首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A class of recessive lethal zebrafish mutations has been identified in which normal skeletal muscle differentiation is followed by a tissue-specific degeneration that is reminiscent of the human muscular dystrophies. Here, we show that one of these mutations, sapje, disrupts the zebrafish orthologue of the X-linked human Duchenne muscular dystrophy (DMD) gene. Mutations in this locus cause Duchenne or Becker muscular dystrophies in human patients and are thought to result in a dystrophic pathology through disconnecting the cytoskeleton from the extracellular matrix in skeletal muscle by reducing the level of dystrophin protein at the sarcolemma. This is thought to allow tearing of this membrane, which in turn leads to cell death. Surprisingly, we have found that the progressive muscle degeneration phenotype of sapje mutant zebrafish embryos is caused by the failure of embryonic muscle end attachments. Although a role for dystrophin in maintaining vertebrate myotendinous junctions (MTJs) has been postulated previously and MTJ structural abnormalities have been identified in the Dystrophin-deficient mdx mouse model, in vivo evidence of pathology based on muscle attachment failure has thus far been lacking. This zebrafish mutation may therefore provide a model for a novel pathological mechanism of Duchenne muscular dystrophy and other muscle diseases.  相似文献   

2.
3.
Hypoxia-induced vascular responses, including angiogenesis, vascular remodeling and vascular leakage, significantly contribute to the onset, development and progression of retinopathy. However, until recently there were no appropriate animal disease models recapitulating adult retinopathy available. In this article, we describe protocols that create hypoxia-induced retinopathy in adult zebrafish. Adult fli1:EGFP zebrafish are placed in hypoxic water for 3-10 d and retinal neovascularization is analyzed using confocal microscopy. It usually takes 11 d to obtain conclusive results using the hypoxia-induced retinopathy model in adult zebrafish. This model provides a unique opportunity to study kinetically the development of retinopathy in adult animals using noninvasive protocols and to assess therapeutic efficacy of orally active antiangiogenic drugs.  相似文献   

4.
Dystrophin constitutes 5% of membrane cytoskeleton in skeletal muscle   总被引:6,自引:0,他引:6  
Dystrophin, which is absent in skeletal muscle of Duchenne muscular dystrophy patients, has not been considered to play a major structural role in the cell membrane of skeletal muscle because of its low abundance (approximately 0.002% of total muscle protein). Here, we have determined the relative abundance of dystrophin in a membrane cytoskeleton preparation and found that dystrophin constitutes approximately 5% of the total membrane cytoskeleton fraction of skeletal muscle sarcolemma. In addition, dystrophin can be removed from sarcolemma by alkaline treatment. Thus, our results have demonstrated that dystrophin is a major component of the subsarcolemmal cytoskeleton in skeletal muscle and suggest that dystrophin could play a major structural role in the cell membrane of skeletal muscle.  相似文献   

5.
Zebrafish reproduce in large quantities, grow rapidly, and are transparent early in development. For these reasons, zebrafish have been used extensively to model vertebrate development and disease. Like mammals, zebrafish express dystrophin and many of its associated proteins early in development and these proteins have been shown to be vital for zebrafish muscle stability. In dystrophin-null zebrafish, muscle degeneration becomes apparent as early as 3 days post-fertilization (dpf) making the zebrafish an excellent organism for large-scale screens to identify other genes involved in the disease process or drugs capable of correcting the disease phenotype. Being transparent, developing zebrafish are also an ideal experimental model for monitoring the fate of labeled transplanted cells. Although zebrafish dystrophy models are not meant to replace existing mammalian models of disease, experiments requiring large numbers of animals may be best performed in zebrafish. Results garnered from using this model could lead to a better understanding of the pathogenesis of the muscular dystrophies and the development of future therapies.  相似文献   

6.
Duchenne's muscular dystrophy (DMD) is caused by the absence or drastic decrease of the structural protein, dystrophin, and is characterized by sarcolemmal lesions in skeletal muscle due to the stress of contraction. Dystrophin has been localized to the sarcolemma, but its organization there is not known. We report immunofluorescence studies which show that dystrophin is concentrated, along with the major muscle isoform of beta-spectrin, in three distinct domains at the sarcolemma: in elements overlying both I bands and M lines, and in occasional strands running along the longitudinal axis of the myofiber. Vinculin, which has previously been found at the sarcolemma overlying the I bands and in longitudinal strands, was present in the same three structures as spectrin and dystrophin. Controls demonstrated that the labeling was intracellular. Comparison to labeling of the lipid bilayer and of the extracellular matrix showed that the labeling for spectrin and dystrophin is associated with the intact sarcolemma and is not a result of processing artifacts. Dystrophin is not required for this lattice-like organization, as similar domains containing spectrin but not dystrophin are present in muscle from the mdx mouse and from humans with Duchenne's muscular dystrophy. We discuss the possibility that dystrophin and spectrin, along with vinculin, may function to link the contractile apparatus to the sarcolemma of normal skeletal muscle.  相似文献   

7.
Zeng X  Hou SX 《Cell Stem Cell》2011,8(3):247-249
Recently in Nature, Davidson and coworkers (Diep et al., 2011) identified nephron progenitors/stem cells located at the point of fusion with the pronephric tubules in adult zebrafish. Clumps of progenitors give rise to functional nephrons after serial transplantation, demonstrating the ability of tissue stem cells to regenerate damaged kidney structures.  相似文献   

8.
This review is primarily concerned with two key issues in research on dystrophin: (1) how the protein interacts with the plasma membrane of skeletal muscle fibres and (2) how an absence of dystrophin gives rise to Duchenne muscular dystrophy. In relation to the first point, we suggest that the post-translational acylation of dystrophin may contribute to its interaction with the plasma membrane. Regarding the second point, it is generally considered that an absence of dystrophin makes the plasma membrane susceptible to damage by contraction/relaxation cycles. In this connection, we propose that the progressive nature of Duchenne dystrophy, and the phenotypic characteristics of mdx mice, are more consistent with dystrophin functioning as a mechanical transducer that transmits growth stimuli from the enlarging skeleton to the muscle. On the basis of this hypothesis, dystrophin-deficient muscles would be unable to grow at the same rate as the skeleton.  相似文献   

9.
The use of adult zebrafish (Danio rerio) in neurobehavioral research is rapidly expanding. The present large-scale study applied the newest video-tracking and data-mining technologies to further examine zebrafish anxiety-like phenotypes. Here, we generated temporal and spatial three-dimensional (3D) reconstructions of zebrafish locomotion, globally assessed behavioral profiles evoked by several anxiogenic and anxiolytic manipulations, mapped individual endpoints to 3D reconstructions, and performed cluster analysis to reconfirm behavioral correlates of high- and low-anxiety states. The application of 3D swim path reconstructions consolidates behavioral data (while increasing data density) and provides a novel way to examine and represent zebrafish behavior. It also enables rapid optimization of video tracking settings to improve quantification of automated parameters, and suggests that spatiotemporal organization of zebrafish swimming activity can be affected by various experimental manipulations in a manner predicted by their anxiolytic or anxiogenic nature. Our approach markedly enhances the power of zebrafish behavioral analyses, providing innovative framework for high-throughput 3D phenotyping of adult zebrafish behavior.  相似文献   

10.
Binocular vision requires intricate control of eye movement to align overlapping visual fields for fusion in the visual cortex, and each eye is controlled by 6 extraocular muscles (EOMs). Disorders of EOMs are an important cause of symptomatic vision loss. Importantly, EOMs represent specialized skeletal muscles with distinct gene expression profile and susceptibility to neuromuscular disorders. We aim to investigate and describe the anatomy of adult zebrafish extraocular muscles (EOMs) to enable comparison with human EOM anatomy and facilitate the use of zebrafish as a model for EOM research. Using differential interference contrast (DIC), epifluorescence microscopy, and precise sectioning techniques, we evaluate the anatomy of zebrafish EOM origin, muscle course, and insertion on the eye. Immunofluorescence is used to identify components of tendons, basement membrane and neuromuscular junctions (NMJs), and to analyze myofiber characteristics. We find that adult zebrafish EOM insertions on the globe parallel the organization of human EOMs, including the close proximity of specific EOM insertions to one another. However, analysis of EOM origins reveals important differences between human and zebrafish, such as the common rostral origin of both oblique muscles and the caudal origin of the lateral rectus muscles. Thrombospondin 4 marks the EOM tendons in regions that are highly innervated, and laminin marks the basement membrane, enabling evaluation of myofiber size and distribution. The NMJs appear to include both en plaque and en grappe synapses, while NMJ density is much higher in EOMs than in somatic muscles. In conclusion, zebrafish and human EOM anatomy are generally homologous, supporting the use of zebrafish for studying EOM biology. However, anatomic differences exist, revealing divergent evolutionary pressures.  相似文献   

11.
12.
We have found that dystrophin is highly concentrated at neuromuscular junctions and innervated membranes of the electric organ of Torpedo californica. In acetylcholine receptor-rich Torpedo membrane preparations dystrophin represents approximately 0.4% of total protein and can be extracted from these membranes by alkaline treatment in the absence of detergent, indicating that it is a peripheral membrane protein. Polyclonal antibodies raised against electrophoretically isolated Torpedo dystrophin cross-react with dystrophin in human muscle and unequivocally discriminate between normal and Duchenne muscular dystrophy patient's muscle. These results indicate that dystrophin is phylogenetically a highly conserved protein and that the relatively abundant dystrophin in electric organ would facilitate further investigations of its structure and function.  相似文献   

13.
《Autophagy》2013,9(1):142-143
The target of rapamycin (TOR) kinase is part of an evolutionarily conserved signaling pathway that coordinates cell growth, survival, and autophagy. Previously, pharmacological studies using rapamycin have suggested a cardioprotective effect of TOR signaling inhibition on cardiomyopathy. We found that rapamycin exerts a conserved cardioprotective effect in two adult zebrafish models of cardiomyopathy of different etiology, and provided the first genetic evidence to support a long-term cardioprotective effect of TOR signaling inhibition. Moreover, we detected dynamic TOR-autophagy activities along different stages of cardiomyopathy. This needs to be considered when developing TOR-autophagy-based therapeutics for cardiomyopathy.  相似文献   

14.
Ding Y  Sun X  Xu X 《Autophagy》2012,8(1):142-143
The target of rapamycin (TOR) kinase is part of an evolutionarily conserved signaling pathway that coordinates cell growth, survival, and autophagy. Previously, pharmacological studies using rapamycin have suggested a cardioprotective effect of TOR signaling inhibition on cardiomyopathy. We found that rapamycin exerts a conserved cardioprotective effect in two adult zebrafish models of cardiomyopathy of different etiology, and provided the first genetic evidence to support a long-term cardioprotective effect of TOR signaling inhibition. Moreover, we detected dynamic TOR-autophagy activities along different stages of cardiomyopathy. This needs to be considered when developing TOR-autophagy-based therapeutics for cardiomyopathy.  相似文献   

15.
Purinergic Signalling - Adenosine is an endogenous nucleoside in the central nervous system that acts on adenosine receptors. These are G protein-coupled receptors that have four known subtypes:...  相似文献   

16.
The zebrafish has been used as an animal model for studies of several human diseases. It can serve as a powerful preclinical platform for studies of molecular events and therapeutic strategies as well as for evaluating the physiological mechanisms of some pathologies. There are relatively few publications related to adult zebrafish physiology of organs and systems, which may lead researchers to infer that the basic techniques needed to allow the exploration of zebrafish systems are lacking. Hematologic biochemical values of zebrafish were first reported in 2003 by Murtha and colleagues who employed a blood collection technique first described by Jagadeeswaran and colleagues in 1999. Briefly, blood was collected via a micropipette tip through a lateral incision, approximately 0.3 cm in length, in the region of the dorsal aorta. Because of the minute dimensions involved, this is a high-precision technique requiring a highly skilled practitioner. The same technique was used by the same group in another publication in that same year. In 2010, Eames and colleagues assessed whole blood glucose levels in zebrafish. They gained access to the blood by performing decapitations with scissors and then inserting a heparinized microcapillary collection tube into the pectoral articulation. They mention difficulties with hemolysis that were solved with an appropriate storage temperature based on the work Kilpatrick et al. When attempting to use Jagadeeswaran's technique in our laboratory, we found that it was difficult to make the incision in precisely the right place as not to allow a significant amount of blood to be lost before collection could be started. Recently, Gupta et al. described how to dissect adult zebrafish organs, Kinkle et al. described how to perform intraperitoneal injections, and Pugach et al. described how to perform retro-orbital injections. However, more work is needed to more fully explore basic techniques for research in zebrafish. The small size of zebrafish presents challenges for researchers using it as an experimental model. Furthermore, given this smallness of scale, it is important that simple techniques are developed to enable researchers to explore the advantages of the zebrafish model.  相似文献   

17.
Hematopoietic stem cells (HSC) are a rare population of pluripotent cells that maintain all the differentiated blood lineages throughout the life of an organism. The functional definition of a HSC is a transplanted cell that has the ability to reconstitute all the blood lineages of an irradiated recipient long term. This designation was established by decades of seminal work in mammalian systems. Using hematopoietic cell transplantation (HCT) and reverse genetic manipulations in the mouse, the underlying regulatory factors of HSC biology are beginning to be unveiled, but are still largely under-explored. Recently, the zebrafish has emerged as a powerful genetic model to study vertebrate hematopoiesis. Establishing HCT in zebrafish will allow scientists to utilize the large-scale genetic and chemical screening methodologies available in zebrafish to reveal novel mechanisms underlying HSC regulation. In this article, we demonstrate a method to perform HCT in adult zebrafish. We show the dissection and preparation of zebrafish whole kidney marrow, the site of adult hematopoiesis in the zebrafish, and the introduction of these donor cells into the circulation of irradiated recipient fish via intracardiac injection. Additionally, we describe the post-transplant care of fish in an "ICU" to increase their long-term health. In general, gentle care of the fish before, during, and after the transplant is critical to increase the number of fish that will survive more than one month following the procedure, which is essential for assessment of long term (<3 month) engraftment. The experimental data used to establish this protocol will be published elsewhere. The establishment of this protocol will allow for the merger of large-scale zebrafish genetics and transplant biology.Download video file.(607M, mov)  相似文献   

18.
Adult teleost fish and urodele amphibians possess a spectacular ability to regenerate amputated appendages, based on formation and maintenance of progenitor tissue called a blastema. Although injury-induced, or facultative, appendage regeneration has been studied extensively, the extent to which homeostatic regeneration maintains these structures has not been examined. Here, we found that transgenic inhibition of Fgf receptors in uninjured zebrafish caused severe atrophy of all fin types within 2 months, revealing a requirement for Fgfs to preserve dermal bone, joint structures and supporting tissues. Appendage maintenance involved low-level expression of markers of blastema-based regeneration, focused in distal structures displaying recurrent cell death and proliferation. Conditional mutations in the ligand Fgf20a and the kinase Mps1, factors crucial for regeneration of amputated fins, also caused rapid, progressive loss of fin structures in otherwise uninjured animals. Our experiments reveal that the facultative machinery that regenerates amputated teleost fins also has a surprisingly vigorous role in homeostatic regeneration.  相似文献   

19.
20.
Xirp proteins mark injured skeletal muscle in zebrafish   总被引:1,自引:0,他引:1  
Myocellular regeneration in vertebrates involves the proliferation of activated progenitor or dedifferentiated myogenic cells that have the potential to replenish lost tissue. In comparison little is known about cellular repair mechanisms within myocellular tissue in response to small injuries caused by biomechanical or cellular stress. Using a microarray analysis for genes upregulated upon myocellular injury, we identified zebrafish Xin-actin-binding repeat-containing protein1 (Xirp1) as a marker for wounded skeletal muscle cells. By combining laser-induced micro-injury with proliferation analyses, we found that Xirp1 and Xirp2a localize to nascent myofibrils within wounded skeletal muscle cells and that the repair of injuries does not involve cell proliferation or Pax7(+) cells. Through the use of Xirp1 and Xirp2a as markers, myocellular injury can now be detected, even though functional studies indicate that these proteins are not essential in this process. Previous work in chicken has implicated Xirps in cardiac looping morphogenesis. However, we found that zebrafish cardiac morphogenesis is normal in the absence of Xirp expression, and animals deficient for cardiac Xirp expression are adult viable. Although the functional involvement of Xirps in developmental and repair processes currently remains enigmatic, our findings demonstrate that skeletal muscle harbours a rapid, cell-proliferation-independent response to injury which has now become accessible to detailed molecular and cellular characterizations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号