首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oilseed rape (Brassica napus L.) is a crop with a complex aerial architecture that can cause self-shading leading to a vertical light gradient over the foliage. Mutual shading between neighboring plants at a high sowing density also results in an alteration of photosynthetically active radiation (PAR) absorption by lower leaves. The aim of this study was to analyze the impact that light restriction on lower leaves has on shoot architecture, biomass production and allocation, nitrogen (N) fluxes, and progression of sequential senescence. Field-grown plants were collected at the end of the vegetative rest period and grown in hydroponic conditions until pod maturity. A shading treatment corresponding to a 43.4 % reduction of PAR was applied at the early flowering stage. N uptake and fluxes of N allocation and remobilization were determined by supplying K15NO3 in the nutrient solution. Photosynthesis and expression of SAG12 and Cab genes (indicators of leaf senescence progression) were also analyzed on different leaf ranks. The results showed that shading enhanced leaf development on the main stem and ramifications to optimize light capture. The expression pattern of the SAG12/Cab molecular indicator suggested a delay in leaf senescence that allowed leaf life span to be extended resulting in a more efficient leaf compound remobilization, with lower N residual contents in fallen leaves under shading. N uptake increased and N remobilization fluxes were enhanced from source organs (leaves and stem) toward sink organs (flowers). Profuse branching and late senescing varieties would be of interest for further selection programs under high sowing densities.  相似文献   

2.
3.
油菜(Brassica napus L.)是我国的主要油料作物之一,在生长发育过程中经常受到干旱、高温、高盐和营养缺乏等非生物胁迫。这些胁迫通常会阻碍油菜的生长发育,导致品质和产量下降。近年来,快速发展的高通量蛋白质组学技术为揭示油菜胁迫响应分子机制提供了新线索。本文综合分析了油菜不同组织/器官(如:叶片、根、下胚轴和种子)在响应盐、高温、干旱、草酸和缺素(磷、硫和硼)等逆境过程中675种蛋白质的丰度变化特征,揭示了其胁迫应答机制,主要包括:(1)通过G蛋白介导的信号通路感知与传递胁迫信号;(2)通过改变参与糖类与能量代谢相关酶的丰度调节代谢水平;(3)通过叶绿素合成的变化调节光合作用;(4)调节转录因子、蛋白质合成与命运相关蛋白质的丰度,从而在转录、翻译以及翻译后修饰等水平上应答逆境;(5)通过调节膜联蛋白、V型H+-ATP酶等质膜蛋白质,促进细胞内物质吸收与转运;(6)通过细胞骨架动态重塑保持正常细胞结构;(7)利用调节抗氧化酶系统清除活性氧,并通过合成多种防御物质减轻细胞受到的伤害。本综述为解析油菜逆境应答网络体系中的关键调控及代谢通路的变化提供了重要信息。  相似文献   

4.
Rapeseed is one of the most important edible oil crops in the world and the seed yield has lagged behind the increasing demand driven by population growth. Winter oilseed rape (Brassica napus L.) is widely cultivated with relatively low yield in China, so it is necessary to find the strategies to improve the expression of yield potential. Planting density has great effects on seed yield of crops. Hence, field experiments were conducted in Wuhan in the Yangtze River basin with one conventional variety (Zhongshuang 11, ZS11) and one hybrid variety (Huayouza 9, HYZ9) at five planting densities (27.0×104, 37.5×104, 48.0×104, 58.5×104, 69.0×104 plants ha–1) during 2010–2012 to investigate the yield components. The physiological traits for high-yield and normal-yield populations were measured during 2011–2013. Our results indicated that planting densities of 58.5×104 plants ha–1 in ZS11 and 48.0×104 plants ha–1 in HYZ9 have significantly higher yield compared with the density of 27.0×104 plants ha–1for both varieties. The ideal silique numbers for ZS11 and HYZ9 were ∼0.9×104 (n m–2) and ∼1×104 (n m-2), respectively, and ideal primary branches for ZS11 and HYZ9 were ∼250 (n m–2) and ∼300 (n m–2), respectively. The highest leaf area index (LAI) and silique wall area index (SAI) was ∼5.0 and 7.0, respectively. Moreover, higher leaf net photosynthetic rate (Pn) and water use efficiency (WUE) were observed in the high-yield populations. A significantly higher level of silique wall photosynthesis and rapid dry matter accumulation were supposed to result in the maximum seed yield. Our results suggest that increasing the planting density within certain range is a feasible approach for higher seed yield in winter rapeseed in China.  相似文献   

5.
The development sequence of anatomical changes taking placewithin the pericarp tissues of Brassica napus siliquae havebeen studied at a fine- and ultra-structural level. Tissue differentiationoccurred during the initial 20 d after anthesis (DAA) and allowedthe identification of dehiscence zone cells. This descrete tissuewas subsequently further delineated by extensive lignificationof adjacent valve edge and replar vascular cells. Concomitantwith the onset of pericarp lignification, cytoplasmic contentsof the thin-walled dehiscence zone cells exhibited progressivesenescence and degradation. Wall breakdown, initially evidentin pods by 60 DAA, exclusively affected cells within the dehiscencezone, and eventually extended throughout this tissue from theepidermal suture to the locule, thus precipitating valve detachment.Ultrastructural examination confirmed that this loss of cellularcohesion was primarily attributable to middle lamella degradationand, furthermore, the dissolution of wall material was apparentlydependent on rupture of the dehiscence zone protoplast. Thesignificance of dehiscence zone cell modifications in relationto autolytic cell wall breakdown, together with possible implicationsfor the regulation of pod shatter, are discussed. Key words: Oilseed rape, Brassica napus, pod shatter, dehiscence zone, cell wall breakdown  相似文献   

6.
Studies in artificially infested field plots of winter oilseed rape showed that mycelia originating from both sclerotia and ascospores of Sclerotinia sclerotiorum can initiate early attacks of sclerotinia stem rot. Disease symptoms appeared in early November in plots previously infested with sclerotia in September. There was a 6–7 week period from artificially inoculating plants with ascospores in October to observing disease symtoms in December. The primary sites of infection for both typesof inocula were the laminae and petioles of senescent and frost-damaged leaves. Following primary infection, mycelia of the pathogen spread by plant to plant contact, causing secondary infections of neighbouring plants. Sclerotia developed on diseased plants and high numbers were returned to the soil. The importance of these findings to the epidemiology of the disease are discussed.  相似文献   

7.
The anchorage mechanics of mature winter-sown oilseed rape (‘Envol’)were investigated by combining a morphological and mechanicalstudy of the root system with anchorage tests on real and modelplants. Oilseed rape plants were anchored by a rigid tap root;the few laterals all emerged below the centre of rotation ofthe root system (approx. 30 mm below the soil surface). Whenplants were pulled over, the tap root bent and the top 30 mmmoved in the soil towards the direction of pull, creating acrevice on the opposite side. The maximum anchorage moment was2.9 ± 0.36 N m. Two main components of anchorage wereidentified: the bending resistance of the tap root and the resistanceof the soil on the near side to compression. The relative importanceof these components was determined by measuring both the bendingresistance of the tap root, and the resistance of metal tubesof varying diameter, inserted to various depths in the soil,to being pulled over. These tests showed that the tap root bendingmoment at failure could account for around 40% of anchoragemoment, while soil resistance could account for around 60%.The model tests on the tubes also help to shed light on theway in which the dimensions of tap roots will influence theiranchorage capability. Copyright 2001 Annals of Botany Company Anchorage, lodging, root bending resistance, mechanical properties, oilseed rape, Brassica napus L  相似文献   

8.
Seed number per pod at maturity over the terminal raceme ofsingle plants of oilseed rape is closely correlated to the percentageof ovules with complete embryo sacs (ovule fertility) at floweropening. Approximately one-third of the ovules did not containan embryo sac and sterility, due to the absence of embryo sac,accounted for most of the difference between the numbers ofovules and seeds. Within the terminal raceme, both a decreasedproportion of fertile ovules and a lower number of ovules perovary in apical flowers contributed to the lower number of seedsper pod in the mature apical pods compared to the basal ones.A study of ovule development before flower opening showed thatdifferences in the differentiation of the embryo sacs arosebefore the buds were 40 mm long and probably involved the stagesof meiosis II and/or differentiation of the chalazal megaspore. Key words: Oilseed rape, ovule development, seed number per pod  相似文献   

9.
The lipid composition of different callus cultures of Brassicanapus varied according to their state of differentiation. Photomixotrophiccallus was characterized by the ability to synthesize relativelyhigh levels of triacylglycerol (TAG) which was rich in oleate.Glycosyldiacylglycerols were also detected. In contrast, heterotrophiccallus was found to possess high proportions of membraneousphospholipids which were rich in palmitate, linoleate, and linolenate.Moreover, the lipid content was considerably less than thatof photomixotrophic callus. Caulogenesis was achieved in bothtypes of callus strains and the lipid composition of the regeneratedleaves contained a much higher proportion of chloroplast glycosyldiacylglycerolsand thus resembled more those of the parent plant. Some callientered a senescent phase whereby there was considerable degradationof the constituent membrane lipids. Senescent callus also exhibiteda high proportion of polyploid nuclei. In this study we havebeen able to cause large changes in the morphology of calluscultures. These morphological changes were accompanied by significantalterations in the quality and quantity of acyl lipids. In photomixotrophiccells the lipid changes resembled those seen for developingseed tissues where high rates of TAG deposition are accompaniedby an altered fatty acid pattern. Thus, the selection of differentcallus types should be of use for investigations of the regulationof lipid biosynthesis under controlled culture conditions.  相似文献   

10.
The effect of root temperature and form of inorganic nitrogensupply on in vitro nitrate reductase activity (NRA) was studiedin oilseed rape (Brassica napus L. cv. bien venu). Plants weregrown initially in flowing nutrient solution containing 10 µMNH4NO3 and then supplied with either nitrate or ammonium for15 d at root temperatures of 3, 7, 11 or 17 °C. Shoot temperatureregime was similar for all plants; 20/15 °C, day/night.Root NRA was highest when roots were grown at 3 and 7 °C.In laminae and petioles NRA was highest when roots were 11 or17 °C. The plants supplied with ammonium had much lowerlevels of NRA in roots after 5 d than the plants supplied onlywith nitrate. NRA in the laminae of plants supplied with ammoniumwas low relative to that in plants supplied with nitrate onlywhen root temperature was 11 or 17 °C. Values of the apparent activation energy (Ea) of NR, calculatedfrom the Arrhenius equation, in laminae and petioles were differentfrom roots suggesting difference in enzyme conformation. Evidencethat the temperature at which roots were growing affected Eawas equivocal. Oilseed rape, Brassica napus L., activation energy, ammonium, Arrhenius equation, nitrate, root temperature, nitrate reductase  相似文献   

11.
Acclimation of winter oilseed plants in the cold (i.e. at temperatures >0 degrees C) followed by short exposure to sub-lethal freezing temperatures resulted in pronounced ultrastructural changes of leaf epidermal and mesophyll cells. The following major changes were observed upon acclimation at 2 degrees C: increased thickness of cell walls; numerous invaginations of plasma membranes; the appearance of many large vesicles localized in the cytoplasm in close proximity to the central vacuole; the occurrence of abundant populations of microvesicles associated with the endoplasmic reticulum (ER) cisternae or located in the vicinity of dictyosomes; and the occurrence of paramural bodies and myelin-like structures. In addition, large phenolic deposits were observed in the vicinity of the plasma membrane and membrane-bound organelles such as chloroplasts, large vesicles or cytoplasm/tonoplast interfaces. Transient freezing (-5 degrees C for 18 h) of the cold-acclimated leaves led to reversible disorganization of the cytoplasm and to pronounced structural changes of the cellular organelles. Chloroplasts were swollen, with the stroma occupying one half of their volume and the thylakoid system being displaced to the other half. Large phenolic aggregates disappeared but distinct layers of phenolic deposits were associated with mitochondrial membranes and with chloroplast envelopes. In frost-thawed cells recovered at 2 degrees C for 24 h, dictyosomes and dictyosome- or ER-derived small vesicles reappeared in the ribosome-rich cytoplasm. Aberrations in the structure of chloroplasts and mitochondria were less pronounced. Few phenolic deposits were seen as small grains associated with chloroplast envelopes and vesicle membranes. These observations demonstrate that plants undergo different changes in cell ultrastructure depending on whether they are subjected to chilling or freezing temperatures. Results are discussed in relation to membrane recycling and the possible role of phenolics during the first and second stages of plant acclimation at low temperature.  相似文献   

12.
The effects of various plant growth regulators and that of pHon the in vitro growth and development of young inflorescencesof Brassica napus L. cv. Westar were examined. A cytokinin wasrequired for normal maturation of floral buds, including thecompletion of microsporogenesis, and it stimulated the initiationof additional buds on the inflorescence axis. Benzylaminopurine(BAP) was the most effective of the cytokinins tested. Gibberellicacid (GA3) and naphthaleneacetic acid (NAA) alone were ineffective.In combination with BAP, both reduced the positive influenceof the cytokinin but GA3 was more inhibitory than NAA. At alow initial pH (3.9–4.6), the percentage of cultures whichproduced normal buds was significantly higher, especially inthe presence of 10-7 M or 5 ? 10-7 M BAP, in comparison to cultureswith a pH of 5.3-6.0, the standard range for plant tissue culture.  相似文献   

13.
The reproductive development of oilseed rape (Brassica napusL. cv. Bienvenu) was studied using light and scanning electronmicroscopy. By using the two techniques on comparable samples,internal events such as microspore development were relatedto the morphology of the developing floral parts, and this inturn was linked to the growth stage of the plant. Reproductive development, oilseed rape, Brassica napus, growth stage  相似文献   

14.
Hormones and Pod Development in Oilseed Rape (Brassica napus)   总被引:3,自引:0,他引:3       下载免费PDF全文
The endogenous levels of several plant growth substances (indole acetic acid, IAA; abscisic acid, ABA; zeatin, Z; zeatin riboside, [9R]Z; isopentenyladenine, iP; and isopentenyladenosine, [9R]iP were measured during pod development of field grown oilseed Rape (Brassica napus L. var oleifera cv Bienvenu) with high performance liquid chromatography and immunoenzymic (enzyme-linked immunosorbent assay, ELISA) techniques. Results show that pod development is characterized by high levels of Z and [9R]Z in 3 day old fruits and of IAA on the fourth day. During pod maturation, initially a significant increase of IAA and cytokinins was observed, followed by a progressive rise of ABA levels and a concomitant decline of IAA and cytokinin (except iP) levels. The relationship between hormone levels and development, especially pod number, seed number per pod, and seed weight determination, will be discussed.  相似文献   

15.
油菜外源细胞分裂素不敏感突变体lrn1和prl1表现为磷高效。营养液培养0.2μmol/L细胞分裂素(6-BA)处理,与甘蓝型油菜野生型‘宁油7号’(WT)相比,突变体lrn1侧根较多,prl1主根较长。本研究利用体式显微技术、非切片压片法以及石蜡切片等技术,对3个基因型在ddH2O和0.2μmol/L 6-BA处理下的根毛、根表皮细胞分化及根尖解剖结构的差异进行了观察,结果表明:ddH2O处理,种子发芽后第1、3、6、9 d,lrn1、prl1和WT根尖成熟区根毛较少。0.2μmol/L 6-BA处理,种子发芽后第3 d,lrn1、prl1和WT根尖形成大量根毛,其中WT根毛最多、密度最大;prl1根毛最少,密度也最小;lrn1处于两者之间。种子发芽后第6 d,lrn1、prl1和WT分生区和伸长区明显缩短,lrn1和prl1分生区面积无显著差异,但两者均显著大于WT;lrn1和prl1根冠细胞结构较正常,而WT根冠细胞结构畸形;lrn1皮层原细胞之间排列较WT和prl1紧密。种子发芽后第9 d,lrn1已有4条侧根,但prl1与WT无侧根形成。6-BA处理,prl1主根较长,与其根尖分生区面积较大密切相关;lrn1侧根较多,可能与中柱原细胞排列密度较高密切相关。  相似文献   

16.
The impact of genetically modified oilseed rape (Brassica napus L.) on the foraging behaviour of honey bees (Apis mellifera L.) was evaluated on two different lines transformed to express constitutively heterologous chitinase in somatic tissue for enhanced disease resistance. Experiments were conducted in confinement in an indoor flight room with controlled conditions and in an outdoor flight cage with conditions more representative of the open environment. Foraging behaviour was analysed by observations of general bee behaviour (total number of visits) and of individual bee behaviour (using a video camera coupled with a special software program to process the data). The plants were analysed in terms of nectar quantity and quality (nectar volume and sugar content). The results showed no effects on bee foraging behaviour due to the modification of the genome of these plants by the introduction of a chitinase gene even though some differences between lines were found in the nectar. The methods applied in this original approach for the evaluation of the impact of genetically modified oilseed rape were shown to be sufficiently sensitive to detect changes in bee behaviour resulting from differences between plants.  相似文献   

17.
Despite cultivation and seed import bans of genetically modified (GM) oilseed rape (Brassica napus L.), feral GM plants were found growing along railway lines and in port areas at four sites in Switzerland in 2011 and 2012. All GM plants were identified as glyphosate-resistant GM event GT73 (Roundup Ready, Monsanto). The most affected sites were the Rhine port of Basel and the St. Johann freight railway station in Basel. To assess the distribution and intra- and interspecific outcrossing of GM oilseed rape in more detail, we monitored these two sites in 2013. Leaves and seed pods of feral oilseed rape plants, their possible hybridization partners and putative hybrid plants were sampled in monthly intervals and analysed for the presence of transgenes by real-time PCR. Using flow cytometry, we measured DNA contents of cell nuclei to confirm putative hybrids. In total, 2787 plants were sampled. The presence of GT73 oilseed rape could be confirmed at all previously documented sampling locations and was additionally detected at one new sampling location within the Rhine port. Furthermore, we found the glufosinate-resistant GM events MS8xRF3, MS8 and RF3 (all traded as InVigor, Bayer) at five sampling locations in the Rhine port. To our knowledge, this is the first time that feral MS8xRF3, MS8 or RF3 plants were detected in Europe. Real-time PCR analyses of seeds showed outcrossing of GT73 into two non-GM oilseed rape plants, but no outcrossing of transgenes into related wild species was observed. We found no hybrids between oilseed rape and related species. GM plants most frequently occurred at unloading sites for ships, indicating that ship cargo traffic is the main entry pathway for GM oilseed rape. In the future, it will be of major interest to determine the source of GM oilseed rape seeds.  相似文献   

18.
Different strategies, known as crop biofortification, can be used to increase micronutrient concentrations in harvested parts to reduce nutrient deficiencies in the human diet. Apart from fertilization and genetic selection, a more environmentally friendly, less expensive, and more immediate solution could rely on the use of biostimulants derived from natural materials. Two biostimulants, AZAL5 and HA7, which are derived from seaweed and black peat, respectively, have been previously described as promoting growth of Brassica napus and having a substantial effect on gene expression. They were further studied to evaluate their effects on N and S and a wide range of other nutrients (that is, K, Ca, P, Mg, Fe, Na, Mn, B, Si, Cu, and Zn). Providing these two biostimulants in the nutrient solution did not change the mineral supply significantly, but they mostly stimulated root growth and macronutrient uptake (N, S, K, and P) at a level similar to growth. Both biostimulants also stimulate chloroplast division. More surprisingly, they also increased Mg, Mn, Na, and Cu plant concentrations and root-to-shoot translocation of Fe and Zn. These observations were associated with an increased expression of a Cu transporter (COPT2) and NRAMP3, a gene putatively involved in Fe and Zn translocation. Overall, this study showed that specific nutrient balance and transport were stimulated by both biostimulants more significantly than growth, offering new perspectives for biofortification strategies.  相似文献   

19.
Low boron (B) seriously limits the growth of oilseed rape (Brassica napus L.), a high B demand species that is sensitive to low B conditions. Significant genotypic variations in response to B deficiency have been observed among B. napus cultivars. To reveal the genetic basis for B efficiency in B. napus, quantitative trait loci (QTLs) for the plant growth traits, B uptake traits and the B efficiency coefficient (BEC) were analyzed using a doubled haploid (DH) population derived from a cross between a B-efficient parent, Qingyou 10, and a B-inefficient parent, Westar 10. A high-density genetic map was constructed based on single nucleotide polymorphisms (SNPs) assayed using Brassica 60 K Infinium BeadChip Array, simple sequence repeats (SSRs) and amplified fragment length polymorphisms (AFLPs). The linkage map covered a total length of 2139.5 cM, with 19 linkage groups (LGs) and an average distance of 1.6 cM between adjacent markers. Based on hydroponic evaluation of six B efficiency traits measured in three separate repeated trials, a total of 52 QTLs were identified, accounting for 6.14–46.27% of the phenotypic variation. A major QTL for BEC, qBEC-A3a, was co-located on A3 with other QTLs for plant growth and B uptake traits under low B stress. Using a subset of substitution lines, qBEC-A3a was validated and narrowed down to the interval between CNU384 and BnGMS436. The results of this study provide a novel major locus located on A3 for B efficiency in B. napus that will be suitable for fine mapping and marker-assisted selection breeding for B efficiency in B. napus.  相似文献   

20.
烯醇酶(enolase)是糖酵解途径中的一个重要酶类,它能够催化磷酸甘油酸酯(2-PGA)生成磷酸烯醇丙酮酸酯(PEP)。我们通过RACE-PCR方法从油菜(Brassica napus L. )中克隆到了编码烯醇酶的全长基因。序列分析表明该基因全长cDNA为1624bp,拥有一个由444个氨基酸组成的开放读码框,所编码的蛋白质分子量为47.38kD,等电点为5.78。比较发现,油菜烯醇酶与已分离出的其他烯醇酶氨基酸序列有较高的同源性。Southern杂交结果显示烯醇酶以低拷贝形式在油菜基因组中存在。RT-PCR和Northern分析表明烯醇酶基因在100mmol/L盐浓度胁迫条件下表达量上升,而在低温诱导时表达量下降。该研究表明所克隆基因是植物烯醇酶基因家族的新成员。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号