首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A characteristic of acute pancreatitis is the premature activation and retention of enzymes within the pancreatic acinar cell. Because ligands linked to cAMP production may prevent some forms of pancreatitis, we evaluated the effects of increased intracellular cAMP in the rat pancreatic acinar cell. Specifically, this study examined the effects of the cholinergic agonist carbachol and agents that increase cAMP [secretin and 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP)] on zymogen activation (trypsin and chymotrypsin), enzyme secretion, and cellular injury in isolated pancreatic acini. Although cAMP agonists affected the responses to physiological concentrations of carbachol (1 microM), their most prominent effects were observed with supraphysiological concentrations (1 mM). When secretin was added to 1 mM carbachol, there was a slight increase in zymogen activation, but no change in the secretion of amylase or chymotrypsin. Furthermore, coaddition of secretin increased parameters of cell injury (trypan blue exclusion, lactic dehydrogenase release, and morphological markers) compared with carbachol (1 mM) alone. Although directly increasing cellular cAMP by 8-Br-cAMP caused much greater zymogen activation than carbachol (1 mM) alone or with secretin, 8-Br-cAMP cotreatment reduced all parameters of injury to the level of unstimulated acini. Furthermore, 8-Br-cAMP dramatically enhanced the secretion of amylase and chymotrypsin from the acinar cell. This study demonstrates that increasing acinar cell cAMP can overcome the inhibition of enzyme secretion caused by high concentrations of carbachol and eliminate acinar cell injury.  相似文献   

2.
5-Hydroxytryptamine (serotonin, 5-HT) is a hormone and neurotransmitter regulating gastrointestinal functions. 5-HT receptors are widely distributed in gastrointestinal mucosa and the enteric nervous system. Duodenal acidification stimulates not only the release of both 5-HT and secretin but also pancreatic exocrine secretion. We investigated the effect of 5-HT receptor antagonists on the release of secretin and pancreatic secretion of water and bicarbonate induced by duodenal acidification in anesthetized rats. Both the 5-HT(2) receptor antagonist ketanserin and the 5-HT(3) receptor antagonist ondansetron at 1-100 microg/kg dose-dependently inhibited acid-induced increases in plasma secretin concentration and pancreatic exocrine secretion. Neither the 5-HT(1) receptor antagonists pindolol and 5-HTP-DP nor the 5-HT(4) receptor antagonist SDZ-205,557 affected acid-evoked release of secretin or pancreatic secretion. None of the 5-HT receptor antagonists affected basal pancreatic secretion or plasma secretin concentration. Ketanserin or ondansetron at 10 microg/kg or a combination of both suppressed the pancreatic secretion in response to intravenous secretin at 2.5 and 5 pmol x kg(-1) x h(-1) by 55-75%, but not at 10 pmol x kg(-1) x h(-1). Atropine (50 microg/kg) significantly attenuated the inhibitory effect of ketanserin on pancreatic secretion but not on the release of secretin. These observations suggest that 5-HT(2) and 5-HT(3) receptors mediate duodenal acidification-induced release of secretin and pancreatic secretion of fluid and bicarbonate. Also, regulation of pancreatic exocrine secretion through 5-HT(2) receptors may involve a cholinergic pathway in the rat.  相似文献   

3.
The pathological activation of proteases within the pancreatic acinar cell is critical to initiating pancreatitis. Stimulation of acinar cells with supraphysiological concentrations of the CCK analog caerulein (CER) leads to protease activation and pancreatitis. Agents that sensitize the acinar cell to the effects of CCK might contribute to disease. The effects of physiological ligands that increase acinar cell cAMP [secretin, VIP, and pituitary adenylate cyclase activating peptide (PACAP)] on CER-induced responses were examined in isolated rat pancreatic acini. Each ligand sensitized the acinar cell to zymogen activation by physiological concentrations of CER (0.1 nM). VIP and PACAP but not secretin also enhanced activation by supraphysiological concentrations of CER (0.1 muM). A cell-permeable cAMP analog also sensitized the acinar cell to CER-induced activation. The cAMP antagonist Rp-8-Br-cAMP inhibited these sensitizing effects. These findings suggest that ligands that increase acinar cell cAMP levels can sensitize the acinar cell to the effects of CCK-induced zymogen activation.  相似文献   

4.
Pancreatic secretion of protein, water, chloride, and bicarbonate under basal conditions and in response to intravenous and intraduodenal stimuli were studied in awake rats fully recovered from surgery. During the basal phase of pancreatic secretion, protein output and water output were weakly correlated or uncorrelated, consistent with separate regulation and distinct cellular origin of enzyme (acinar cells) and water (duct cells), referred to as the two-component paradigm of pancreatic secretion. When pancreatic secretion was stimulated physiologically, water and protein output abruptly became strongly and significantly correlated, suggesting that protein secretion and water secretion are tightly coupled or that protein secretion is dependent on water secretion. The apparent function of this coupling is to resist or prevent increases in protein concentration as protein output increases. This pattern of secretion was reproduced by intravenous infusion of the CCK-58 form of cholecystokinin, which strongly stimulates pancreatic water and chloride secretion, but not by CCK-8, which only weakly stimulates water and chloride secretion in a non-dose-dependent manner. The remarkably tight association of water and protein secretion in food-stimulated and CCK-58-stimulated pancreatic secretion is consistent with a single cell type as the origin of both water and enzyme secretion, i.e., the acinar cell, and is not consistent with the two-component paradigm of pancreatic secretion. Because CCK-58 is the only detectable endocrine form of cholecystokinin in the rat and its bioactivity pattern is markedly and qualitatively different from CCK-8, actions previously recorded for CCK-8 should be reexamined.  相似文献   

5.
In preceding papers we demonstrated an inhibitory effect of wheat germ agglutinin (WGA) and Ulex europaeus agglutinin (UEA) on the cholecystokinin (CCK) binding to the CCK receptor of rat pancreatic cells and also on the CCK induced Ca2+ release and alpha-amylase secretion in vitro as well as on pancreatic secretion of intact rats in vivo. In the present study we show the same inhibitory effect of both lectins on the cerulein pancreatitis of rats. This acute pancreatitis was induced by supramaximal injections (5 microg/kg/h i.v. or 10 microg/kg/h i.p.) of the CCK analogue cerulein in rats every hour. To monitor the degree of pancreatitis, we measured the number and diameter of injury vacuoles in the pancreatic acinar cells as one of the most important signs of this type of pancreatitis by light microscopic morphometry with two different systems on paraffin sections. Furthermore, the serum alpha-amylase activity was measured biochemically. We found a correlation between the diameter of vacuoles inside the acinar cells and the serum enzyme activity up to 24 h. The simultaneous i.p. administration of cerulein and WGA or UEA in a dosage of 125 microg/kg/h for 8 h led to a reduction of vacuolar diameter from 13.1+/-2.0 microm (cerulein) to 7.5+/-1.1 microm (cerulein + WGA) or 7.2+/-1.3 microm (cerulein + UEA). The serum amylase activity was reduced from 63.7+/-15.8 mmol/l x min (cerulein) to 37.7+/-11.8 (cerulein + WGA) or 39.4; +52.9; -31.1 (cerulein + UEA-I). Both parameters allow the grading this special type of pancreatitis to demonstrate the protective effect of the lectins.  相似文献   

6.
Supramaximal stimulation of the rat pancreas with CCK, or its analog caerulein, triggers acute pancreatitis and a number of pancreatitis-associated acinar cell changes including intracellular activation of digestive enzyme zymogens and acinar cell injury. It is generally believed that some of these various acinar cell responses to supramaximal secretagogue stimulation are interrelated and interdependent. In a recent report, Lu et al. showed that secretin, by causing generation of cAMP and activation of PKA, sensitizes acinar cells to secretagogue-induced zymogen activation, and, as a result, submaximally stimulating concentrations of caerulein can, in the presence of secretin, trigger intracellular zymogen activation. We found that secretin also sensitizes acinar cells to secretagogue-induced cell injury and to subapical F-actin redistribution but that it did not alter the caerulein concentration dependence of other pancreatitis-associated changes such as the induction of a peak plateau intracellular [Ca(2+)] rise, inhibition of secretion, activation of ERK1/2, and activation of NF-kappaB. The finding that secretin sensitizes acinar cells to both intracellular zymogen activation and cell injury is consistent with the concept that these two early events in pancreatitis are closely interrelated and, possibly, interdependent. On the other hand, the finding that, in the presence of secretin, caerulein can trigger subapical F-actin redistribution without inhibiting secretion challenges the concept that disruption of the subapical F-actin web is causally related to high-dose secretagogue-induced inhibition of secretion in pancreatic acinar cells.  相似文献   

7.
Summary Infusion of synthetic secretin in conscious unrestricted rats for periods up to 24 h was used to study the structural and functional adaptation of pancreatic acinar cells to this secretagogue. Initial dose-response studies established 16 clinical units (CU) per kg and h (corresponding to 4.64 ug x kg-1 x h-1) as optimal dose for persistent stimulation of enzyme discharge. Infusion of this dose led to a slow but progressive depletion of enzyme stores with minimal content by 12 h stimulation. As a result of persistent stimulation total protein synthesis in the acinar cells increased after a lag period of 3 h and reached maximal values 90% above controls by 6 and 12 h secretin infusion. No structural equivalent for pronounced fluid and bicarbonate secretion was observed for either acinar or duct cells over the entire dose range (1 to 64 CU x kg-1 x h-1) and infusion period (1–24 h), except an increased number of coated vesicles in duct cells.Discharge of enzymes from acinar cells was paralleled by a high frequency of exocytotic images at the luminal plasma membrane and was accompanied by the occurrence of membrane fragments in the luminal space, especially after 3 and 6 h secretin infusion. An increased number of lysosomal bodies at these time points especially in the vicinity of the Golgi complex was interpreted in relation to membrane recycling following massive exocytosis. This pattern of structural and functional adaptation of acinar cells following secretin infusion corresponds to previously described changes following caerulein and carbamylcholine stimulation.Supported by a grant from Deutsche Forschungsgemeinschaft (Ke 113/15-1)  相似文献   

8.
A secretin releasing peptide exists in dog pancreatic juice   总被引:1,自引:0,他引:1  
Li P  Song Y  Lee KY  Chang TM  Chey WY 《Life sciences》2000,66(14):1307-1316
Canine pancreatic juice has been shown to stimulate exocrine pancreatic secretion in the dog. In the present study we investigated whether there is a secretin-releasing peptide in canine pancreatic juice. Pancreatic juice was collected from the dogs with Thomas gastric and duodenal cannulas while pancreatic secretion was stimulated by intravenous administration of secretin at 0.5 microg/kg/h and CCK-8 at 0.2 microg/kg/h, respectively. The pancreatic juice was separated into three different molecular weight (MW) fractions (Fr) by ultrafiltration (Fr 1; MW > 10,000, Fr 2; MW=10,000-4,000 and Fr 3; MW < 4,000), respectively. All the fractions were bioassayed in anesthetized rats. Fraction 3 dose-dependently and significantly stimulated pancreatic juice flow volume from 78.0% to 99.4% (p<0.05) and bicarbonate output from 128.9% to 202.1% (p<0.01), respectively. Plasma secretin concentration also increased from 1.2 +/- 0.5 pM to 5.0 +/- 0.8 pM and 6.0 +/- 1.0 pM (p<0.05). None of these fractions increased pancreatic protein secretion or plasma CCK level. The stimulatory effect of Fraction 3 on pancreatic secretion and the release of secretin was completely abolished by treatment with trypsin (1 mg/ml for 60 min at 37 degrees C) but not by heating (100 degrees C, 10 min). Intravenous injection of a rabbit anti-secretin serum, which rendered plasma secretin almost undetectable in rat plasma, also abolished Fr 3-stimulated pancreatic secretion of fluid and bicarbonate secretion. These observations suggest that a secretin-releasing peptide exists in the canine pancreatic juice. It is trypsin-sensitive and heat-resistant. This peptide may play a significant physiological role on the release of secretin and regulation of exocrine pancreatic secretion.  相似文献   

9.
Helodermin, VIP and PHI, which share a high degree of homology with secretin, have been identified in the gut but their physiological role is unknown. In this study 3 series of tests were carried out to determine the actions of helodermin, VIP and PHI on pancreatic secretion in 6 conscious dogs and amylase release from the dispersed canine pancreatic acini and to correlate the alterations in pancreatic secretory and circulatory effects in 24 anesthetized dogs. Helodermin, VIP and PHI infused i.v. in graded doses (12.5-200 pmol/kg.h) resulted in a dose-dependent increase in pancreatic HCO3 secretion reaching, respectively, 100%, 7% and 2% of secretin maximum. When combined with constant dose infusion of CCK-8 (100 pmol/kg.h), helodermin but not VIP or PHI augmented dose-dependently the HCO3 secretion. When added in various concentrations (10(-10)-10(-5)M) to the incubation medium of dispersed pancreatic acini only helodermin but not VIP or PHI increased dose-dependently amylase release reaching about 50% of CCK-8 maximum. In anesthetized dogs, the pancreatic blood flow (PBF) measured by electromagnetic blood flowmetry showed an immediate and dose-dependent increase following the injections of various doses of helodermin, VIP, PHI and secretin, the peak blood flow preceding by about 1 min the peak secretory stimulation. This study shows that helodermin resembles secretin in its potent pancreatic HCO3 stimulation but differs from VIP or PHI which are poor secretagogues but potent vasodilators. We conclude that if tested peptides are released in the gut, helodermin, like secretin, may be involved in the hormonal stimulation of exocrine pancreas, whereas VIP and PHI may serve mainly as vasodilators in the pancreatic circulation.  相似文献   

10.
Ghrelin attenuates the development of acute pancreatitis in rat.   总被引:12,自引:0,他引:12  
BACKGROUND: Ghrelin, a circulating growth hormone-releasing peptide isolated from human and rat stomach, stimulates growth hormone secretion, food intake and exhibits gastroprotective properties. Ghrelin is predominantly produced by a population of endocrine cells in the gastric mucosa, but its presence in bowel, pancreas, pituitary and hypothalamus has been reported. In human fetal pancreas, ghrelin is expressed in a prominent endocrine cell population. In adult pancreatic islets the population of these cell is reduced. The aim of present study was to investigate the influence of ghrelin administration on the development of acute pancreatitis. METHODS: Acute pancreatitis was induced in rat by caerulein injection. Ghrelin was administrated twice (30 min prior to the first caerulein or saline injection and 3 h later) at the doses: 2, 10 or 20 nmol/kg. Immediately after cessation of caerulein or saline injections the following parameters were measured: pancreatic blood flow, plasma lipase activity, plasma interleukin-1beta (IL-1beta) and interleukin 10 (IL-10) concentration, pancreatic DNA synthesis, and morphological signs of pancreatitis. RESULTS: Administration of ghrelin without induction of pancreatitis did not affect significantly any parameter tested. Caerulein led to the development of acute edematous pancreatitis. Treatment with ghrelin at the dose 2 nmol/kg, during induction of pancreatitis, was without effect on pancreatic histology or biochemical and functional parameters. Treatment with ghrelin at the dose 10 and 20 nmol/kg attenuated the development of pancreatitis and the effects of both doses were similar. Administration of ghrelin (10 or 20 nmol/kg) reduced inflammatory infiltration of pancreatic tissue and vacuolization of acinar cells. Also, plasma lipase activity and plasma IL-1beta concentration were reduced, and caerulein-induced fall in pancreatic DNA synthesis was reversed. Administration of ghrelin at the dose 10 and 20 nmol/kg was without effect on caerulein-induced pancreatic edema and pancreatitis-related fall in pancreatic blood flow. CONCLUSIONS: (1) Administration of ghrelin attenuates pancreatic damage in caerulein-induced pancreatitis; (2) Protective effect of ghrelin administration seems Background: Ghrelin, a circulating growth hormone-releasing peptide isolated from human and rat stomach, stimulates growth hormone secretion, food intake and exhibits gastroprotective properties. Ghrelin is predominantly produced by a population of endocrine cells in the gastric mucosa, but its presence in bowel, pancreas, pituitary and hypothalamus has been reported. In human fetal pancreas, ghrelin is expressed in a prominent endocrine cell population. In adult pancreatic islets the population of these cell is reduced. The aim of present study was to investigate the influence of ghrelin administration on the development of acute pancreatitis. Methods: Acute pancreatitis was induced in rat by caerulein injection. Ghrelin was administrated twice (30 min prior to the first caerulein or saline injection and 3 h later) at the doses: 2, 10 or 20 nmol/kg. Immediately after cessation of caerulein or saline injections the following parameters were measured: pancreatic blood flow, plasma lipase activity, plasma interleukin-1beta (IL-1beta) and interleukin 10 (IL-10) concentration, pancreatic DNA synthesis, and morphological signs of pancreatitis. Results: Administration of ghrelin without induction of pancreatitis did not affect significantly any parameter tested. Caerulein led to the development of acute edematous pancreatitis. Treatment with ghrelin at the dose 2 nmol/kg, during induction of pancreatitis, was without effect on pancreatic histology or biochemical and functional parameters. Treatment with ghrelin at the dose 10 and 20 nmol/kg attenuated the development of pancreatitis and the effects of both doses were similar. Administration of ghrelin (10 or 20 nmol/kg) reduced inflammatory infiltration of pancreatic tissue and vacuolization of acinar cells. Also, plasma lipase activity and plasma IL-1beta conc; concentration were reduced, and caerulein-induced fall in pancreatic DNA synthesis was reversed. Administration of ghrelin at the dose 10 and 20 nmol/kg was without effect on caerulein-induced pancreatic edema and pancreatitis-related fall in pancreatic blood flow. Conclusions: (1) Administration of ghrelin attenuates pancreatic damage in caerulein-induced pancreatitis; (2) Protective effect of ghrelin administration seems to be related the inhibition in inflammatory process and the reduction in liberation of pro-inflammatory IL-1beta.  相似文献   

11.
Nitric oxide (NO) and NO synthase (NOS) play controversial roles in pancreatic secretion. NOS inhibition reduces CCK-stimulated in vivo pancreatic secretion, but it is unclear which NOS isoform is responsible, because NOS inhibitors lack specificity and three NOS isoforms exist: neuronal (nNOS), endothelial (eNOS), and inducible (iNOS). Mice having individual NOS gene deletions were used to clarify the NOS species and cellular interactions influencing pancreatic secretion. In vivo secretion was performed in anesthetized mice by collecting extraduodenal pancreatic duct juice and measuring protein output. Nonselective NOS blockade was induced with N(omega)-nitro-L-arginine (L-NNA; 10 mg/kg). In vivo pancreatic secretion was maximal at 160 pmol.kg(-1).h(-1) CCK octapeptide (CCK-8) and was reduced by NOS blockade (45%) and eNOS deletion (44%). Secretion was unaffected by iNOS deletion but was increased by nNOS deletion (91%). To determine whether the influence of NOS on secretion involved nonacinar events, in vitro CCK-8-stimulated secretion of amylase from isolated acini was studied and found to be unaltered by NOS blockade and eNOS deletion. Influence of NOS on in vivo secretion was further examined with carbachol. Protein secretion, which was maximal at 100 nmol.kg(-1).h(-1) carbachol, was reduced by NOS blockade and eNOS deletion but unaffected by nNOS deletion. NOS blockade by L-NNA had no effect on carbachol-stimulated amylase secretion in vitro. Thus constitutive NOS isoforms can exert opposite effects on in vivo pancreatic secretion. eNOS likely plays a dominant role, because eNOS deletion mimics NOS blockade by inhibiting CCK-8 and carbachol-stimulated secretion, whereas nNOS deletion augments CCK-8 but not carbachol-stimulated secretion.  相似文献   

12.
In mice, eNOS (endothelial nitric oxide synthase) maintains in vivo pancreatic secretory responses to carbachol or cholecystokinin octapeptide (CCK-8), maintains insulin sensitivity, and modulates pancreatic microvascular blood flow (PMBF). eNOS(-/-) mice are insulin resistant, and their exocrine pancreatic secretion is impaired. We hypothesized that the reduced exocrine pancreatic secretion in eNOS(-/-) mice is due to insulin resistance or impaired PMBF. To test this hypothesis, we gave eNOS(-/-) and wild-type (WT) mice pioglitazone (20 or 50 mg.kg(-1).day(-1)), an insulin-sensitizing peroxisome proliferator-activated receptor-gamma (PPAR-gamma) activator, and measured pancreatic protein secretion evoked by CCK-8 (160 pmol.kg(-1).h(-1), a maximal stimulus). We also measured insulin resistance, serum glucose, C-peptide, insulin, pancreatic RNA digestive enzyme expression, and PMBF (microsphere technique). In WT mice, pioglitazone did not increase CCK-8-stimulated protein output over baseline. In eNOS(-/-) mice, however, pioglitazone substantially increased the low CCK-8-stimulated protein output that is characteristic of these mutant mice (P < 0.005). Pioglitazone abolished the CCK-8-evoked hyperinsulinemia (P < 0.005) and increased insulin sensitivity of eNOS(-/-) mice (P < 0.05), the latter based on hyperinsulinemic-euglycemic clamp studies. Pioglitazone had no effect on PMBF or pancreas mRNA expression of insulin or digestive enzymes. We conclude that in hyperinsulinemic eNOS(-/-) mice, a nonobese model of insulin resistance relevant to diabetes mellitus and possibly chronic pancreatitis, reduced pancreatic secretion is caused, at least in part, by insulin resistance. Insulin-sensitizing PPAR-gamma agonists such as pioglitazone may thus simultaneously correct endocrine and exocrine pancreatic disorders.  相似文献   

13.
14.
We previously reported that atrial natriuretic factor (ANF) stimulates pancreatic secretion through NPR-C receptors coupled to PLC and potentiates secretin response without affecting cAMP levels. In the present study we sought to establish the intracellular signaling mechanism underlying the interaction between both peptides. In isolated pancreatic acini 100 nM ANF abolished cAMP accumulation evoked by any dose of secretin. Lower doses of ANF (1 fM, 1 pM, 1 and 10 nM) dose dependently reduced EC50 secretin-evoked cAMP. Although ANF failed to affect cAMP stimulated by amthamine (selective H2 agonist) or isoproterenol (beta-adrenergic agonist), it abolished VIP-induced cAMP formation. ANF inhibitory effect was prevented by U-73122 (PLC inhibitor) and GF-109203X (PKC inhibitor) but unaltered by PKG and nitric oxide synthase inhibition, supporting that the PLC/PKC pathway mediated the effect. ANF response was mimicked by cANP (4-23 amide) and abolished by pertussis toxin, strongly supporting NPR-C receptor activation. In vivo studies showed that ANF at 0.5 microg x kg(-1) x h(-1) enhanced secretion stimulated by 1 U x kg(-1) x h(-1) secretin but at 1 and 2 microg x kg(-1) x h(-1) it abolished secretin response. However, ANF at such doses failed to modify the secretion evoked by carbachol or CCK. Present results show that ANF negatively modulated secretin secretory response and intracellular signaling through the activation of NPR-C receptors coupled to the PLC/PKC pathway. Furthermore, the finding that ANF also inhibited VIP-evoked cAMP supports a selective modulation of class II G-protein coupled receptors by ANF. Present findings suggest that ANF may play a protective role by reducing secretin response to avoid overstimulation.  相似文献   

15.
A variety of receptors on pancreatic acinar and duct cells regulate both pancreatic exocrine secretion and intracellular processes. These receptors are potential sites of action for therapeutic agents in the treatment of pancreatitis. Cholecystokinin (CCK) receptor antagonists, which may reduce the level of metabolic "stress" on acinar cells, have been shown to mitigate the severity of acute pancreatitis in a number of models. Not all studies have shown a benefit, however, and differences may exist between different structural classes of antagonists. Because increased pancreatic stimulation due to loss of feedback inhibition of CCK has been proposed to contribute to the pain of some patients with chronic pancreatitis, CCK receptor antagonists could also be of benefit in this setting. Somatostatin and its analogs diminish pancreatic secretion of water and electrolytes and have been effective in treating pancreatic fistulas and pseudocysts. These agents are also being evaluated for their ability to reduce pain in chronic pancreatitis (perhaps by reducing ductal pressure by diminishing secretory volume) and mitigating the severity of acute pancreatitis (possibly by reducing the metabolic load on acinar cells). Recently described secretin receptor antagonists may also have therapeutic value as a means of selectively inhibiting pancreatic secretion of water and electrolytes.  相似文献   

16.
The putative inhibitor of diacylglycerol kinase activity, 6-(2-[(4-fluorophenyl)phenylmethylene]-1-piperidinyl)-ethyl-7-meth yl-5H- thiazolo[3,2-a]pyrimidin-5-one (R59022), markedly potentiated cholecystokinin-C-terminal-octapeptide(CCK-8-)stimulated enzyme secretion from isolated rabbit pancreatic acini. Maximal potentiation occurred when acini were stimulated in the presence of 5-10 microM R59022. Potentiation depended both on the concentration of R59022 and CCK-8. No potentiation was observed when acini were half-maximally stimulated, whereas the secretory response to maximal and supramaximal concentrations of secretagogue was increased by 50-60%. R59022 alone had no effect on basal enzyme secretion and the drug did not potentiate the secretory response to the Ca2+ ionophore A23187 or to the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate. Moreover, no increase in basal secretion was observed when acini were incubated in the presence of both R59022 and forskolin. These observations strongly suggest that receptor-mediated activation of the inositol phospholipid pathway is required for R59022-induced potentiation. R59022 inhibited the CCK-8-stimulated incorporation of 32Pi into phosphatidic acid dose dependently, without affecting the CCK-8-stimulated hydrolysis of 32P-labelled phosphatidylinositol 4,5-bisphosphate. This is consistent with an inhibitory effect of R59022 on acinar cell diacylglycerol kinase activity. The potentiating effect of R59022 was mimicked by 12-O-tetradecanoylphorbol 13-acetate added simultaneously with CCK-8. Therefore, it is concluded that in the presence of 5-10 microM R59022 the receptor-mediated increase in acinar cell diacylglycerol content is enhanced leading to enhanced activation of protein kinase C and to potentiation of the secretory response. The fact that the secretory response to maximal and supramaximal concentrations of CCK-8 is potentiated by R59022 suggests that at these concentrations of secretagogue the diacylglycerol/protein kinase C branch of the signal-transduction route is rate-limiting.  相似文献   

17.
Leptin originally described as product of the ob gene has been shown to be expressed in various tissues including the gastrointestinal tract. In this study, we investigated the influence of leptin on the secretion of pancreatic juice in biliary-pancreatic duct cannulated anaesthetised rats and in dispersed rat pancreatic acini in vitro. Exogenous leptin was given in boluses intravenously with or without CCK-8 (12 pmol kg(-1) body weight) in the presence or absence pharmacological CCK(1) receptor blockade, cervical vagotomy, and capsaicin pre-treatment. Administration of leptin (0.1, 1 and 10 microg kg(-1) body weight) did not affect the volume of bile and pancreatic juice while the protein and trypsin outputs were reduced in a dose-dependent manner. In the rats, leptin inhibited CCK-8 stimulated protein and trypsin outputs stronger than the basal pancreatic secretion. The inhibition by leptin was abolished by the pharmacological CCK(1) receptor blockade, cervical vagotomy, and capsaicin pre-treatment. In contrast, leptin did not affect basal and CCK-8-stimulated amylase release from the dispersed rat pancreatic acini in vitro. In conclusion, the results of the present study suggest that leptin does not act directly on the rat pancreatic acinar cells but inhibits the secretion of pancreatic enzymes acting indirectly via a neurohormonal CCK-vagal-dependent mechanism.  相似文献   

18.
Evidence suggests that cholecystokinin-octapeptide (CCK-8)-induced activation of a Cl- conductance in the membrane of zymogen granules (ZG) is closely related to pancreatic enzyme secretion. Following stimulation of isolated pancreatic acinar cells with increasing concentrations of CCK-8, the Cl- conductance in the ZG from these acini increased, reached a maximum of 40 +/- 7% above basal Cl- conductance at 10(-12) M CCK-8, and then decreased at CCK-8 concentrations higher than 10(-9) M to a level comparable to the basal Cl- conductance. We had interpreted the inhibitory action of high CCK-8 concentrations to be due to the generation of high concentrations of diacylglycerol and/or its metabolites by an "overstimulation" of phospholipase C at supramaximal CCK-8 concentrations. We now show that EGF abolishes the downstroke of the dose response curve for CCK-8-induced ZG Cl- conductance and shifts the stimulatory response to higher CCK-8 concentrations. Similarly in a nominally "Ca(2+)-free buffer" (free [Ca2+] approximately 0.2 nM), stimulated Cl- conductance at 10(-12) M CCK-8 is nearly abolished and the decreased Cl- conductance at 10(-8) M CCK-8 is increased to the level of maximal stimulation at 10(-12) M CCK-8. We conclude that both EGF and low [Ca2+] affect CCK-8-induced ZG Cl- conductance by decreasing phospholipase C activity.  相似文献   

19.
To determine how low or high dose of caerulein, a cholecystokinin analogue influence pancreatic growth, doses of caerulein were selected which were submaximal (1 microgram/kg i.p.) and supramaximal (10 micrograms/kg i.p.) for enzyme protein secretion. Rats were injected every 8 h for 7 days with saline, low, or high dose of caerulein. The low dose of caerulein significantly increased pancreatic weight and content of DNA, protein, and digestive enzymes. The high dose caerulein group did not differ from control in these parameters of pancreatic growth. The number of zymogen granules was increased in both caerulein-treated groups. However, zymogen granules in the high dose group were atypical, appearing lucent or having a dense core with a lucent halo. These results indicate that caerulein has a biphasic effect on both enzyme secretion and the trophic response of acinar cells, and that the inhibitory effect of high dose of caerulein on pancreatic growth is accompanied by alterations in acinar cell morphology.  相似文献   

20.
In-vivo stimulation of rat pancreatic acinar cells by infusion of secretin   总被引:2,自引:0,他引:2  
Infusion of synthetic secretin in conscious unrestricted rats for periods up to 24 h was used to study the structural and functional adaptation of pancreatic acinar cells to this secretagogue. Initial dose-response studies established 16 clinical units (CU) per kg and h (corresponding to 4.64 micrograms X kg-1 X h-1) as optimal dose for persistent stimulation of enzyme discharge. Infusion of this dose led to a slow but progressive depletion of enzyme stores with minimal content by 12 h stimulation. As a result of persistent stimulation total protein synthesis in the acinar cells increased after a lag period of 3 h and reached maximal values 90% above controls by 6 and 12 h secretin infusion. No structural equivalent for pronounced fluid and bicarbonate secretion was observed for either acinar or duct cells over the entire dose range (1 to 64 CU X kg-1 X h-1) and infusion period (1-24 h), except an increased number of coated vesicles in duct cells. Discharge of enzymes from acinar cells was paralleled by a high frequency of exocytotic images at the luminal plasma membrane and was accompanied by the occurrence of membrane fragments in the luminal space, especially after 3 and 6 h secretin infusion. An increased number of lysosomal bodies at these time points especially in the vicinity of the Golgi complex was interpreted in relation to membrane recycling following massive exocytosis. This pattern of structural and functional adaptation of acinar cells following secretin infusion corresponds to previously described changes following caerulein and carbamylcholine stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号