.
The functional role of the different classes of visceral afferents that innervate the large intestine is poorly understood. Recent evidence suggests that low-threshold, wide-dynamic-range rectal afferents play an important role in the detection and transmission of visceral pain induced by noxious colorectal distension in mice. However, it is not clear which classes of spinal afferents are activated during naturally occurring colonic motor patterns or during intense contractions of the gut smooth muscle. We developed an in vitro colorectum preparation to test how the major classes of rectal afferents are activated during spontaneous colonic migrating motor complex (CMMC) or pharmacologically induced contraction. During CMMCs, circular muscle contractions increased firing in low-threshold, wide-dynamic-range muscular afferents and muscular-mucosal afferents, which generated a mean firing rate of 1.53 ± 0.23 Hz (n = 8) under isotonic conditions and 2.52 ± 0.36 Hz (n = 17) under isometric conditions. These low-threshold rectal afferents were reliably activated by low levels of circumferential stretch induced by increases in length (1-2 mm) or load (1-3 g). In a small proportion of cases (5 of 34 units), some low-threshold muscular and muscular-mucosal afferents decreased their firing rate during the peak of the CMMC contractions. High-threshold afferents were never activated during spontaneous CMMC contractions or tonic contractions induced by bethanechol (100 μM). High-threshold rectal afferents were only activated by intense levels of circumferential stretch (10-20 g). These results show that, in the rectal nerves of mice, low-threshold, wide-dynamic-range muscular and muscular-mucosal afferents are excited during contraction of the circular muscle that occurs during spontaneous CMMCs. No activation of high-threshold rectal afferents was detected during CMMCs or intense contractile activity in na?ve mouse colorectum.  相似文献   

7.
The enteric nervous system (ENS) plays an important role in regulating gastrointestinal (GI) motility and can function independently of the central nervous system. Changes in ENS function are a major cause of GI symptoms and disease and may contribute to GI symptoms reported in neuropsychiatric disorders including autism. It is well established that isolated colon segments generate spontaneous, rhythmic contractions known as Colonic Migrating Motor Complexes (CMMCs). A procedure to analyze the enteric neural regulation of CMMCs in ex vivo preparations of mouse colon is described. The colon is dissected from the animal and flushed to remove fecal content prior to being cannulated in an organ bath. Data is acquired via a video camera positioned above the organ bath and converted to high-resolution spatiotemporal maps via an in-house software package. Using this technique, baseline contractile patterns and pharmacological effects on ENS function in colon segments can be compared over 3-4 hr. In addition, propagation length and speed of CMMCs can be recorded as well as changes in gut diameter and contraction frequency. This technique is useful for characterizing gastrointestinal motility patterns in transgenic mouse models (and in other species including rat and guinea pig). In this way, pharmacologically induced changes in CMMCs are recorded in wild type mice and in the Neuroligin-3R451C mouse model of autism. Furthermore, this technique can be applied to other regions of the GI tract including the duodenum, jejunum and ileum and at different developmental ages in mice.  相似文献   

8.
Summary Bombesin-like and gastrin-releasing peptide (GRP)-like immunoreactivities were localized in nerves of the guinea-pig small intestine and celiac ganglion with the use of antibodies raised against the synthetic peptides. The anti-bombesin serum (preincubated to avoid cross reactivity with substance P) and the anti-GRP serum revealed the same population of neurons. Preincubation of the antibombesin serum with bombesin abolished the immunoreactivity in nerves while absorption of the anti-GRP serum with either bombesin or the 14–27 C-terminal of GRP only reduced the immunoreactivity. The immunoreactivity was abolished by incubation with GRP 1–27.Immunoreactive nerves were found in the myenteric plexus, circular muscle, submucous plexus and in the celiac ganglion. Faintly reactive nerve cell bodies were found in the myenteric ganglia (3.2% of all neurons) but not in submucous ganglia. After all ascending and descending pathways in the myenteric plexus had been cut, reactive terminals disappeared in the myenteric plexus, circular muscle (including the deep muscular plexus) and the submucous plexus on the anal side. After the mesenteric nerves were cut no changes were observed in the intestinal wall but the reactive fibres in celiac ganglia disappeared. It is deduced that GRP/bombesin-immunoreactive nerve cell bodies in myenteric ganglia project from the myenteric plexus to other myenteric ganglia situated further anally (average length 12 mm), anally to the circular muscle (average length 9 mm), anally to submucous ganglia (average length 13 mm) and external to the intestine to the celiac ganglia.It is concluded that the GRP/bombesin-reactive neurons in the intestinal wall represent a distinct population of enteric neurons likely to be involved in controlling motility and in the coordination of other intestinal functions.  相似文献   

9.
Since the stomach lacks a well-developed ganglionated submucous plexus, the somata of enteric neurones innervating the muscle or the mucosa have to be localised within the myenteric plexus. The aim of this study was to determine the projection pathways and the neurochemical coding of myenteric neurones innervating these different targets in the gastric fundus. Myenteric cell bodies projecting to the mucosa or the circular muscle were retrogradely labelled by mucosa or muscle application of the fluorescent tracer DiI and subsequently characterised by their immunoreactivity for choline acetyltransferase (ChAT), nitric oxide synthase (NOS), substance P (SP) and/or neuropeptide Y (NPY). On average 143±91 and 89±49 myenteric neurones were labelled from the mucosa and the circular muscle, respectively. DiI-labelled neurones were either ChAT- or NOS-positive. DiI-labelled ChAT-positive neurones were mainly ascending and outnumbered NOS-positive neurones, which were mainly descending (79.3±6.2% vs 20.7±6.2% for mucosa neurones; 69.3±11.1% vs 30.7±11.1% for muscle neurones). Three ChAT-positive subpopulations (ChAT/–, ChAT/SP, ChAT/NPY) and two NOS-positive subpopulations (NOS/–, NOS/NPY) were found. ChAT/SP neurones projected mainly to the circular muscle (36.1±11.9% of the cholinergic muscle neurones; mucosa projection: 8.0±2.1%), whereas ChAT/NPY neurones projected mainly to the mucosa (38.1±9.2% of the cholinergic mucosa neurones; muscle projection: 5.7±2.4%). NOS/– cells projected predominantly to the muscle. This study demonstrates polarised pathways in the myenteric plexus consisting of ascending ChAT and descending NOS cells that innervate the circular muscle and the mucosa of the gastric fundus. The ChAT/SP neurones might function as circular muscle motor neurones, whereas ChAT/NPY neurones might represent secretomotor neurones.  相似文献   

10.
Immunohistochemical analysis of neuron types in the mouse small intestine   总被引:4,自引:1,他引:3  
The definition of the nerve cell types of the myenteric plexus of the mouse small intestine has become important, as more researchers turn to the use of mice with genetic mutations to analyze roles of specific genes and their products in enteric nervous system function and to investigate animal models of disease. We have used a suite of antibodies to define neurons by their shapes, sizes, and neurochemistry in the myenteric plexus. Anti-Hu antibodies were used to reveal all nerve cells, and the major subpopulations were defined in relation to the Hu-positive neurons. Morphological Type II neurons, revealed by anti-neurofilament and anti-calcitonin gene-related peptide antibodies, represented 26% of neurons. The axons of the Type II neurons projected through the circular muscle and submucosa to the mucosa. The cell bodies were immunoreactive for choline acetyltransferase (ChAT), and their terminals were immunoreactive for vesicular acetylcholine transporter (VAChT). Nitric oxide synthase (NOS) occurred in 29% of nerve cells. Most were also immunoreactive for vasoactive intestinal peptide, but they were not tachykinin (TK)-immunoreactive, and only 10% were ChAT-immunoreactive. Numerous NOS terminals occurred in the circular muscle. We deduced that 90% of NOS neurons were inhibitory motor neurons to the muscle (26% of all neurons) and 10% (3% of all neurons) were interneurons. Calretinin immunoreactivity was found in a high proportion of neurons (52%). Many of these had TK immunoreactivity. Small calretinin neurons were identified as excitatory neurons to the longitudinal muscle (about 20% of neurons, with ChAT/calretinin/± TK chemical coding). Excitatory neurons to the circular muscle (about 10% of neurons) had the same coding. Calretinin immunoreactivity also occurred in a proportion of Type II neurons. Thus, over 90% of neurons in the myenteric plexus of the mouse small intestine can be currently identified by their neurochemistry and shape.  相似文献   

11.
The role of the longitudinal muscle (LM) layer during the peristaltic reflex in the small and large intestine is unclear. In this study, we have made double and quadruple simultaneous intracellular recordings from LM and circular muscle (CM) cells of guinea pig distal colon to correlate the electrical activities in the two different muscle layers during circumferential stretch. Simultaneous recordings from LM and CM cells (<200 microm apart) at the oral region of the colon showed that excitatory junction potentials (EJPs) discharged synchronously in both muscle layers for periods of up to 6 h. Similarly, at the anal region of the colon, inhibitory junction potentials (IJPs) discharged synchronously in the two muscle layers. Quadruple recordings from LM and CM orally at the same time as from the LM and CM anally revealed that IJPs occurred synchronously in the LM and CM anally at the same time as EJPs in LM and CM located 20 mm orally. Oral EJPs and anal IJPs were linearly related in amplitude between the two muscle layers. Spatiotemporal maps generated from simultaneous video imaging of the movements of the colon, combined with intracellular recordings, revealed that some LM contractions orally could be correlated in time with IJPs in CM cells anally. N(omega)-nitro-L-arginine (L-NA; 100 microM) abolished the IJP in LM, whereas a prominent L-NA-resistant "fast" IJP was always observed in CM. In summary, in stretched preparations, synchronized EJPs in both LM and CM orally are generated by synchronized firing of many ascending interneurons, which simultaneously activate excitatory motor neurons to both muscle layers. Similarly, synchronized IJPs in both LM and CM anally are generated by synchronized firing of many descending interneurons, which simultaneously activate inhibitory motor neurons to both muscle layers. This synchronized motor activity ensures that both muscles around the entire circumference are excited orally at the same time as inhibited anally, thus producing net aboral propulsion.  相似文献   

12.
The intramural projections of nerve cells containing serotonin (5-HT), calcitonin gene-related peptide (CGRP), vasoactive intestinal peptide (VIP) and nitric oxide synthase or reduced nicotinamide adenine dinucleotide phosphate diaphorase (NOS/NADPHd) were studied in the ascending colon of 5- to 6-week-old pigs by means of immunocytochemistry and histochemistry in combination with myectomy experiments. In control tissue of untreated animals, positive nerve cells and fibres were common in the myenteric and outer submucous plexus and, except for 5-HT-positive perikarya, immunoreactive cell bodies and fibres were also observed in the inner submucous plexus. VIP- and NOS/NADPHd-positive nerve fibres occurred in the ciruclar muscle layer while VIP was also abundant in nerve fibres of the mucosal layer. 5-HT- and CGRP-positive nerve fibres were virtually absent from the aganglionic nerve networks. In the submucosal layer, numerous paravascular CGRP-immunoreactive (IR) nerve fibres were encountered. Myectomy studies revealed that 5-HT-, CGRP-, VIP- and NOS/NADPHd-positive myenteric neurons all displayed anal projections within the myenteric plexus. In addition, some of the serotonergic myenteric neurons projected anally to the outer submucous plexus, whereas a great number of the VIP-ergic and nitrergic myenteric neurons send their axons towards the circular muscle layer. The possible function of these nerve cells in descending nerve pathways in the porcine colon is discussed in relation to the distribution pattern of their perikarya and processes and some of their morphological characteristics.  相似文献   

13.
Dopamine (DA) acts as gut motility modulator, via D1- and D2-like receptors, but its effective role is far from being clear. Since alterations of the dopaminergic system could lead to gastrointestinal dysfunctions, a characterization of the enteric dopaminergic system is mandatory. In this study, we investigated the role of DA and D1- and D2-like receptors in the contractility of the circular muscle of mouse distal colon by organ-bath technique. DA caused relaxation in carbachol-precontracted circular muscle strips, sensitive to domperidone, D2-like receptor antagonist, and mimicked by bromocriptine, D2-like receptor agonist. 7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH-23390), D1-like receptor antagonist, neural toxins, L-NAME (nitric oxide (NO) synthase inhibitor), 2′-deoxy-N6-methyl adenosine 3′,5′-diphosphate diammonium salt (MRS 2179), purinergic P2Y1 antagonist, or adrenergic antagonists were ineffective. DA also reduced the amplitude of neurally evoked cholinergic contractions. The effect was mimicked by (±)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrobromide (SKF-38393), D1-like receptor agonist and antagonized by SCH-23390, MRS 2179, or L-NAME. Western blotting analysis determined the expression of DA receptor proteins in mouse distal colon. Notably, SCH-23390 per se induced an increase in amplitude of spontaneous and neurally evoked cholinergic contractions, unaffected by neural blockers, L-NAME, MRS 2179, muscarinic, adrenergic, or D2-like receptor antagonists. Indeed, SCH-23390-induced effects were antagonized by an adenylyl cyclase blocker. In conclusion, DA inhibits colonic motility in mice via D2- and D1-like receptors, the latter reducing acetylcholine release from enteric neurons, involving nitrergic and purinergic systems. Whether constitutively active D1-like receptors, linked to adenylyl cyclase pathway, are involved in a tonic inhibitory control of colonic contractility is questioned.  相似文献   

14.
The lower esophageal sphincter (LES) has a circular muscle component exhibiting spontaneous tone that is relaxed by nitric oxide (NO) and a low-tone sling muscle that contracts vigorously to cholinergic stimulation but with little or no evidence of NO responsiveness. This study dissected the responses of the sling muscle to nitrergic innervation in relationship to its cholinergic innervation and circular muscle responses. Motor responses were induced by electrical field stimulation (EFS; 1-30 Hz) of muscle strips from sling and circular regions of the feline LES in the presence of cholinergic receptor inhibition (atropine) or NO synthase inhibition [NG-nitro-L-arginine (L-NNA)+/-atropine]. This study showed the following. First, sling muscle developed less intrinsic resting tone compared with circular muscle. Second, with EFS, sling muscle contracted (most at 50% by 5 Hz. Third, on neural blockade with atropine or L-NNA+/-atropine, 1) sling muscle, although predominantly influenced by excitatory cholinergic stimulation, had a small neural NO-mediated inhibition, with no significant non-NO-mediated inhibition and 2) circular muscle, although little affected by cholinergic influence, underwent relaxation predominantly by neural release of NO and some non-NO inhibitory influence (at higher EFS frequency). Fourth, the sling, precontracted with bethanecol, could relax with NO and some non-NO inhibition. Finally, the tension range of both muscles is similar. In conclusion, sling muscle has limited NO-mediated inhibition to potentially augment or replace sling relaxation effected by switching off its cholinergic excitation. Differences within the LES sling and circular muscles could provide new directions for therapy of LES disorders.  相似文献   

15.
It was hypothesised that P2X(3) receptors, predominantly labelling spinal and cranial sensory ganglionic neurons, are also expressed in intrinsic sensory enteric neurons, although direct evidence is lacking. The aim of this study was to localise P2X(3) receptors in the enteric nervous system of the guinea-pig ileum, and to neurochemically identify the P2X(3)-expressing neurons. In the submucous plexus, cholinergic neurons expressing calretinin (CRT), were immunostained for P2X(3). These neurons made up about 12% of the submucous neurons. In the myenteric plexus, approximately 36% of the neurons expressed P2X(3). Half of the latter neurons were immunoreactive for CRT, whereas about 20% were immunoreactive for nitric oxide synthase (NOS). Based on earlier neurochemical analysis of enteric neurons in the guinea-pig, the myenteric neurons exhibiting P2X(3)/CRT immunoreactivity were identified as longitudinal muscle motor neurons, and those expressing P2X(3)/NOS immunoreactivity as short inhibitory circular muscle motor neurons. In both plexuses, no colocalisation was observed between P2X(3) and calbindin, a marker for intrinsic sensory neurons. Multiple staining with antisera raised against somatostatin, neuropeptide Y, substance P or neurofilament protein did not reveal any costaining. It can be concluded that in the guinea-pig ileum, intrinsic sensory neurons do not express P2X(3) receptors. However, this does not negate the possibility that extrinsic sensory nerves expressing P2X(3) are involved in a purinergic mechanosensory transduction pathway as demonstrated in other organs.  相似文献   

16.
A two-compartment, flat-sheet preparation of rat colon was devised, which enabled exclusive measurement of longitudinal muscle activity during the ascending and descending phases of the peristaltic reflex. A previous study using longitudinal muscle strips revealed the operation of an integrated neuronal circuit consisting of somatostatin, opioid, and VIP/pituitary adenylate cyclase-activating peptide (PACAP)/nitric oxide synthase (NOS) interneurons coupled to cholinergic/tachykinin motor neurons innervating longitudinal muscle strips that could lead to descending contraction and ascending relaxation of this muscle layer. Previous studies in peristaltic preparations have also shown that an increase in somatostatin release during the descending phase causes a decrease in Met-enkephalin release and suppression of the inhibitory effect of Met-enkephalin on VIP/PACAP/NOS motor neurons innervating circular muscle and a distinct set of VIP/PACAP/NOS interneurons. The present study showed that in contrast to circular muscle, longitudinal muscle contracted during the descending phase and relaxed during the ascending phase. Somatostatin antiserum inhibited descending contraction and augmented ascending relaxation of longitudinal muscle, whereas naloxone had the opposite effect. VIP and PACAP antagonists inhibited descending contraction of longitudinal muscle and augmented ascending relaxation. Atropine and tachykinin antagonists inhibited descending contraction of longitudinal muscle. As shown in earlier studies, the same antagonists and antisera produced opposite effects on circular muscle. We conclude that longitudinal muscle contracts and relaxes in reverse fashion to circular muscle during the peristaltic reflex. Longitudinal muscle activity is regulated by excitatory VIP/PACAP/NOS interneurons coupled to cholinergic/tachykinin motor neurons innervating longitudinal muscle.  相似文献   

17.
The aim of this study was to compare immunoreactivities for substance P with other enteric neuropeptides and GAP-43, a general marker for enteric nerves, in normal human colon and in different stages of ulcerative colitis. Tissue samples from normal colon and regions of ulcerative colitis colon were obtained at surgery and immunostained for substance P, vasoactive intestinal polypeptide (VIP), somatostatin, calcitonin gene-related peptide (CGRP), enkephalin, galanin, GAP-43, and neuron-specific enolase (NSE). Visual examination and semiquantitative analysis revealed a clear increase in the immunoreactivity for substance P in ulcerative colitis, whereas no differences were observed in the distribution of the other peptides. Therefore, quantitative analysis was performed only for substance P immunoreactivity in the lamina propria, circular muscle layer, and myenteric ganglia. In the lamina propria, the score of total intensity of substance P immunoreactivity was 0.55 +/- 0.15 (mean +/- SEM) in normal colon, 1.30 +/- 0.35 (p = 0.087) in least affected colon, and 2.22 +/- 0.28 (p < 0.001) in moderately affected colon, whereas no significant differences were observed in immunoreactivities for GAP-43. Similar results were obtained for the mean substance P- or GAP-43-immunoreactive area. In the circular muscle layer, the number, density, total intensity, and perimeter of substance P- and GAP-43-immunoreactive fibers were essentially similar in normal colon, and in mild or moderately affected colon. We conclude that ulcerative colitis does not change the density of gut innervation as a whole. However, the density of substance P-containing nerves is specifically increased, probably due to increased peptide synthesis leading to better visibility of the fibers.  相似文献   

18.
The goal of this report is to summarise the current knowledge on the projection pathways of enteric neurones innervating the muscle and mucosa in different regions of the gut. Combination of neuronal tracing, immunohistochemical and electrophysiological methods has allowed researchers to gain insight into the enteric hardwiring of specific target tissue in the gut. A polarised innervation pattern of the circular muscle was demonstrated for the stomach fundus/corpus and the ileum with descending pathways being primarily nitrergic while ascending pathways were primarily cholinergic. This characteristic hardwiring is thought to set in part the functional basis for peristalsis. A similar polarised innervation pathway was found for the enteric innervation of the mucosa in the stomach and large intestine but not in the small intestine. In both the stomach (myenteric neurones) and in the proximal and distal colon (submucosal neurones), ascending pathways to the mucosa are primarily cholinergic while descending pathways are primarily non-cholinergic. In the colon, results suggest that activation of both pathways induces a cross potentiation of cholinergic and vasoactive intestinal polypeptidergic mediated secretion. Furthermore, a large population of myenteric neurone s projecting to the mucosa in the small and large intestine are probably intrinsic primary afferent neurones sensitive to mechanical as well as chemical stimuli.  相似文献   

19.
The distribution of nitric oxide synthase (NOS), an enzyme involved in the synthesis of the presumed non-adrenergic noncholinergic inhibitory neurotransmitter nitric oxide (NO), was demonstrated in the enteric nervous system of the porcine caecum, colon and rectum. Techniques used were NOS-immunocytochemistry and nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd)-histochemistry. Throughout the entire large intestine, NOS-immunoreactive (IR) and NADPHd-positive neurons were abundant in the myenteric and outer submucous plexus. In the inner submucous plexus, only a small number of positive neurons were found in the caecum and colon, while a moderate number was observed in the rectum. The nitrergic neurons in the porcine enteric nerve plexuses were of a range of sizes and shapes, with a small proportion showing immunostaining for vasoactive intestinal polypeptide. Varicose and non-varicose NOS-IR and NADPHd-positive nerve fibres were present in the ganglia and connecting strands of all three plexuses. Nerve fibres were also numerous in the circular muscle layer, scarce in the longitudinal muscle coat and negligible in the mucosal region. The abundance of NOS/NADPHd in the intrinsic innervation of the caecum, colon and rectum of the pig implicates NO as an important neuronal messenger in these regions of the gastrointestinal tract.  相似文献   

20.
The mode of action of the excitatory neuropeptide substance P was studied on the circular muscle of the guinea pig ileum in vitro. Atropine or tetrodotoxin strongly inhibited substance P-induced phasic contractions. The atropine-resistant part of the circular response was blocked by tetrodotoxin. A newly-developed method for quantitative evaluation revealed a rightward displacement of the substance P concentration-response curve, as well as a strong depression of the maximum effect, in the presence of atropine. These results indicate that cholinergic (and probably also non-cholinergic) excitatory neurons mediate phasic contractions due to substance P. The tonic component of the substance P-induced contraction was slightly reduced by atropine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号