首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Molecular cell》2020,77(1):3-16.e4
  1. Download : Download high-res image (181KB)
  2. Download : Download full-size image
  相似文献   

2.
3.
4.
5.
Replication factor C (RFC) catalyzes the assembly of circular proliferating cell nuclear antigen (PCNA) clamps around primed DNA, enabling processive synthesis by DNA polymerase. The RFC-like genes, arranged in tandem in the Thermococcus kodakaraensis KOD1 genome, were cloned individually and co-expressed in Escherichia coli cells. T. kodakaraensis KOD1 RFC homologue (Tk-RFC) consists of the small subunit (Tk-RFCS: MW=37.2 kDa) and the large subunit (Tk-RFCL: MW=57.2 kDa). The DNA elongation rate of the family B DNA polymerase from T. kodakaraensis KOD1 (KOD DNA polymerase), which has the highest elongation rate in all thermostable DNA polymerases, was increased about 1.7 times, when T. kodakaraensis KOD1 PCNA (Tk-PCNA) and the Tk-RFC at the equal molar ratio of KOD DNA polymerase were reacted with primed DNA.  相似文献   

6.
7.
8.
FEM1A, FEM1B, and FEM1C are evolutionarily-conserved VHL-box proteins, the substrate recognition subunits of CUL2-RING E3 ubiquitin ligase complexes. Here, we report that FEM1 proteins are ancient regulators of Stem-Loop Binding Protein (SLBP), a conserved protein that interacts with the stem loop structure located in the 3′ end of canonical histone mRNAs and functions in mRNA cleavage, translation and degradation. SLBP levels are highest during S-phase coinciding with histone synthesis. The ubiquitin ligase complex SCFcyclin F targets SLBP for degradation in G2 phase; however, the regulation of SLBP during other stages of the cell cycle is poorly understood. We provide evidence that FEM1A, FEM1B, and FEM1C interact with and mediate the degradation of SLBP. Cyclin F, FEM1A, FEM1B and FEM1C all interact with a region in SLBP's N-terminus using distinct degrons. An SLBP mutant that is unable to interact with all 4 ligases is expressed at higher levels than wild type SLBP and does not oscillate during the cell cycle. We demonstrate that orthologues of SLBP and FEM1 proteins interact in C. elegans and D. melanogaster, suggesting that the pathway is evolutionarily conserved. Furthermore, we show that FEM1 depletion in C. elegans results in the upregulation of SLBP ortholog CDL-1 in oocytes. Notably, cyclin F is absent in flies and worms, suggesting that FEM1 proteins play an important role in SLBP targeting in lower eukaryotes.  相似文献   

9.
《Molecular cell》2022,82(19):3553-3565.e5
  1. Download : Download high-res image (145KB)
  2. Download : Download full-size image
  相似文献   

10.
The most common genetic cause for amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD) is repeat expansion of a hexanucleotide sequence (GGGGCC) within the C9orf72 genomic sequence. To elucidate the functional role of C9orf72 in disease pathogenesis, we identified certain molecular interactors of this factor. We determined that C9orf72 exists in a complex with SMCR8 and WDR41 and that this complex acts as a GDP/GTP exchange factor for RAB8 and RAB39, 2 RAB GTPases involved in macroautophagy/autophagy. Consequently, C9orf72 depletion in neuronal cultures leads to accumulation of unresolved aggregates of SQSTM1/p62 and phosphorylated TARDBP/TDP-43. However, C9orf72 reduction does not lead to major neuronal toxicity, suggesting that a second stress may be required to induce neuronal cell death. An intermediate size of polyglutamine repeats within ATXN2 is an important genetic modifier of ALS-FTD. We found that coexpression of intermediate polyglutamine repeats (30Q) of ATXN2 combined with C9orf72 depletion increases the aggregation of ATXN2 and neuronal toxicity. These results were confirmed in zebrafish embryos where partial C9orf72 knockdown along with intermediate (but not normal) repeat expansions in ATXN2 causes locomotion deficits and abnormal axonal projections from spinal motor neurons. These results demonstrate that C9orf72 plays an important role in the autophagy pathway while genetically interacting with another major genetic risk factor, ATXN2, to contribute to ALS-FTD pathogenesis.  相似文献   

11.
《Molecular cell》2023,83(4):539-555.e7
  1. Download : Download high-res image (190KB)
  2. Download : Download full-size image
  相似文献   

12.
番茄泛素蛋白基因LeEBF1和LeEBF2的克隆表达分析   总被引:1,自引:0,他引:1  
通过RACE和RT-PCR方法从番茄中克隆了LeEBF1(EIN3binding F-box protein1)和LeEBF2(EIN3binding F-box protein2)的全长cDNA序列,两个基因LeEBF1、LeEBF2全长分别是2866和2891bp,对序列的分析表明,它们的开放阅读框分别是1911和1995bp,编码区编码637和665个氨基酸残基,在氨基端含保守的F-box区域和在羧基端有14个亮氨酸重复单位,通过BLAST软件和DNAMAN分析表明这两个基因的氨基酸序列与拟南芥EBF1和EBF2有58.6%相似,同时又与其他物种的EBF蛋白的F-box区域比较有24.4%到73.2%的相近。Northern杂交指出:LeEBF1与LeEBF2在野生型和Nr的幼叶中的表达量高于成熟叶;当在果实发育期,LeEBF1与LeEBF2在青果期的表达量相比其他时期要弱。初步结果表明,LeEBF1与LeEBF2可能在番茄的生长发育中起着重要的作用。  相似文献   

13.
《Molecular cell》2022,82(22):4218-4231.e8
  1. Download : Download high-res image (111KB)
  2. Download : Download full-size image
  相似文献   

14.
15.
Circoviruses are the smallest circular single-stranded DNA viruses able to replicate in mammalian cells. Essential to their replication is the replication initiator, or Rep protein that initiates the rolling circle replication (RCR) of the viral genome. Here we report the NMR solution three-dimensional structure of the endonuclease domain from the Rep protein of porcine circovirus type 2 (PCV2), the causative agent of postweaning multisystemic wasting syndrome in swine. The domain comprises residues 12-112 of the full-length protein and exhibits the fold described previously for the Rep protein of the representative geminivirus tomato yellow leaf curl Sardinia virus. The structure, however, differs significantly in some secondary structure elements that decorate the central five-stranded beta-sheet, including the replacement of a beta-hairpin by an alpha-helix in PCV2 Rep. The identification of the divalent metal binding site was accomplished by following the paramagnetic broadening of NMR amide signals upon Mn(2+) titration. The site comprises three conserved acidic residues on the exposed face of the central beta-sheet. For the 1:1 complex of the PCV2 Rep nuclease domain with a 22mer double-stranded DNA oligonucleotide chemical shift mapping allowed the identification of the DNA binding site on the protein and aided in constructing a model of the protein/DNA complex.  相似文献   

16.
Aim of the present study was the investigation of the genotoxicity of amino-alpha-carboline (AalphaC) in human derived cells and of its organ-specific effects in laboratory rodents. This heterocyclic amine (HA) is contained in fried meat and fish in higher concentrations than most other cooked food mutagens. In the present experiments, AalphaC caused dose-dependent induction of micronuclei in the human derived hepatoma cell line HepG2 at concentrations > or =50 microM. In contrast, no significant effects were seen in Hep3B, another human hepatoma cell line, which may be explained by the concurrent lower activity of sulfotransferase (SULT), an enzyme playing a key role in the activation of AalphaC. A positive result was also obtained in the single cell gel electrophoresis (SCGE) assay in peripheral human lymphocytes, but the effect was only significant at the highest concentration (1000 microM). In Fischer F344 rats and ICR mice, the liver was the main target organ for the formation of DNA adducts (at > or =50 mg/kg bw), and in lungs and colon substantially lower levels were detected. Identical organ specificity as in the DNA adduct measurements was seen in SCGE assays with rats, whereas in mice the most pronounced induction of DNA migration was observed in the colon. Comparison of our results with data from earlier experiments indicate that the genotoxic potency of AalphaC is equal to that of other HAs, which are contained in human foods in much smaller amounts. Therefore, our findings can be taken as an indication that the human health risk caused by exposure to AalphaC is higher than that of other HAs that are formed during the cooking of meat and fish.  相似文献   

17.
Centrin, an EF-hand calcium-binding protein, has been shown to be involved in the duplication of centrosomes, and Sfi1 (Suppressor of fermentation-induced loss of stress resistance protein 1) is one of its centrosomal targets. There are three isoforms of human centrin, but here we only considered centrin 2 (HsCen2). This protein has the ability to bind to any of the ∼ 25 repeats of human Sfi1 (hSfi1) with more or less affinity. In this study, we mainly focused on the 17th repeat (R17-hSfi1-20), which presents the highest level of similarity with a well-studied 17-residue peptide (P17-XPC) from human xeroderma pigmentosum complementation group C protein, another centrin target for DNA repair. The only known structure of HsCen2 was resolved in complex with P17-XPC. The 20-residue peptide R17-hSfi1-20 exhibits the motif L8L4W1, which is the reverse of the XPC motif, W1L4L8. Consequently, the dipole of the helix formed by this motif has a reverse orientation. We wished to ascertain the impact of this reversal on the structure, dynamics and affinity of centrin. To address this question, we determined the structure of C-HsCen2 [the C-terminal domain of HsCen2 (T94-Y172)] in complex with R17-hSfi1-20 and monitored its dynamics by NMR, after having verified that the N-terminal domain of HsCen2 does not interact with the peptide. The structure shows that the binding mode is similar to that of P17-XPC. However, we observed a 2 -Å translation of the R17-hSfi1-20 helix along its axis, inducing less anchorage in the protein and the disruption of a hydrogen bond between a tryptophan residue in the peptide and a well-conserved nearby glutamate in C-HsCen2. NMR dynamic studies of the complex strongly suggested the existence of an unusual calcium secondary binding mode in calcium-binding loop III, made possible by the uncommon residue composition of this loop. The secondary metal site is only populated at high calcium concentration and depends on the type of bound ligand.  相似文献   

18.
The formation of membraneless organelles (MLOs) by phase separation has emerged as a new way of organizing the cytoplasm and nucleoplasm of cells. Examples of MLOs forming via phase separation are nucleoli in the nucleus and stress granules in the cytoplasm. The main components of these MLOs are macromolecules such as RNAs and proteins. In order to assemble by phase separation, these proteins and RNAs have to undergo many cooperative interactions. These cooperative interactions are supported by specific molecular features within phase-separating proteins, such as multivalency and the presence of disordered domains that promote weak and transient interactions. However, these features also predispose phase-separating proteins to aberrant behavior. Indeed, evidence is emerging for a strong link between phase-separating proteins, MLOs, and age-related diseases. In this review, we discuss recent progress in understanding the formation, properties, and functions of MLOs. We pay special attention to the emerging link between MLOs and age-related diseases, and we explain how changes in the composition and physical properties of MLOs promote their conversion into an aberrant state. Furthermore, we discuss the key role of the protein quality control machinery in regulating the properties and functions of MLOs and thus in preventing age-related diseases.  相似文献   

19.
Jasmonates (JAs) are the well characterized fatty acid-derived cyclopentanone signals involved in the plant response to biotic and abiotic stresses. JAs have been shown to regulate many aspects of plant metabolism, including glucosinolate biosynthesis. Glucosinolates are natural plant products that function in defense against herbivores and pathogens. In this study, we applied a proteomic approach to gain insight into the physiological processes, including glucosinolate metabolism, in response to methyl jasmonate (MeJA). We identified 194 differentially expressed protein spots that contained proteins that participated in a wide range of physiological processes. Functional classification analysis showed that photosynthesis and carbohydrate anabolism were repressed after MeJA treatment, while carbohydrate catabolism was up-regulated. Additionally, proteins related to the JA biosynthesis pathway, stress and defense, and secondary metabolism were up-regulated. Among the differentially expressed proteins, many were involved in oxidative tolerance. The results indicate that MeJA elicited a defense response at the proteome level through a mechanism of redirecting growth-related metabolism to defense-related metabolism.  相似文献   

20.

Background

Oculocutaneous Albinism (OCA) is a heterogeneous group of inherited diseases involving hair, skin and eyes. To date, six forms are recognized on the effects of different melanogenesis genes.OCA4 is caused by mutations in SLC45A2 showing a heterogeneous phenotype ranging from white hair, blue irides and nystagmus to brown/black hair, brown irides and no nystagmus. The high clinic variety often leads to misdiagnosis.Our aim is to contribute to OCA4 diagnosis defining SLC45A2 genetic variants in Italian patients with OCA without any TYR, OCA2 and TYRP1 gene defects.

Materials and methods

After the clinical diagnosis of OCA, all patients received genetic counseling and genetic test. Automatic sequencing of TYR, OCA2, and TYRP1 genes was performed on DNA of 117 albino patients. Multiplex Ligation-dependent Probe Amplification (MLPA) was carried out on TYR and OCA2 genes to increase the mutation rate. SLC45A2 gene sequencing was then executed in the patients with a single mutation in one of the TYR, OCA2, TYRP1 genes and in the patients, which resulted negative at the screening of these genes.

Results

SLC45A2 gene analysis was performed in 41 patients and gene alterations were found in 5 patients. Four previously reported SLC45A2 mutations were found: p.G100S, p.W202C, p.A511E and c.986delC, and three novel variants were identified: p.M265L, p.H94D, and c.1156+1G>A. All the alterations have been detected in the group of patients without mutations in the other OCA genes.

Conclusions

Three new variants were identified in OCA4 gene; the analysis allowed the classification of a patient previously misdiagnosed as OA1 because of skin and hair pigmentation presence. The molecular defects in SLC45A2 gene represent the 3.4% in this cohort of Italian patients, similar to other Caucasian populations; our data differ from those previously published by an Italian researcher group, obtained on a smaller cohort of patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号