首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA-based vaccines for the treatment of cancer--an experimental model   总被引:3,自引:0,他引:3  
Antigenic differences between normal and malignant cells form the basis of clinical immunotherapy protocols. Because the antigenic phenotype varies widely among different cells within the same tumor mass, immunization with a vaccine that stimulates immunity to a broad array of tumor antigens expressed by the entire population of malignant cells is likely to be more efficacious than immunization with a vaccine for a single antigen. One strategy is to prepare a vaccine by transfer of DNA from the patient's tumor into a highly immunogenic cell line. Weak tumor antigens, characteristic of malignant cells, become strongly antigenic if they are expressed by immunogenic cells. In animal models of melanoma and breast cancer, immunization with a DNA-based vaccine is sufficient to deter tumor growth and to prolong the lives of tumor-bearing mice.  相似文献   

2.
Overexpression of the proto-oncogene c-Myb occurs in more than 80% of colorectal cancer (CRC) and is associated with aggressive disease and poor prognosis. To test c-Myb as a therapeutic target in CRC we devised a DNA fusion vaccine to generate an anti-CRC immune response. c-Myb, like many tumor antigens, is weakly immunogenic as it is a "self" antigen and subject to tolerance. To break tolerance, a DNA fusion vaccine was generated comprising wild-type c-Myb cDNA flanked by two potent Th epitopes derived from tetanus toxin. Vaccination was performed targeting a highly aggressive, weakly immunogenic, subcutaneous, syngeneic, colon adenocarcinoma cell line MC38 which highly expresses c-Myb. Prophylactic intravenous vaccination significantly suppressed tumor growth, through the induction of anti-tumor immunity for which the tetanus epitopes were essential. Vaccination generated anti-tumor immunity mediated by both CD4(+) and CD8(+) T cells and increased infiltration of immune effector cells at the tumor site. Importantly, no evidence of autoimmune pathology in endogenous c-Myb expressing tissues was detected as a consequence of breaking tolerance. In summary, these results establish c-Myb as a potential antigen for immune targeting in CRC and serve to provide proof of principle for the continuing development of DNA vaccines targeting c-Myb to bring this approach to the clinic.  相似文献   

3.
BACKGROUND: Vaccines capable of inducing CD8 T cell responses to antigens expressed by tumor cells are considered as attractive choices for the treatment and prevention of malignant diseases. Our group has previously reported that immunization with synthetic peptide corresponding to a CD8 T cell epitope derived from the rat neu (rNEU) oncogene administered together with a Toll-like receptor agonist as adjuvant, induced immune responses that translated into prophylactic and therapeutic benefit against autochthonous tumors in an animal model of breast cancer (BALB-neuT mice). DNA-based vaccines offer some advantages over peptide vaccines, such as the possibility of including multiple CD8 T cell epitopes in a single construct. MATERIALS AND METHODS: Plasmids encoding a fragment of rNEU were designed to elicit CD8 T cell responses but no antibody responses. We evaluated the use of the modified plasmids as DNA vaccines for their ability to generate effective CD8 T cell responses against breast tumors expressing rNEU. RESULTS: DNA-based vaccines using modified plasmids were very effective in specifically stimulating tumor-reactive CD8 T cell responses. Moreover, vaccination with the modified DNA plasmids resulted in significant anti-tumor effects that were mediated by CD8 T cells without the requirement of generating antibodies to the product of rNEU. CONCLUSIONS: DNA vaccination is a viable alternative to peptide vaccination to induce potent anti-tumor CD8 T cell responses that provide effective therapeutic benefit. These results bear importance for the design of DNA vaccines for the treatment and prevention of cancer.  相似文献   

4.
DNA-based vaccination is a novel technique to efficiently stimulate humoral (antibody) and cellular (T cell) immune responses to protein antigens. In DNA-based vaccination, immunogenic proteins are expressed in in vivo transfected cells of the vaccine recipients in their native conformation with correct posttranslational modifications from antigen-encoding expression plasmid DNA. This ensures the integrity of antibody-defined epitopes and supports the generation of protective (neutralizing) antibody titers. Plasmid DNA vaccination is furthermore an exceptionally potent strategy to stimulate CD8+ cytotoxic T lymphocyte (CTL) responses because antigenic peptides are efficiently generated by endogenous processing of intracellular protein antigens. These key features make DNA-based immunization an attractive strategy for prophylactic and therapeutic vaccination against extra- and intracellular pathogens. In this brief review, we summarize the current state of expression vector design, DNA delivery strategies, priming immune responses to intracellular or secreted antigens by DNA vaccines and unique advantages of DNA- versus recombinant protein-based vaccines using the hepatitis B surface antigen (HBsAg) as a model antigen.  相似文献   

5.
Highly immunogenic malignant cells form small tumors that spontaneously regress after initial growth because the tumor induces specific immunity. However, variants may arise during the initial tumor growth that lose antigens, grow progressively, often become the predominant tumor population, and eventually kill the host. These progressively growing variants usually have not lost all tumor antigens and remain susceptible to rejection by T cells specific for antigens present on the parental tumor and retained by the progressively growing variants. Thus, it would seem logical for therapy to actively immunize with the parental highly immunogenic tumor (or sublines made similarly immunogenic by tumor heterogenization) after maximal surgical removal of the growing tumor. However, the present findings suggest that such a strategy may be ineffective and have adverse effects: the parental highly immunogenic tumor cells, either remaining or reintroduced, may perpetuate unresponsiveness to both the parental and the variant tumor. These findings suggest that unless tumor-induced suppression is first abrogated, immunization with highly immunogenic tumor cells may be counterproductive because this maneuver may maintain preexisting immune suppression and prevent development of postsurgical tumor immunity.  相似文献   

6.
This investigation was based on the hypothesis that weakly immunogenic, breast cancer-associated Ags, the products of mutant or dysregulated genes in the malignant cells, will be expressed in a highly immunogenic form by semiallogeneic IL-2-secreting fibroblasts transfected with DNA from breast cancer cells. (Classic studies indicate that transfection of genomic DNA can stably alter both the genotype and the phenotype of the cells that take up the exogenous DNA.) To investigate this question, we transfected LM mouse fibroblasts (H-2k) modified to secrete IL-2 with genomic DNA from a breast adenocarcinoma that arose spontaneously in a C3H/He mouse (H-2k). To increase their nonspecific immunogenic properties, the fibroblasts were also modified before transfection to express allogeneic MHC determinants (H-2Kb). Afterward, the IL-2-secreting semiallogeneic cells were cotransfected with DNA from the spontaneous breast neoplasm, along with a plasmid (pHyg) conferring resistance to hygromycin. Pooled colonies of hygromycin-resistant cells were then tested in C3H/He mice for their immunotherapeutic properties against the growth of the breast neoplasm. The results indicated that tumor-bearing mice immunized with the transfected cells survived significantly longer than mice in various control groups. Similar beneficial effects were seen in C57BL/6 mice injected with a syngeneic breast carcinoma cell line (EO771) and semiallogeneic, IL-2-secreting fibroblasts transfected with DNA from EO771 cells. The immunity was mediated by CD8+ T cells since immunized mice depleted of CD8+ cells failed to resist tumor growth.  相似文献   

7.
Immunization of animals with 1591-RE tumor cells, a highly immunogenic UV-induced epithelia cell tumor from C3H/HeN mice, that were haptenated with trinitrophenol (TNP) leads to protective immunity against a challenge of TNP-haptenated 3152-PRO tumor cells, a progressive highly malignant. MCA-induced fibrosarcoma from syngeneic mice. Animals that rejected TNP-1591-RE and subsequently TNP-3152-PRO tumor cells showed increased tumor-specific resistance to another challenge of 3152-PRO tumor cells, even when these fibrosarcoma cells had not been haptenated with TNP. Induction of protection required the presence of TNP-hapten groups on both 1591-RE and 3152-PRO during the initial immunization, and could be induced by immunization with other haptenated syngeneic highly immunogenic regressor tumor lines. In addition, TNP-haptenated progressor variants of the 1591-RE were ineffective in generating protection, suggesting that the immunogenicity of the haptenated tumor used for the initial immunization was a determining factor in whether or not protective immunity against the highly malignant tumor was later generated. Protection required at least two T cell types: a Lyt-1-2+ T cells, and a Lyt-1+2- T cell that also expressed I-J determinants and was Vicia villosa lectin adherent, suggesting it was not a classical helper T cell. These results suggest that presentation of a hapten by highly immunogenic tumor cells can lead to enhanced protective immunity to poorly immunogenic noncross-reactive tumors that co-express the same hapten, and rejection of these haptenated poorly immunogenic tumors leads to enhanced protection against a subsequent challenge of the same, but not noncross-reactive progressor tumors.  相似文献   

8.
Therapeutic vaccines represent an attractive approach to cancer treatment. Traditionally, cancer immunotherapy targets antigens expressed by the tumor cells. Although numerous clinical trials studying different cancer vaccines have been conducted during the past twenty years, very limited clinical responses have been observed. The inefficient anti-tumor immunity is thought to be due, in major part, to the escape mechanisms exerted by the genetically unstable tumor cells, e.g., emergence of antigen-loss mutants, downregulation of MHC molecules and lack of expression of costimulatory molecules. Recently, a novel vaccine strategy has been developed to circumvent these obstacles. Taking advantage of the importance of angiogenesis in tumor growth and the genetic stability of endothelial cells, this immunotherapy strategy targets antigens (e.g., angiogenic growth factor receptors) overexpressed by the tumor neo-vasculature rather than the tumor cells per se. For example, active immunization against vascular endothelial growth factor receptor-2 (VEGFR-2) has been shown to generate strong cellular and humoral immune responses, which lead to the inhibition of angiogenesis and tumor growth and metastasis. This review provides an outline of this emerging field and discusses the advantages and potential pitfalls of such a vaccine strategy.  相似文献   

9.
The prognosis of liver cancer remains poor, but recent advances in nanotechnology offer promising possibilities for cancer treatment. Novel adjuvant, amphiphilic nanoparticles (NPs) composed of l-phenylalanine (Phe)-conjugated poly(γ-glutamic acid) (γ-PGA-Phe NPs) having excellent capacity for carrying peptides, were found to have the potential for use as a peptide vaccine against tumor models overexpressing artificial antigens, such as ovalbumin (OVA). However, the anti-tumor potential of γ-PGA-Phe NPs vaccines using much less immunogenic tumor-associated antigen (TAA)-derived peptide needs to be clarified. In this study, we evaluated the effectiveness of immunization with EphA2, recently identified TAA, derived peptide-immobilized γ-PGA-Phe NPs (Eph-NPs) against mouse liver tumor of MC38 cells (EphA2-positive colon cancer cells). Immunization of normal mice with Eph-NPs resulted in generation of EphA2-specific type-1 CD8+ T cells. Immunization with Eph-NPs tended to provide a degree of anti-MC38 liver tumor protection more than that observed for immunization with the mixture of EphA2-derived peptide and complete Freund’s adjuvant (Eph + CFA). Neither Eph-NPs nor Eph + CFA vaccines inhibited tumor growth of BL6, EphA2-negative melanoma cells. Splenocytes isolated from MC38-bearing mice treated with Eph-NPs showed strong and specific cytotoxic activity against MC38 cells. Immunization with Eph + CFA induced liver damage as evidenced by elevation of serum alanine aminotransferase, while Eph-NPs vaccination did not exhibit any toxic damage to the liver. These results demonstrated that immunization with Eph-NPs displayed anti-tumor effects against liver tumor by generating acquired immunity equivalent to the toxic adjuvant CFA, suggesting that safe γ-PGA-Phe NPs could be applied clinically for the vaccine treatment of liver cancer.  相似文献   

10.
BACKGROUND: A number of tumors express antigens that are recognized by specific cytotoxic T cells. The normal host immune responses, however, are not usually sufficient to cause tumor rejection. Using appropriate immunization strategies, tumor-specific antigens may serve as targets against which tumor-destructive immune responses can be generated. MAGE-1 and MAGE-3 are two clinically relevant antigens expressed in many human melanomas and other tumors, but not in normal tissues, except testis. Here, we have investigated whether DNA and cellular vaccines against MAGE-1 and MAGE-3 can induce antigen-specific anti-tumor immunity and cause rejection of MAGE-expressing tumors. MATERIALS AND METHODS: Mice were immunized against MAGE-1 and MAGE-3 by subcutaneous injection of genetically modified embryonic fibroblasts or intramuscular injection of purified DNA. Mice were injected with lethal doses of B16 melanoma cells expressing the corresponding MAGE antigens or the unrelated protein SIV tat, and tumor development and survival were monitored. RESULTS: Intramuscular expression of MAGE-1 and MAGE-3 by plasmid DNA injection and subcutaneous immunization with syngeneic mouse embryonic fibroblasts transduced with recombinant retroviruses to express these antigens induced specific immunity against tumors expressing MAGE-1 and MAGE-3. Both CD4+ and CD8+ T cells were required for anti-tumor immunity. Coexpression of granulocyte-macrophage colony-stimulating factor (GM-CSF) or B7-1 significantly increased anti-tumor immunity in an antigen-specific manner and resulted in a considerable proportion of mice surviving lethal tumor challenge. CONCLUSIONS: Our results suggest that genetic and cellular vaccines against MAGE and other tumor antigens may be useful for the therapy of tumors expressing specific markers, and that GM-CSF and B7-1 are potent stimulators for the induction of antigen-specific tumor immunity.  相似文献   

11.
Endogenous retroviral gene products have been recognized as being expressed in human cancerous tissues. However, these products have not been shown to be antigenic targets for T-cells, possibly due to immune tolerance. Since carcinogen-induced colon tumor CT26 expresses an envelope protein, gp70, of an endogenous ecotropic murine leukemia virus that is comparable to human tumor-associated antigens, we examined whether a DNA vaccine containing the gp70 gene induces protective immunity against CT26 cells. Injection of mice with plasmid DNA (pDNA) encoding gp70 alone failed to induce anti-gp70 antibody (Ab) or anti-CT26 cytotoxic T lymphocyte (CTL) responses. However, immunization with pDNA encoding the beta-galactosidase (beta-gal)/gp70 fusion protein induced anti-gp70 Ab and anti-CT26 CTL responses and conferred protective immunity against CT26 cells. These results indicate that beta-gal acts as an immunogenic carrier protein that helps in the induction of immune responses against the poorly immunogenic gp70. Considering these results, it is possible that potential tolerance to the endogenous retroviral gene products expressed by human tumors may be overcome by DNA vaccines that contain an endogenous retroviral gene fused to genes encoding immunogenic carrier proteins.  相似文献   

12.
Anti-idiotype monoclonal antibody (mAb) 1E10 was generated by immunizing BALB/c mice with an Ab1 mAb which recognizes NeuGc-containing gangliosides, sulfatides and some tumor antigens. 1E10 mAb induces therapeutic effects in a primary breast carcinoma and a melanoma model. However, the tumor immunity mechanisms have not been elucidated. Here we show that aluminum hydroxide-precipitated 1E10 mAb immunization induced anti-metastatic effect in the 3LL-D122 Lewis Lung carcinoma, a poorly immunogenic and highly metastatic model in C57BL/6 mice. The therapeutic effect was associated to the increment of T cells infiltrating metastases, the reduction of new blood vessels formation and the increase of apoptotic tumor cells in lung nodules. Interestingly, active immunization does not induce measurable antibodies to the 1E10 mAb, the NeuGc-GM3 or tumor cells, which may suggest a different mechanism which has to be elucidated. These findings may support the relevance of this target for cancer biotherapy.  相似文献   

13.
Many tumor-associated Ags represent tissue differentiation Ags that are poorly immunogenic. Their weak immunogenicity may be due to immune tolerance to self-Ags. Prostatic acid phosphatase (PAP) is just such an Ag that is expressed by both normal and malignant prostate tissue. We have previously demonstrated that PAP can be immunogenic in a rodent model. However, generation of prostate-specific autoimmunity was seen only when a xenogeneic homolog of PAP was used as the immunogen. To explore the potential role of xenoantigen immunization in cancer patients, we performed a phase I clinical trial using dendritic cells pulsed with recombinant mouse PAP as a tumor vaccine. Twenty-one patients with metastatic prostate cancer received two monthly vaccinations of xenoantigen-loaded dendritic cells with minimal treatment-associated side effects. All patients developed T cell immunity to mouse PAP following immunization. Eleven of the 21 patients also developed T cell proliferative responses to the homologous self-Ag. These responses were associated with Ag-specific IFN-gamma and/or TNF-alpha secretion, but not IL-4, consistent with induction of Th1 immunity. Finally, 6 of 21 patients had clinical stabilization of their previously progressing prostate cancer. All six of these patients developed T cell immunity to human PAP following vaccination. These results demonstrate that xenoantigen immunization can break tolerance to a self-Ag in humans, resulting in a clinically significant antitumor effect.  相似文献   

14.
Dendritic cells (DCs) function as professional antigen presenting cells and are critical for linking innate immune responses to the induction of adaptive immunity. Many current cancer DC vaccine strategies rely on differentiating DCs, feeding them tumor antigens ex vivo, and infusing them into patients. Importantly, this strategy relies on prior knowledge of suitable “tumor-specific” antigens to prime an effective anti-tumor response. DCs express a variety of receptors specific for the Fc region of immunoglobulins, and antigen uptake via Fc receptors is highly efficient and facilitates antigen presentation to T cells. Therefore, we hypothesized that expression of the mouse IgG1 Fc region on the surface of tumors would enhance tumor cell uptake by DCs and other myeloid cells and promote the induction of anti-tumor T cell responses. To test this, we engineered a murine lymphoma cell line expressing surface IgG1 Fc and discovered that such tumor cells were taken up rapidly by DCs, leading to enhanced cross-presentation of tumor-derived antigen to CD8+ T cells. IgG1-Fc tumors failed to grow in vivo and prophylactic vaccination of mice with IgG1-Fc tumors resulted in rejection of unmanipulated tumor cells. Furthermore, IgG1-Fc tumor cells were able to slow the growth of an unmanipulated primary tumor when used as a therapeutic tumor vaccine. Our data demonstrate that engagement of Fc receptors by tumors expressing the Fc region of IgG1 is a viable strategy to induce efficient and protective anti-tumor CD8+ T cell responses without prior knowledge of tumor-specific antigens.  相似文献   

15.
《MABS-AUSTIN》2013,5(1):108-118
Dendritic cells (DCs) function as professional antigen presenting cells and are critical for linking innate immune responses to the induction of adaptive immunity. Many current cancer DC vaccine strategies rely on differentiating DCs, feeding them tumor antigens ex vivo, and infusing them into patients. Importantly, this strategy relies on prior knowledge of suitable “tumor-specific” antigens to prime an effective anti-tumor response. DCs express a variety of receptors specific for the Fc region of immunoglobulins, and antigen uptake via Fc receptors is highly efficient and facilitates antigen presentation to T cells. Therefore, we hypothesized that expression of the mouse IgG1 Fc region on the surface of tumors would enhance tumor cell uptake by DCs and other myeloid cells and promote the induction of anti-tumor T cell responses. To test this, we engineered a murine lymphoma cell line expressing surface IgG1 Fc and discovered that such tumor cells were taken up rapidly by DCs, leading to enhanced cross-presentation of tumor-derived antigen to CD8+ T cells. IgG1-Fc tumors failed to grow in vivo and prophylactic vaccination of mice with IgG1-Fc tumors resulted in rejection of unmanipulated tumor cells. Furthermore, IgG1-Fc tumor cells were able to slow the growth of an unmanipulated primary tumor when used as a therapeutic tumor vaccine. Our data demonstrate that engagement of Fc receptors by tumors expressing the Fc region of IgG1 is a viable strategy to induce efficient and protective anti-tumor CD8+ T cell responses without prior knowledge of tumor-specific antigens.  相似文献   

16.
Immunotherapeutic approaches, based on the generation of tumor-specific cytotoxic T-lymphocytes (CTL), are currently emerging as promising strategies of anti-tumor therapy. The potential use of attenuated bacteria as engineered vectors for vaccine development offers several advantages, including the stimulation of innate immunity. We developed an attenuated live bacterial vector using the type III secretion system (TTSS) of Pseudomonas aeruginosa to deliver in vivo tumor antigens. Using an inducible and rapid expression plasmid, vaccination with several antigens of different length and epitope composition, including TRp-2, gp100 and MUC18, was evaluated against glioma tumor cells. We observed similar CTL immunity and T-cell receptor (TCR) repertoire diversity with the vaccines, TRP2(125-243), TRP2L(125-376) and TRP2S(291-376). However, only immunization with TRP2L(125-376) induced significant anti-tumor immunity. Taken together, our data indicate the importance of the epitopes composition and/or peptide length of these peptides for inducing cytotoxic T-lymphocyte (CTL) mediated immunity. Characteristics that consistently improved anti-tumor immunity include: long peptides with immunodominant and cryptic CD8(+) epitopes, and strong CD4(+) Th epitopes. Our bacterial vector is versatile, easy-to-use and quick to produce. This vector is suitable for rapid screening and evaluation of antigens of varying length and epitope composition.  相似文献   

17.
It is well established that certain stress proteins or molecular chaperones are highly efficient in cross-presenting tumor-derived antigens, resulting in a potent antitumor immune response. In this study we demonstrate that genetic modification of weakly immunogenic murine prostate tumor cells (TRAMP-C2) by stable transfection with a secretable form of endoplasmic reticulum resident chaperone grp170 significantly enhances its immunogenicity in vivo. Generation of systemic antitumor immunity is indicated by the growth suppression of distant parental tumors, which is associated with increased tumor infiltration, elevated effector functions of CD8+ T-cells. Immunization with inactivated grp170-secreting C2 cells augments a CD8+ T-cell dependent, tumor-protective effect. Furthermore, infection of C2 tumor cells with a nonreplicating adenoviral vectors encoding secretable grp170 promotes tumor immunogenicity more effectively than plasmid transduction, as shown by the increased production of pro-inflammatory cytokine TNF-α by dendritice cells and enhanced therapeutic efficacy in treating pre-established tumors. Given a repertoire of undefined antigens in prostate tumor, manipulation of cellular compartmentalization of immuno-stimulatory chaperone grp170 to elicit systemic tumor immunity may be used to improve treatment outcomes for prostate cancer when combined with other treatment modalities.  相似文献   

18.
While most immunotherapies for cancer have focused on eliciting specific CD8+ cytotoxic T lymphocyte killing of tumor cells, a mounting body of evidence suggests that stimulation of anti-tumor CD4+ T cell help may be required for highly effective therapy. Several MHC class II-restricted tumor antigens that specifically activate such CD4+ helper T lymphocytes have now been identified, including one from a melanoma tumor that is caused by a single base-pair mutation in the glycolytic enzyme triosephosphate isomerase. This mutation results in the conversion of a threonine residue to isoleucine within the antigenic epitope, concomitant with a greater than five log-fold increase in stimulation of a CD4+ tumor-infiltrating lymphocyte line. Here, we present the crystal structures of HLA-DR1 in complex with both wild-type and mutant TPI peptide antigens, the first structures of tumor peptide antigen/MHC class II complexes recognized by CD4+ T cells to be reported. These structures show that very minor changes in the binding surface for T cell receptor correspond to the dramatic differences in T cell stimulation. Defining the structural basis by which CD4+ T cell help is invoked in an anti-tumor immune response will likely aid the design of more effective cancer immunotherapies.  相似文献   

19.
Antigen presentation by dendritic cells (DCs) has the potential to elicit therapeutic immune responses against malignant tumors. One strategy utilizing DC-tumor fusion hybrids as cancer vaccine is particularly attractive because of polyclonal presentation of a diverse array of unaltered tumor antigens. We have recently developed a large-scale electrofusion technique for generating DC-tumor heterokaryons and demonstrated their superb immunogenicity. Here, employing the weakly immunogenic MCA205 sarcoma, a single vaccination with electrofusion hybrids eradicated tumors established in the lung, skin, and brain. Immunotherapy required intra-lymphoid vaccine delivery and co-administration of adjuvants such as OX-40R antibody. Tumor eradication was immunologically specific and involved the participation of both CD4 and CD8 T cells. Consistent with DC's functionality of MHC-restriction, the use of syngeneic DCs for fusion was an obligatory requirement. Fusion with allogeneic DCs completely lacked therapeutic effects. These findings provide a strong impetus for treating cancer patients with similarly generated DC-tumor hybrids.  相似文献   

20.
肿瘤进展与人免疫系统间的联系已经被广泛研究,有许多免疫分子已被证实参与其中。CD47(整合素相关蛋白)为一种免疫球蛋白超家族成员,在人免疫系统中发挥着重要功能。研究表明CD47在肿瘤细胞表面也有高表达,其高表达与肿瘤的生长、转移及复发等密切相关。肿瘤细胞表面的CD47与巨噬细胞表面的SIRPα相互作用,并发出“别吃我”的免疫抑制性信号,从而保护肿瘤细胞免受巨噬细胞吞噬。因此,开发以CD47为靶点的拮抗剂可阻断此抑制性信号,从而增强巨噬细胞的吞噬效应,以达到增强抗肿瘤免疫反应的目的。最新研究证实,CD47拮抗剂在T细胞介导的抗肿瘤免疫反应中也发挥了重要作用。本文将对CD47分子的结构功能、在抗肿瘤免疫反应中的作用及以其为靶点的拮抗剂研究进展进行综述,以期为进一步的药物开发及临床研究等提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号