首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The muscarinic functional antagonism of isoproterenol relaxation and the contribution of muscarinic M2 receptors were examined in human isolated bronchus. In intact tissues, acetylcholine (ACh) precontraction decreased isoproterenol potency and maximal relaxation (-log EC50 shift = -1.49 +/- 0.16 and E(max) inhibition for 100 microM ACh = 30%) more than the same levels of histamine contraction. The M2 receptor-selective antagonist methoctramine (1 microM) reduced this antagonism in ACh- but not histamine-contracted tissues. Similar results were obtained for forskolin-induced relaxation. After selective inactivation of M3 receptors with 4-diphenylacetoxy-N-(2-chloroethyl)piperadine hydrochloric acid (30 nM), demonstrated by abolition of contractile and inositol phosphate responses to ACh, muscarinic recontractile responses were obtained in U-46619-precontracted tissues fully relaxed with isoproterenol. Methoctramine antagonized recontraction, with pK(B) (6.9) higher than in intact tissues (5.4), suggesting participation of M2 receptors. In M3-inactivated tissues, methoctramine augmented the isoproterenol relaxant potency in U-46619-contracted bronchus and reversed the ACh-induced inhibition of isoproterenol cAMP accumulation. These results indicate that M2 receptors cause indirect contraction of human bronchus by reversing sympathetically mediated relaxation and contribute to cholinergic functional antagonism.  相似文献   

2.
We studied the effect of epithelial removal and intraepithelial administration of human eosinophil granule major basic protein (MBP) on the contraction of underlying canine tracheal smooth muscle in 23 dogs in vivo. A dual in situ tracheal preparation was utilized that allowed sharp excision of epithelium. The response to intra-arterial acetylcholine (ACh) was augmented substantially in five dogs receiving 200 micrograms MBP by intraepithelial instillation. Active tension elicited by 10(-8) mol intra-arterial ACh was 34.0 +/- 2.2 g/cm before and 46.1 +/- 2.6 g/cm 30 min after MBP (P less than 0.002). There was no change in active tension in the control segment in the same dogs after intraepithelial instillation of vehicle only (34.7 +/- 3.2 vs. 34.4 +/- 2.3 g/cm; P = NS). Instillation of MBP directly into the subepithelial tracheal smooth muscle did not alter contraction. To assess whether this augmentation was caused by inhibition of an epithelial-derived relaxant factor, additional studies were performed in nine other dogs in which the epithelium was excised discretely from one of the two tracheal segments. No significant differences in contractile response to ACh or relaxation response to isoproterenol were observed at 2, 15, 30, or 60 min after epithelial excision. We demonstrate that intraepithelial administration of MBP augments the contraction of underlying canine tracheal smooth muscle elicited by ACh. This augmentation is a direct effect of MBP and does not require antagonism of epithelial inhibition.  相似文献   

3.
Bay k 8644 and nitrendipine, dihydropyridines classified as calcium channel agonist and antagonist, respectively, produced concentration-dependent biphasic responses (contraction and relaxation) in porcine coronary artery rings. Nitrendipine relaxed rings (IC50 = 60 nM) that were contracted with 100 nM Bay k 8644. Pretreatment of rings with 60 nM nitrendipine caused paradoxical potentiation of Bay k 8644-induced contraction. The data are consistent with a model that consists of two functionally-distinct dihydropyridine "receptors" with which Bay k 8644 and nitrendipine interact as partial agonists. We propose that these excitatory and inhibitory dihydropyridine receptor subtypes mediate contraction and relaxation, respectively, by dihydropyridines.  相似文献   

4.
We investigated cellular mechanisms that mediate or modulate the vascular response to muscarinic receptor activation (ACh) in pulmonary veins (PV). Isometric tension was measured in isolated canine PV rings with endothelium (E+) and without endothelium (E-). Tension and intracellular Ca(2+) concentration ([Ca(2+)](i)) were measured simultaneously in fura-2-loaded E- PV strips. In the absence of preconstriction, ACh (0.01-10 microM) caused dose-dependent contraction in E+ and E- rings. ACh contraction was potentiated by removing the endothelium or by nitric oxide (NO) synthase inhibition (N-nitro-L-arginine methyl ester, P = 0.001). Cyclooxygenase inhibition (indomethacin) reduced ACh contraction in both E+ and E- PV rings (P = 0.013 and P = 0.037, respectively). ACh contraction was attenuated by inhibitors of voltage-operated Ca(2+) channels (nifedipine, P < 0.001), inositol-1,4,5-trisphosphate (IP(3))-mediated Ca(2+) release (2-aminoethoxydiphenyl borate, P = 0.001), PKC (bisindolylmaleimide I, P = 0.001), Rho-kinase (Y-27632, P = 0.002), and tyrosine kinase (TK; tyrphostin 47, P = 0.015) in E- PV rings. ACh (1 microM) caused a leftward shift in the [Ca(2+)](i)-tension relationship (P = 0.015), i.e., ACh increased myofilament Ca(2+) sensitivity. Inhibition of PKC, Rho-kinase, and TK attenuated the ACh-induced increase in myofilament Ca(2+) sensitivity (P < 0.001, P < 0.001, and P = 0.024, respectively). These findings indicate that in canine PV, ACh contraction is modulated by NO and partially mediated by metabolites of the cyclooxygenase pathway and involves Ca(2+) influx through voltage-operated Ca(2+) channels and IP(3)-mediated Ca(2+) release. In addition, ACh induces increased myofilament Ca(2+) sensitivity, which requires the PKC, Rho-kinase, and TK pathways.  相似文献   

5.
Tokuno S  Chen F  Pernow J  Jiang J  Valen G 《Life sciences》2002,71(6):679-692
Short episodes of ischemia and reperfusion in various organs may protect the organ itself, and the heart both as an immediate and a delayed effect. The present study investigates whether a systemic protection of vascular function occurs during adaption to ischemia. Brain ischemia was induced by bilateral ligation of the internal carotid arteries in C57BL6 mice, and 24-36 hours later rings of the thoracic aorta were mounted to study in vitro relaxation and contraction, or proteins were extracted for immunoblotting for endothelial nitric oxide synthase (eNOS) or inducible NOS (iNOS). eNOS decreased, while iNOS increased in the aortic wall after carotid artery ligation. In vitro contraction to increasing concentrations of prostaglandin F(2alpha) (PGF(2alpha)) was attenuated, while relaxation to acetylcholine (ACh) was enhanced. The latter was abolished by the iNOS-inhibitor aminoguanidine. When brain ischemia was induced in iNOS deficient mice, an increase of aortic eNOS was found 24 hours later. The ischemia-induced attenuated relaxation to PGF(2alpha) and enhanced relaxation to ACh were abolished. Aortic rings from mice with severe atherosclerosis (apolipoprotein E and low density lipoprotein receptor double knockout (ApoE/LDLr KO) mice) and spontaneous ischemic events in the heart or brain in vivo were also studied. Spontaneous ischemic events in ApoE/LDLr KO animals did not influence iNOS and eNOS in the vessel wall. A reduced contraction to PGF(2alpha) was observed, but relaxation to ACh was unchanged. These findings suggest that induced brain ischemia as a model of delayed, remote preconditioning protects vessel reactivity, and this protection is mediated by iNOS.  相似文献   

6.
Cyclic ADP-ribose (cADPR), a universal calcium releaser, is generated from NAD(+) by an ADP-ribosyl cyclase and is degraded to ADP-ribose by a cADPR hydrolase. In mammals, both activities are expressed as ectoenzymes by the transmembrane glycoprotein CD38. CD38 was identified in both epithelial cells and smooth myocytes isolated from bovine trachea. Intact tracheal smooth myocytes (TSMs) responded to extracellular cADPR (100 microM) with an increase in intracellular calcium concentration ([Ca(2+)](i)) both at baseline and after acetylcholine (ACh) stimulation. The nonhydrolyzable analog 3-deaza-cADPR (10 nM) elicited the same effects as cADPR, whereas the cADPR antagonist 8-NH(2)-cADPR (10 microM) inhibited both basal and ACh-stimulated [Ca(2+)](i) levels. Extracellular cADPR or 3-deaza-cADPR caused a significant increase of ACh-induced contraction in tracheal smooth muscle strips, whereas 8-NH(2)-cADPR decreased it. Tracheal mucosa strips, by releasing NAD(+), enhanced [Ca(2+)](i) in isolated TSMs, and this increase was abrogated by either NAD(+)-ase or 8-NH(2)-cADPR. These data suggest the existence of a paracrine mechanism whereby mucosa-released extracellular NAD(+) plays a hormonelike function and cADPR behaves as second messenger regulating calcium-related contractility in TSMs.  相似文献   

7.
We investigated the effect the loss of the CAT-2 gene (CAT-2-/-) has on lung resistance (R(L)) and tracheal isometric tension. The R(L) of CAT-2-/- mice at a maximal dose of acetylcholine (ACh) was decreased by 33.66% (P = 0.05, n = 8) compared with that of C57BL/6 (B6) mice. The isometric tension of tracheal rings from CAT-2-/- mice showed a significant decrease in carbachol (CCh)-induced force generation (33.01%, P < 0.05, n = 8) compared with controls. The isoproterenol- or the sodium nitroprusside-induced relaxation was not affected in tracheal rings from CAT-2-/- mice. The activity of iNOS and arginase in lung tissue lysates of CAT-2-/- mice was indistinguishable from that of B6 mice. Furthermore, the expression of phospholipase-Cbeta (PLC-beta) and phosphatidylinositol-(4)-phosphate-5-kinase-gamma (PIP-5K-gamma) was examined in the lung tissue of CAT-2-/- and B6 mice. The expression of PIP-5K-gamma but not PLC-beta was significantly reduced in CAT-2-/- compared with B6 mice. The reduced airway smooth muscle (ASM) contractility to CCh seen in the CAT-2-/- tracheal rings was completely reversed by pretreating the rings with 100 muM spermine. This increase in the CAT-2-/- tracheal ring contraction upon spermine pretreatment correlated with a recovery of the expression of PIP-5K-gamma. Our data indicates that CAT-2 exerts control over ASM force development through a spermine-dependent pathway that directly correlates with the expression level of PIP-5K-gamma in the lung.  相似文献   

8.
Zhou SH  Ling HY  Tian SW  Liu XQ  Wang BX  Hu B 《生理学报》2005,57(5):627-635
为观察17β-雌二醇(17beta-estradiol,17β-E2)对去卵巢胰岛素抵抗(insulin resistance,IR)大鼠主动脉结构和舒缩功能的影响及其可能机制,成年雌性Sprague-Dawley大鼠卵巢切除后,高果糖喂养8周诱导IR,同时给予生理剂量的17β-E2(30μg/kg),每天皮下注射一次,并检测IR相关指标。大鼠胸主动脉石蜡切片,HE染色,图像分析系统测定其结构。采用血管环灌流法,观察各组大鼠胸主动脉环对新福林(L-phenylephrine,PE)的收缩反应和对ACh、硝普钠(sodium nitroprusside,SNP)的舒张反应以及一氧化氮合酶(nitric oxide synthase,NOS)抑制剂N-硝基-L-精氨酸甲脂(N-nitrl-L-arginine methylester,L-NAME)对卵巢切除+果糖喂养+17β-E2组大鼠胸主动脉ACh的舒张反应的影响;检测各组大鼠一氧化氮(nitric oxide,NO)含量。结果显示:(1)17β-E2能防止高果糖诱导的去卵巢IR人鼠收缩压升高、高胰岛素血症和胰岛素敏感性下降;(2)各组火鼠胸主动脉的结构无显著性差异;(3)卵巢切除+果糖喂养组大鼠与卵巢切除组或果糖喂养组相比,血清NO显著降低,胸主动脉对PE的收缩反应显著增强,对ACh的舒张反应显著降低,17β-E2能逆转上述改变,L-NAME可部分阻断17β-E2的这种作用;(4)各组大鼠胸主动脉对SNP的舒张反应和去内皮后对PE的收缩反应均无显著差异。以上结果表明,17β-E2能抑制高果糖诱导的去卵巢IR大鼠血管舒缩功能的紊乱,其机制一方面可能是部分通过血管内皮细胞NOS途径促进NO的释放,保护内皮细胞;另一方面可能是通过降低血压,血清胰岛素水平,改善IR所致。  相似文献   

9.
To obtain evidence in the airways that catecholamines inhibit cholinergic neurotransmission, we recorded transverse tension in the posterior wall of an upper tracheal segment in anesthetized cats and compared the inhibitory effect of stimulating cervical sympathetic nerves when segment contraction was evoked by endogenous acetylcholine (vagal tone) with the effect when contraction was evoked by exogenous acetylcholine applied directly to the mucosal surface of the tracheal segment (ACh tone). We found that sympathetic stimulation abolished all contraction evoked by vagal tone but reduced ACh tone by only one-half. In a second group of cats we compared the inhibitory effects of sympathetic stimulation and intravenous isoproterenol during vagal and ACh tone and also during tone evoked by exogenous 5-hydroxytryptamine (5-HT tone). Sympathetic stimulation or isoproterenol injection abolished all vagal and 5-HT tone but again reduced ACh tone by only one-half. Our results suggest that catecholamines released from sympathetic nerves or injected into the circulation completely inhibit vagal tone. This inhibition may be partially responsible for inducing relaxation in airway smooth muscle.  相似文献   

10.
Role of M2 muscarinic receptors in airway smooth muscle contraction   总被引:7,自引:0,他引:7  
Airway smooth muscle expresses both M2 and M3 muscarinic receptors with the majority of the receptors of the M2 subtype. Activation of M3 receptors, which couple to Gq, initiates contraction of airway smooth muscle while activation of M2 receptors, which couple to Gi, inhibits beta-adrenergic mediated relaxation. Increased sensitivity to intracellular Ca2+ is an important mechanism for agonist-induced contraction of airway smooth muscle but the signal transduction pathways involved are uncertain. We studied Ca2+ sensitization by acetylcholine (ACh) and endothelin-1 (ET-1) in porcine tracheal smooth muscle by measuring contractions at constant [Ca2+] in strips permeabilized with Staphylococcal alpha-toxin. Both ACh and ET-1 contracted airway smooth muscle at constant [Ca2+]. Pretreatment with pertussis toxin for 18-20 hours reduced ACh contractions, but had no effect on those of ET-1 or GTPgammaS. We conclude that the M2 muscarinic receptor contributes to airway smooth muscle contraction at constant [Ca2+] via the heterotrimeric G-protein Gi.  相似文献   

11.
The interaction of contractile agonists on the relaxation elicited with isoproterenol (ISO) was studied in 112 tracheal smooth muscle (TSM) strips from 20 dogs in vitro. Strips were contracted to the same active target tension (TT) with acetylcholine (ACh), histamine (HIS), serotonin (5-hydroxytryptamine, 5-HT), potassium chloride (KCl), or the combinations of ACh + HIS, ACh + 5-HT, HIS + KCl, HIS + 5-HT (50% TT from each agonist). Although a less potent agonist, adding HIS to cause 50% of the TT reduced the concentration of ACh to elicit the remaining 50% TT and substantially altered relaxation by ISO compared with HIS alone [concentration required to achieve 50% relaxation (RC50) = 9.2 +/- 2.4 X 10(-8) vs. 9.0 +/- 4.4 X 10(-9) M to HIS alone; P less than 0.003]. Relaxation for TSM strips contracted with ACh + HIS was comparable to that elicited from the same TT with ACh alone, although concentrations required in combination were lower than for either agonist alone. Trachealis strips contracted equivalently with KCl + HIS also had augmented contraction and attenuated relaxation (RC50 = 3.7 +/- 0.8 X 10(-8) M; P less than 0.015 vs. HIS alone). However, combinations of 5-HT + ACh and 5-HT + HIS did not alter relaxation to ISO from that elicited by the weaker agonist alone. We demonstrate that TSM relaxation depends on the combination of agonists eliciting contraction and may be inhibited substantially by interactions among contractile agonists.  相似文献   

12.
We report herein the novel observation that alterations in oxidant/antioxidant balance are evident and cause vascular dysfunction in aortae of prediabetic nonobese-diabetic mice (NOD). We found that nitrotyrosine, a biochemical marker of oxidant stress, was higher in the NOD aortae when compared to age-matched non-autoimmune BALB/c controls or the diabetes-resistant NOD congenic strain, NOD.Lc7. The oxidant stress was localized to the intimal and medial layers, and endothelium-dependent relaxation to acetylcholine was decreased in isolated aortic rings from NOD mice. Inhibition of nitric oxide synthesis caused an endothelium-dependent contraction, and treatment with either a selective thromboxane A2/prostaglandin H2 receptor antagonist or a non-isozyme-specific cyclooxygenase inhibitor reversed this effect. Aortic rings from NOD.Lc7 did not display the paradoxical vasoconstriction. Furthermore, the vascular dysfunction was caused by oxidative stress, as treatment with a superoxide dismutase mimetic in vivo or with native antioxidant enzymes ex vivo inhibited the tissue oxidant stress and restored endothelium-dependent relaxation. Endothelial function was also restored by the inhibitors of NAD(P)H oxidase, diphenylene iodonium or apocynin. Our studies indicate that an oxidant stress that occurs prior to the onset of diabetes in this mouse model contributes to endothelial dysfunction independently of overt diabetes.  相似文献   

13.
Fecal incontinence affects people of all ages and social backgrounds and can have devastating psychological and economic consequences. This disorder is largely attributed to decreased mechanical efficiency of the internal anal sphincter (IAS), yet little is known about the pathophysiological mechanisms responsible for the malfunction of sphincteric smooth muscle at the cellular level. The object of this study was to develop a three-dimensional (3-D) physiological model of the IAS bioengineered in vitro from isolated smooth muscle cells. Smooth muscle cells isolated from the IAS of rabbits were seeded in culture on top of a loose fibrin gel, where they migrated and self-assembled in circumferential alignment. As the cells proliferated, the fibrin gel contracted around a 5-mm-diameter SYLGARD mold, resulting in a 3-D cylindrical ring of sphincteric tissue. We found that 1) the bioengineered IAS rings generated a spontaneous basal tone, 2) stimulation with 8-bromo-cAMP (8-Br-cAMP) caused a sustained decrease in the basal tone (relaxation) that was calcium-independent, 3) upon stimulation with ACh, bioengineered IAS rings showed a calcium- and concentration-dependent peak contraction at 30 s that was sustained for 4 min, 4) addition of 8-Br-cAMP induced rapid relaxation of ACh-induced contraction and force generation of IAS rings, and 5) bioengineered sphincter rings show striking functional differences when compared with bioengineered rings made from isolated colonic smooth muscle cells. This is the first report of a 3-D in vitro model of a gastrointestinal smooth muscle IAS. Bioengineered IAS rings demonstrate physiological functionality and may be used in the elucidation of the mechanisms causing sphincter malfunction.  相似文献   

14.
Responses to acetylcholine (ACh) and sodium nitroprusside (SNP) were compared in large (LPA) and small pulmonary artery (SPA) rings from normoxic and chronically hypoxic (CH) rats. In addition, the effects of a selective phosphodiesterase (PDE) 5 inhibitor, E-4021, on ACh-induced relaxation were evaluated. Chronic hypoxia markedly decreased both ACh- and SNP-induced relaxations in LPA but not in SPA rings. Pretreatment with E-4021 caused a much greater leftward shift of the concentration-response curve for ACh in hypoxic than in normoxic LPA rings, eliminating the difference in response to ACh between these two vessels. These results suggest that cGMP-dependent relaxation is impaired in the proximal but not in the distal pulmonary artery of CH rats and that increased PDE5 activity could be a mechanism responsible for this impaired responsiveness.  相似文献   

15.
The effect of apigenin, isolated from Apium graveolens, on the contraction of rat thoracic aorta was studied. Apigenin inhibited the contraction of aortic rings caused by cumulative concentrations of calcium (0.03-3 mM) in high potassium (60 mM) medium, with an IC50 of about 48 microM. After pretreatment it also inhibited norepinephrine (NE, 3 microM)-induced phasic and tonic contraction in a concentration (35-140 microM)-dependent manner with an IC50 of 63 microM. At the plateau of NE-induced tonic contraction, addition of apigenin caused relaxation. This relaxing effect of apigenin was not antagonized by indomethacin (20 microM) or methylene blue (50 microM), and still existed in endothelial denuded rat aorta or in the presence of nifedipine (2-100 microM). Neither cAMP nor cGMP levels were changed by apigenin. Both the formation of inositol monophosphate caused by NE and the phasic contraction induced by caffeine in the Ca(2+)-free solution were unaffected by apigenin. 45Ca2+ influx caused by either NE or K+ was inhibited by apigenin concentration-dependently. It is concluded that apigenin relaxes rat thoracic aorta mainly by suppressing the Ca2+ influx through both voltage- and receptor-operated calcium channels.  相似文献   

16.
Regulation of intracellular calcium in human esophageal smooth muscles   总被引:7,自引:0,他引:7  
We have investigated sources ofCa2+ contributing to excitation ofhuman esophageal smooth muscle, using fura 2 to study cytosolic freeCa2+ concentration([Ca2+]i)in dispersed cells and contraction of intact muscles. Acetylcholine (ACh) caused an initial peak rise of[Ca2+]ifollowed by a plateau accompanied by reversible contraction. Removal ofextracellular Ca2+ or addition ofdihydropyridine Ca2+ channelblockers reduced the plateau phase but did not prevent contraction.Caffeine also caused elevation of[Ca2+]iand blocked responses to ACh. Undershoots of[Ca2+]iwere apparent after ACh or caffeine. Blockade of the sarcoplasmic reticular Ca2+-ATPase bycyclopiazonic acid (CPA) reduced the ACh-evoked increase of[Ca2+]iand abolished the undershoot, indicating involvement ofCa2+ stores. When contraction wasstudied in intact muscles, removal ofCa2+ or addition of nifedipinereduced, but did not abolish, carbachol (CCh)-induced contraction.Elevation of extracellular K+caused contraction that was inhibited by nifedipine, although CCh stillelicited contraction. CPA caused contraction and suppressed theCCh-induced contraction, whereas ryanodine reduced CCh-induced contraction. Our studies provide evidence that muscarinic excitation ofhuman esophagus involves both release ofCa2+ from intracellular stores andinflux of Ca2+.

  相似文献   

17.
Endothelin-1 (ET-1) is implicated in the development of endothelial dysfunction through the generation of reactive oxygen species by NADPH oxidase activation. Interleukin-10 (IL-10) is an antiinflammatory cytokine that stimulates nitric oxide production, decreases superoxide production, and restores endothelial integrity after vascular injury. In this study, we tested whether IL-10 attenuates ET-1-induced endothelial dysfunction by improving acetylcholine (ACh)-induced relaxation of cultured murine aortic rings. Aortic rings (2 mm long) of C57BL/6 mice were incubated in 2 mL DMEM containing 120 U/mL penicillin and 120 mug/mL streptomycin in the presence of one of 4 treatments: vehicle (deionized water), ET-1 (100 nmol/L), recombinant mouse IL-10 (300 ng/mL), or a combination of both ET-1 and IL-10. After incubation at 37 degrees C for either 1 or 6 h (short-term exposure) or 22 h (overnight exposure), rings were mounted in a wire myograph and stretched to a passive force of 5 mN. Endothelium-dependent vasorelaxation was assessed by constructing cumulative concentration-response curves to ACh (0.001-10 mumol/L) during 10 mumol/L phenylephrine (PE)-induced contraction. Short-term exposure of ET-1 did not result in an impairment of ACh-induced relaxation. Overnight exposure of aortic rings to ET-1 resulted in a statistically significant endothelial dysfunction characterized by a reduced maximal relaxation response to ACh compared with that of untreated rings (Emax 57% +/- 3% versus 82% +/- 4%). IL-10 treatment restored ACh-induced relaxation (Emax 77% +/- 3%). Western blotting showed decreased eNOS expression in response to ET-1, whereas vessels treated with a combination of ET-1 and IL-10 showed increased expression of eNOS. Immunohistochemical analysis showed decreased eNOS expression in ET-1-treated vessels compared with those treated with both ET-1 and IL-10. We conclude that, in murine aorta, the antiinflammatory cytokine IL-10 prevents impairment in endothelium-dependent relaxation induced in response to long-term incubation with ET-1 via normalization of eNOS expression.  相似文献   

18.
Uridine 5′-diphosphate (UDP) plays an important role in controlling vascular tone; however, UDP-mediated response in metabolic syndromes, including obesity and type 2 diabetes in females, remains unclear. In this study, we investigated UDP-mediated response in the aorta of female obese Otsuka Long–Evans Tokushima Fatty (OLETF) rats and control Long–Evans Tokushima Otsuka (LETO) rats. In OLETF rat aortas precontracted by phenylephrine (PE) (vs. LETO), (1) UDP-induced relaxation was increased, whereas acetylcholine (ACh)-induced relaxation was decreased; (2) no UDP- or ACh-induced relaxations were observed in endothelial denudation, whereas UDP-induced small contraction was observed; and (3) NG-nitro-L-arginine [L-NNA, a nitric oxide (NO) synthase inhibitor] eliminated UDP-induced relaxation and small contraction, whereas caused contrasting responses by ACh, including slight relaxations (LETO) and contractions (OLETF). Indomethacin, a cyclooxygenase inhibitor, eliminated the difference in UDP- and ACh-induced relaxations between the groups by increased UDP-induced relaxation in the LETO group and increased ACh-induced relaxation in the OLETF group. MRS2578, a P2Y6 receptor antagonist, eliminated the difference in UDP-induced relaxations between the groups by decreasing UDP-induced relaxation in the OLETF group. MRS2578 had no effect on UDP-induced contraction in endothelium-denuded aortas. Therefore, these findings demonstrate opposite trends of relaxations by UDP and ACh in OLETF and LETO rat aortas. These differences may be attributed to the imbalance between NO and vasoconstrictor prostanoids upon stimulations. Increased UDP-induced relaxation in OLETF rat aorta may be caused by the activation of endothelial MRS2578-sensitive P2Y6 receptor.  相似文献   

19.
Reactive airway disease predisposes patients to episodes of acute smooth muscle mediated bronchoconstriction. We have for the first time recently demonstrated the expression and function of endogenous ionotropic GABA(A) channels on airway smooth muscle cells. We questioned whether endogenous GABA(A) channels on airway smooth muscle could augment beta-agonist-mediated relaxation. Guinea pig tracheal rings or human bronchial airway smooth muscles were equilibrated in organ baths with continuous digital tension recordings. After pretreatment with or without the selective GABA(A) antagonist gabazine (100 muM), airway muscle was contracted with acetylcholine or beta-ala neurokinin A, followed by relaxation induced by cumulatively increasing concentrations of isoproterenol (1 nM to 1 muM) in the absence or presence of the selective GABA(A) agonist muscimol (10-100 muM). In separate experiments, guinea pig tracheal rings were pretreated with the large conductance K(Ca) channel blocker iberiotoxin (100 nM) after an EC(50) contraction with acetylcholine but before cumulatively increasing concentrations of isoproterenol (1 nM to 1 uM) in the absence or presence of muscimol (100 uM). GABA(A) activation potentiated the relaxant effects of isoproterenol after an acetylcholine or tachykinin-induced contraction in guinea pig tracheal rings or an acetylcholine-induced contraction in human endobronchial smooth muscle. This muscimol-induced potentiation of relaxation was abolished by gabazine pretreatment but persisted after blockade of the maxi K(Ca) channel. Selective activation of endogenous GABA(A) receptors significantly augments beta-agonist-mediated relaxation of guinea pig and human airway smooth muscle, which may have important therapeutic implications for patients in severe bronchospasm.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号