首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
We have previously shown that a distal GU-rich downstream element of the mouse IgM secretory poly(A) site is important for polyadenylation in vivo and for polyadenylation specific complex formation in vitro. This element can be predicted to form a stem-loop structure with two asymmetric internal loops. As stem-loop structures commonly define protein RNA binding sites, we have probed the biological activity of the secondary structure of this element. We show that mutations affecting the stem of the structure abolish the biological activity of this element in vivo and in vitro at the level of cleavage and polyadenylation specificity factor/cleavage stimulation factor complex formation and that both internal loops contribute to the enhancing effect of the sequence in vivo. Lead (II) cleavage patterns and RNase H probing of the sequence element in vitro are consistent with the predicted secondary structure. Furthermore, mobility on native PAGE suggests a bent structure. We propose that the secondary structure of this downstream element optimizes its interaction with components of the polyadenylation complex.  相似文献   

6.
7.
8.
9.
The downstream region of the mouse beta (major) globin poly(A) signal was mutated and analyzed for function in transfected COS cells. From analysis of unidirectional Bal31 deletions, the 3' boundary of the downstream element was defined as +22 (22 nucleotides downstream from the cleavage site). Analysis of cluster mutations, in which 5 or 6 adjacent bases were replaced with a random CA-containing sequence in a manner that did not alter spacing, confirmed +22 as the 3' boundary of the downstream element. The analysis also revealed two short UG-rich sequences, located from +5 to +10 and from +17 to +22, as major functional components. In contrast, a more refined series of mutations, in which clusters of 3 bases were replaced, failed to cause loss of function. We conclude that the downstream element of the mouse beta globin poly(A) signal is bipartite in structure, and that portions of its sequence are functionally redundant.  相似文献   

10.
The Dexras1 gene responds to glucocorticoids with a rapid and profound induction. A glucocorticoid response element (GRE) was identified in the 3'-flanking region (2.3 kb downstream of poly(A) signal) of the human Dexras1 gene. This element conferred rapid glucocorticoid responsiveness when inserted into a homologous promoter-driven luciferase reporter. A point mutation within the 15-bp GRE abolished this glucocorticoid responsiveness.  相似文献   

11.
12.
13.
RNA recognition by the human polyadenylation factor CstF.   总被引:21,自引:8,他引:13       下载免费PDF全文
Polyadenylation of mammalian mRNA precursors requires at least two signal sequences in the RNA: the nearly invariant AAUAAA, situated 5' to the site of polyadenylation, and a much more variable GU- or U-rich downstream element. At least some downstream sequences are recognized by the heterotrimeric polyadenylation factor CstF, although how, and indeed if, all variations of this diffuse element are bound by a single factor is unknown. Here we show that the RNP-type RNA binding domain of the 64-kDa subunit of CstF (CstF-64) (64K RBD) is sufficient to define a functional downstream element. Selection-amplification (SELEX) experiments employing a glutathione S-transferase (GST)-64K RBD fusion protein selected GU-rich sequences that defined consensus recognition motifs closely matching those present in natural poly(A) sites. Selected sequences were bound specifically, and with surprisingly high affinities, by intact CstF and were functional in reconstituted, CstF-dependent cleavage assays. Our results also indicate that GU- and U-rich sequences are variants of a single CstF recognition motif. For comparison, SELEX was performed with a GST fusion containing the RBD from the apparent yeast homolog of CstF-64, RNA15. Strikingly, although the two RBDs are almost 50% identical and yeast poly(A) signals are at least as degenerate as the mammalian downstream element, a nearly invariant 12-base U-rich sequence distinct from the CstF-64 consensus was identified. We discuss these results in terms of the function and evolution of mRNA 3'-end signals.  相似文献   

14.
15.
16.
In Caenorhabditis elegans, polycistronic pre-mRNAs are processed by cleavage and polyadenylation at the 3' ends of the upstream genes and trans splicing, generally to the specialized spliced leader SL2, at the 5' ends of the downstream genes. Previous studies have indicated a relationship between these two events in the processing of a heat shock-induced gpd-2-gpd-3 polycistronic pre-mRNA. Here, we report mutational analysis of the intercistronic region of this operon by linker scan analysis. Surprisingly, no sequences downstream of the 3' end were important for 3'-end formation. In contrast, a U-rich (Ur) element located 29 bp downstream of the site of 3'-end formation was shown to be important for downstream mRNA biosynthesis. This approximately 20-bp element is sufficient for SL2 trans splicing and mRNA accumulation when transplanted to a heterologous context. Furthermore, when the downstream gene was replaced by a gene from another organism, no loss of trans-splicing specificity was observed, suggesting that the Ur element may be the primary signal required for downstream mRNA processing.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号