首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A method which allows direct cloning of intracellular substrates for receptor tyrosine kinases (RTKs) was developed. By applying this technique to the study of the epidermal growth factor receptor (EGFR) signaling pathway, we have isolated a cDNA, designated eps8, which predicts a approximately 92 kDa protein containing an SH3 domain. Eps8 also contains a putative nuclear targeting sequence. Antibodies specific to the eps8 gene product recognize a protein of M(r) 97 kDa and a minor 68 kDa component, which are closely related, as demonstrated by V8 proteolytic mapping. The product of the eps8 gene is tyrosine-phosphorylated in vivo following EGF stimulation of intact cells and associates with the EGFR, despite the lack of a functional SH2 domain. Several other RTKs are also able to phosphorylate p97eps8. Thus, the eps8 gene product represents a novel substrate for RTKs. Adoptive expression of the eps8 cDNA in fibroblastic or hematopoietic target cells expressing the EGFR resulted in increased mitogenic response to EGF, implicating the eps8 gene product in the control of mitogenic signals.  相似文献   

2.
Two eps8 isoforms, p97eps8 and p68eps8, were previously identified as substrates for receptor tyrosine kinases. Analysis of eps8 phosphotyrosine content in v-Src transformed cells (IV5) revealed that both isoforms were highly tyrosyl phosphorylated and their readiness to be phosphorylated by Src in vitro further indicated that they were putative Src substrates as well. Indeed, the enhancement of tyrosyl phosphorylation of p97eps8 detected in cells coexpressing both p97eps8 and active Src relative to that in cells expressing p97eps8 alone supported our hypothesis. The existence of common phosphotryptic peptides between in vitro 32P-labeled p97eps8 and p68eps8 indicated that these two proteins shared the same Src-mediated sites. Further in vitro binding assays demonstrated that p68eps8 was the major eps8 isoforms that could be precipitated by bacterial fusion protein containing Src SH3. Interestingly, both p68eps8 and p97eps8 were preferentially expressed in v-Src transformed cells and the presence of p68eps8 appeared to depend on Src. Since p97eps8 has been implicated in mitogenesis and tumorigenesis, its readiness to be phosphorylated and induced by v-Src might attribute to v-Src-mediated transformation.  相似文献   

3.
曲古抑菌素A (trichostatin A, TSA) 作为组蛋白去乙酰化酶抑制剂(histone deacetylase inhibitor, HDACi),是近年来发现的一类新型抗肿瘤药物,对多种实体瘤及血液系统肿瘤具有显著抗肿瘤作用.体外实验及动物模型显示,TSA对于乳腺癌也有一定杀伤作用.目前认为,TSA可以通过抑制组蛋白去乙酰化作用而影响细胞内基因转录,但其抗肿瘤作用的分子机理尚不清楚.本文通过MTT法检测不同剂量的TSA对乳腺癌细胞生长的影响,发现TSA可以剂量依赖地抑制乳腺癌细胞MCF-7的生长.膜联蛋白(annexin)-Ⅴ/PI双染法和PAPR水解检测证实TSA同时促进MCF-7细胞凋亡.Western 印迹分析表明,在分子水平上,TSA诱导MCF-7细胞中的周期抑制蛋白p21表达,同时使得抗凋亡因子Bcl-2的表达水平降低,表明TSA可能通过调控p21和Bcl-2的表达来实现抑制乳腺癌细胞生长并促使其凋亡,从而发挥抗肿瘤作用.  相似文献   

4.
H-rev107 is downregulated in many carcinomas and tumor cell lines. Using postconfluent NIH3T3 cells, we demonstrated that growth arrest caused by contact inhibition, but not serum deprivation, increased H-rev107 expression. Furthermore, histone deacetylase inhibitors induced H-rev107 expression in NIH3T3 cells and allowed its reexpression in H-rev107-deficient WEHI 7.1 lymphoma cells. In contrast, no effect of the postconfluent stage or histone deacetylase inhibitors on H-rev107 levels was observed in tumorigenic H-rev107-expressing cell lines, HepG2, HeLa, and SKBR3. Transfections showed that TSA treatment increased luciferase activity 20-fold in NIH3T3 cells. We found that the GC-box at -83/-75 is a key element for H-rev107 induction by TSA and growth arrest, although there were no changes in the pattern and intensity of Sp1/Sp3-binding after induction. These data suggest that contact inhibition of growth and growth arrest caused by histone deacetylase inhibitors probably use the same mechanism to stimulate H-rev107 expression via histone acetylation in NIH3T3 cells and this might contribute to the development of drugs that can induce H-rev107 expression in certain tumors.  相似文献   

5.
6.
Toll-like receptors (TLRs) are crucial in macrophage phagocytosis, which is pivotal in host innate immune response. However, the detailed mechanism is not fully defined. Here, we demonstrated that the induction of Src and Eps8 in LPS-treated macrophages was TLR4- and MyD88-dependent, and their attenuation reduced LPS-promoted phagocytosis. Confocal microscopy indicated the colocalization of Eps8 and TLR4 in the cytosol and at the phagosome. Consistently, both Eps8 and TLR4 were present in the same immunocomplex regardless of LPS stimulation. Inhibition of this complex formation by eps8 siRNA or overexpression of pleckstrin homology domain-truncated Eps8 (i.e. 261-p97(Eps8)) decreased LPS-induced TLR4-MyD88 interaction and the following activation of Src, focal adhesion kinase, and p38 MAPK. Importantly, attenuation of Eps8 impaired the bacterium-killing ability of macrophages. Thus, Eps8 is a key regulator of the LPS-stimulated TLR4-MyD88 interaction and contributes to macrophage phagocytosis.  相似文献   

7.
8.
曲古抑菌素A对结肠癌细胞株SW480细胞周期影响的机制研究   总被引:4,自引:0,他引:4  
为了研究组蛋白去乙酰化酶(HDACs)抑制剂曲古抑菌素A(TSA)对结肠癌细胞周期和凋亡的影响,初步探讨TSA作用细胞周期的可能机制,将人结肠癌细胞系SW480经TSA处理后,运用流式细胞术检测细胞周期、凋亡以及细胞周期素的变化,最后采用western-blot对细胞周期相关的基因进行检测.结果表明,TSA处理细胞后,TSA能够延缓细胞周期G1-S进程,阻滞细胞于G1期,并且影响细胞周期素cyclinE、cyclinA聚集,而对凋亡无明显的影响.Western-blot显示,TSA能够上调p21Waf1/Cip1、p27Kip1的表达,下调CDK2、cyclinE以及cycli-nA的表达.以上结果说明在结肠癌细胞中,TSA能够通过上调p21Waf1/Cip1、p27Kip1的表达以及下调CDK2、cy-clinE、cyclinA的表达,从而阻滞细胞周期于G1期,最终影响肿瘤细胞的生长,以上研究为HDAC抑制剂应用于结肠癌治疗提供了理论依据.  相似文献   

9.
10.
11.
After interaction with its receptor, GM-CSF induces phosphorylation of the beta-chain in two distinct domains in macrophages. One induces activation of mitogen-activated protein kinases and the PI3K/Akt pathway, and the other induces JAK2-STAT5. In this study we describe how trichostatin A (TSA), which inhibits deacetylase activity, blocks JAK2-STAT5-dependent gene expression but not the expression of genes that depend on the signal transduction induced by the other domain of the receptor. TSA treatment inhibited the GM-CSF-dependent proliferation of macrophages by interfering with c-myc and cyclin D1 expression. However, M-CSF-dependent proliferation, which requires ERK1/2, was unaffected. Protection from apoptosis, which involves Akt phosphorylation and p21(waf-1) expression, was not modified by TSA. GM-CSF-dependent expression of MHC class II molecules was inhibited because CIITA was not induced. The generation of dendritic cells was also impaired by TSA treatment because of the inhibition of IRF4, IRF2, and RelB expression. TSA mediates its effects by preventing the recruitment of RNA polymerase II to the promoter of STAT5 target genes and by inhibiting their expression. However, this drug did not affect STAT5A or STAT5B phosphorylation or DNA binding. These results in GM-CSF-treated macrophages reveal a relationship between histone deacetylase complexes and STAT5 in the regulation of gene expression.  相似文献   

12.
Maturation of dendritic cells (DC) towards functional antigen-presenting cells is a complex process, the regulation of which may also involve epigenetic mechanisms. Thus, it is of interest to investigate how gene expression changes during DC maturation can be influenced with epigenetic agents, such as DNA methyltransferase or histone deacetylase inhibitors. Here, we document the effects of DNA methyltransferase inhibitor 5-azacytidine (5AC) and histone deacetylase inhibitor trichostatin A (TSA) on the murine bone marrow-derived, as well as on the human monocyte-derived DC maturation. The major impact of 5AC and TSA on the DC maturation process consisted in the inhibition of unmethylated CpG oligodeoxynucleotide (CpG ODN) 1826 or LPS-induced activation of pro- and anti-inflammatory cytokine gene expression activation. In the in vitro studies, TSA but not 5AC significantly reduced the capacity of the peptide-pulsed DC to induce total spleen as well as CD8(+) or CD4(+) cell proliferation. IFNγ production by the specific CD4(+) spleen cells co-cultured with TSA- but not with 5AC-treated DC was lower, as compared to the cytokine production after co-cultivation with untreated mature DC. Collectively, these results demonstrate the potential of epigenetic agents, which are under intensive investigation as promising anti-tumour agents, to hamper the immune response induction through their inhibitory effects on DC.  相似文献   

13.
In an attempt to study the role of Eps8 in human carcinogenesis, we observe that ectopic overexpression of Eps8 in SW480 cells (low Eps8 expression) increases cell proliferation. By contrast, expressing eps8 small interference RNA in SW620 and WiDr cells (high Eps8 expression) reduces their proliferation rate. Interestingly, attenuation of Eps8 decreases Src Pi-Tyr-416, Shc Pi-Tyr-317, and serum-induced FAK Pi-Tyr-397 and Pi-Tyr-861. Remarkably, by virtue of mammalian target of rapamycin/STAT3 Pi-Ser-727, Eps8 modulates FAK expression required for cell proliferation. Within 62% of colorectal tumor specimens examined, >2-fold enhancement of Eps8 as compared with their normal counterparts is observed, especially for those from the advanced stage. In agreement with the modulation of FAK by Eps8, the concomitant expression of these two proteins in tumor specimens is observed. Notably, Eps8 attenuation also impedes the motility of SW620 and WiDr cells, which can be rescued by ectopically expressed FAK. This finding discloses the indispensability of Eps8 and FAK in cell locomotion. These results provide a novel mechanism for Eps8-mediated FAK expression and activation in colon cancer cells.  相似文献   

14.
15.
Histone deacetylase (HDAC) inhibitors inhibit the proliferation of transformed cells in vitro, restrain tumor growth in animals, and are currently being actively exploited as potential anticancer agents. To identify gene targets of the HDAC inhibitor trichostatin A (TSA), we compared the gene expression profiles of BALB/c-3T3 cells treated with or without TSA. Our results show that TSA up-regulates the expression of the gene encoding growth-differentiation factor 11 (Gdf11), a transforming growth factor beta family member that inhibits cell proliferation. Detailed analyses indicated that TSA activates the gdf11 promoter through a conserved CCAAT box element. A comprehensive survey of human HDACs revealed that HDAC3 is necessary and sufficient for the repression of gdf11 promoter activity. Chromatin immunoprecipitation assays showed that treatment of cells with TSA or silencing of HDAC3 expression by small interfering RNA causes the hyperacetylation of Lys-9 in histone H3 on the gdf11 promoter. Together, our results provide a new model in which HDAC inhibitors reverse abnormal cell growth by inactivation of HDAC3, which in turn leads to the derepression of gdf11 expression.  相似文献   

16.
17.
Trichostatin A (TSA, 17 nM), a specific and reversible inhibitor of histone deacetylase induced neurite network formation at and after 4 days. The networks were preserved for at least 3 weeks in the presence of TSA. Butyrolactone I (BLI, 23.6 microM), an inhibitor of cdc2 and cdk2 kinases, also induced neurite extension. Both compounds enhanced the acetylcholinesterase activity of the cells. Cell cycle progression of the cells was blocked by TSA (17 nM) at G1 phase alone. Furthermore, the level of histone hyperacetylation and p21(WAF1) expression in TSA-treated cells increased transiently. These findings suggest that the induction of the neuronal differentiation in Neuro 2a cells by these agents requires the cell cycle arrest at G1 phase, which is caused by inhibition of cycline dependent kinase, a target molecule of BLI and p21(WAF1).  相似文献   

18.
19.
CD1d is a MHC class-like molecule that presents glycolipids to natural killer T (NKT) cells, then regulates innate and adaptive immunity. The regulation of CD1d gene expression in solid tumors is still largely unknown. Gene expression can be epigenetically regulated by DNA methylation and histone acetylation. We found that histone deacetylase inhibitors, trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), induced CD1d gene expression in human (A549 and NCI-H292) and mouse (TC-1 and B16/F0) cancer cells. Simultaneous knockdown of HDAC1 and 2 induced CD1d gene expression. Sp1 inhibitor mitramycin A (MTM) blocked TSA- and SAHA-induced CD1d mRNA expression and Sp1 luciferase activity. Co-transfection of GAL4-Sp1 and Fc-luciferase reporters demonstrated that TSA and SAHA induced Sp1 luciferase reporter activity by enhancing Sp1 transactivation activity. The binding of Sp1 to CD1d promoter and histone H3 acetylation on Sp1 sites were increased by TSA and SAHA. These results indicate that TSA and SAHA could up-regulate CD1d expression in tumor cells through inhibition of HDAC1/2 and activation of Sp1.  相似文献   

20.
Trichostatin A (TSA), a global repressor of histone deacetylase activity, inhibits the proliferation of a number of cell types. However, the identification of the mechanisms underlying TSA-mediated growth arrests has remained elusive. In order to resolve in more detail the cellular process modulated during the growth inhibition induced by TSA, we studied the effect of the drug on G(0)/G(1) traverse in mitogen-stimulated quiescent Balb/c-3T3 cells. Cyclin D1 and retinoblastoma proteins were induced following the mitogenic stimulation of both control and TSA-treated cells, and cyclin D1 formed complexes with CDK4 under both conditions. However, cyclin D1-associated kinase was not increased in growth-arrested cells. The lack of cyclin D-associated kinase was paralleled by an accumulation of RB in a hypophosphorylated form, as would be expected. In contrast, p130 became partially phosphorylated, accompanied by a marked increase in p130-dependent E2F DNA binding activity and a partial release of free E2F-4. Despite the presence of E2F complexes not bound to pocket proteins, late G(1) E2F-dependent gene expression was not observed. The lack of cyclin D1-associated kinase in TSA-treated cultures was potentially due to high levels of the cyclin-dependent inhibitor p27(kip1). However, the modulation of p27(kip1) levels by the deacetylase inhibitor cannot be responsible for the induction of the cell cycle arrest, since the growth of murine embryo fibroblasts deficient in both p27(kip1) and p21(cip1) was also inhibited by TSA. These data support a model in which TSA inhibits very early cell cycle traverse, which, in turn, leads to a decrease in cyclin D1-associated kinase activation and a repression of late cell cycle-dependent events. Alterations in early G(0)/G(1) gene expression accompany the TSA-mediated growth arrest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号