首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Angiogenesis consists of the growth of new blood vessels from the pre-existing vasculature. This phenomenon takes place in several biological processes, including wound healing. In this work, we present a mathematical model of angiogenesis applied to skin wound healing. The developed model includes biological (capillaries and fibroblasts), chemical (oxygen and angiogenic growth factor concentrations) and mechanical factors (cell traction forces and extracellular matrix deformation) that influence the evolution of the healing process. A novelty from previous works, apart from the coupling of angiogenesis and wound contraction, is the more realistic modelling of skin as a hyperelastic material. Large deformations are addressed using an updated Lagrangian approach. The coupled non-linear model is solved with the finite element method, and the process is studied over two wound geometries (circular and elliptical) of the same area. The results indicate that the elliptical wound vascularizes two days earlier than the circular wound but that they experience a similar contraction level, reducing its size by 25 %.  相似文献   

2.
We propose a mathematical model to aid the understanding of how events in wound healing are orchestrated to result in wound contraction. Ultimately, a validated model could provide a predictive means for enhancing or mitigating contraction as is appropriate for managing a particular wound. The complex nature of wound healing and the lack of a modeling framework which can account for both the relevant cell biology and biomechanics are major reasons for the absence of models to date. Here we adapt a model originally proposed by Murray and co-workers to show how cell traction forces can result in spatial patterns of cell aggregates since it offers a framework for understanding how traction exerted by wound fibroblasts drives wound contraction. Since it is a continuum model based on conservation laws which reflect assumed cell and tissue properties, it is readily extended to account for emerging understanding of the cell biology of wound healing and its relationship to inflammation. We consider various sets of assumed properties, based on current knowledge, within a base model of dermal wound healing and compare predictions of the rate and extent of wound contraction to published experimental results.  相似文献   

3.
Healing of hard and soft tissue is mediated by a complex array of intracellular and extracellular events that are regulated by signaling proteins, a process that is, at present, incompletely understood. What is certain, however, is that platelets play a prominent if not deciding role. Controlled animal studies of soft and hard tissues have suggested that the application of autogenous platelet-rich plasma can enhance wound healing. The clinical use of platelet-rich plasma for a wide variety of applications has been reported; however, many reports are anecdotal and few include controls to definitively determine the role of platelet-rich plasma. The authors describe platelet biology and its role in wound healing; the preparation, characterization, and use of platelet-rich plasma; and those applications in plastic surgery for which it may be useful.  相似文献   

4.
This paper considers the comparison of experimental spatial and temporal data of mitotic rates measured during corneal epithelial wound healing (CEWH) of a rat model with the predictions of a computer modelling framework. We begin by briefly showing that previous models, used in the study of corneal epithelial wound healing speeds, are inadequate for the study of cell kinetics. We proceed to formulate a new modelling framework more suited to such a study. This framework is simulated in its simplest form, and the results from this motivate a new realisation of the modelling framework, including a caricature of age structuring. Finally, a model with a simple representation of juxtacrine signalling is considered. The final model captures many, though not all, of the trends of the experimental data. This paper thus lays a foundation for the modelling of the cell kinetics of corneal epithelial wound healing, and yields valuable insight regarding the important mechanisms a model should consider in order to reproduce the observed experimental trends.  相似文献   

5.
Cutaneous wound healing is a highly coordinated physiological process that rapidly and efficiently restores skin integrity. Reepithelization is a crucial step during wound healing, which involves migration and proliferation of keratinocytes to cover the denuded dermal surface. Recent advances in wound biology clarified the molecular pathways governing keratinocyte reepithelization at wound sites. These new findings point towards novel therapeutic targets and provide suitable methods to promote faster tissue regeneration in vivo.  相似文献   

6.
Angiogenesis, the process of new vessel growth from pre-existing vasculature, is crucial in many biological situations such as wound healing and embryogenesis. Angiogenesis is also a key regulator of pathogenesis in many clinically important disease processes, for instance, solid tumour progression and ocular diseases. Over the past 10–20 years, tumour-induced angiogenesis has received a lot of attention in the mathematical modelling community and there have also been some attempts to model angiogenesis during wound healing. However, there has been little modelling work of vascular growth during normal development. In this paper, we describe an in silico representation of the developing retinal vasculature in the mouse, using continuum mathematical models consisting of systems of partial differential equations. The equations describe the migratory response of cells to growth factor gradients, the evolution of the capillary blood vessel density, and of the growth factor concentration. Our approach is closely coupled to an associated experimental programme to parameterise our model effectively and the simulations provide an excellent correlation with in vivo experimental data. Future work and development of this model will enable us to elucidate the impact of molecular cues upon vasculature development and the implications for eye diseases such as diabetic retinopathy and neonatal retinopathy of prematurity.  相似文献   

7.
A wealth of growth factors are known to regulate the various cell functions involved in the repair process. An understanding of their therapeutic value is essential to achieve improved wound healing. Keratinocyte growth factor (KGF) seems to have a unique role as a mediator of mesenchymal-epithelial interactions: it originates from mesenchymal cells, yet acts exclusively on epithelial cells. In this paper, we study KGF's role in epidermal wound healing, since its production is substantially up-regulated after injury. We begin by modelling the dermal-epidermal signalling mechanism of KGF to investigate how this extra production affects the signal range. We then incorporate the effect of KGF on cell proliferation, and using travelling wave analysis we obtain an approximation for the rate of healing. Our modelling shows that the large up-regulation of KGF post-wounding extends the KGF signal range but is above optimal for the rate of wound closure. We predict that other functions of KGF may be more important than its role as a mitogen for the healing process.  相似文献   

8.
创面愈合是由炎性细胞、细胞因子等多种因素共同参与,涉及组织修复、再生、重建的一个复杂有序的病理生理过程。皮肤慢性创面的愈合仍然是临床研究的重点与热点,随着分子生物学的发展,对皮肤创面愈合机制的认识也逐渐深入。Wnt信号通路是一条由Wnt蛋白及其受体、调节蛋白等组成的高度保守的信号通路,参与细胞增殖、凋亡、分化等多种生物学过程。Wnt信号通路作为参与皮肤愈合的信号通路之一,被认为具有调控皮肤及其附属器的发育、诱导皮肤附件的形态发生、调节毛囊的周期生长、促进创面血管新生及上皮重塑等多方面的功能。因此本文试从炎性细胞、成纤维细胞、干细胞、血管新生、表皮新生与毛囊新生等方面对Wnt信号通路与皮肤创面愈合的关系作一综述。  相似文献   

9.
Chronic wounds are a significant socioeconomic problem for governments worldwide. Approximately 15% of people who suffer from diabetes will experience a lower-limb ulcer at some stage of their lives, and 24% of these wounds will ultimately result in amputation of the lower limb. Hyperbaric Oxygen Therapy (HBOT) has been shown to aid the healing of chronic wounds; however, the causal reasons for the improved healing remain unclear and hence current HBOT protocols remain empirical. Here we develop a three-species mathematical model of wound healing that is used to simulate the application of hyperbaric oxygen therapy in the treatment of wounds. Based on our modelling, we predict that intermittent HBOT will assist chronic wound healing while normobaric oxygen is ineffective in treating such wounds. Furthermore, treatment should continue until healing is complete, and HBOT will not stimulate healing under all circumstances, leading us to conclude that finding the right protocol for an individual patient is crucial if HBOT is to be effective. We provide constraints that depend on the model parameters for the range of HBOT protocols that will stimulate healing. More specifically, we predict that patients with a poor arterial supply of oxygen, high consumption of oxygen by the wound tissue, chronically hypoxic wounds, and/or a dysfunctional endothelial cell response to oxygen are at risk of nonresponsiveness to HBOT. The work of this paper can, in some way, highlight which patients are most likely to respond well to HBOT (for example, those with a good arterial supply), and thus has the potential to assist in improving both the success rate and hence the cost-effectiveness of this therapy.  相似文献   

10.
Models of epidermal wound healing   总被引:6,自引:0,他引:6  
The spreading of cells across the surface of an epidermal wound enables epidermal migration to be studied independently of the wound contraction that occurs in deeper wounds. In particular, the stimulus for the increase in epidermal mitosis during would healing is uncertain. Our modelling suggests that biochemical regulation of mitosis is fundamental to the process, and that a single chemical with a simple regulatory effect can account for the healing of circular epidermal wounds. The model results compare well with experimental data.  相似文献   

11.
《Cytotherapy》2022,24(11):1074-1086
Skin wound healing leads to the recovery of tissue structure and homeostasis after injury. Numerous factors can hamper wound healing and complete recovery of the harmed tissue, causing the formation of scars or chronic wounds. Therapeutic options to improve wound regeneration are limited, possibly due to failure during pre-clinical validation toward clinical trials. In this article, the authors aim to convey key points and provide recommendations for the development of regenerative agents that improve wound healing using mouse models.First, the authors highlight the differences in the wound healing processes of mice and humans. Later, the authors apply a quasi-systematic research approach based on a search algorithm of 32 terms that focuses on in vivomouse model assays of regenerative factors. The authors analyze the top 20 most cited articles of 2241 hits produced by Scopus. The authors focus the search on a period covering the last 10 years (January 2011 to October 2021). The authors synthesize information from the top 20 articles and present the most common type of mouse model used, mouse characteristics (strain, sex, age, weight), surgical wounding technique employed (size, location, equipment), agents tested, methods of wound monitoring, regeneration assessment and key points to consider for the translational potential of these agents. This knowledge will help the scientific community design better in vivo assays and translate their results to further research and clinical validation.  相似文献   

12.
Redox signals in wound healing   总被引:1,自引:0,他引:1  
Physical trauma represents one of the most primitive challenges that threatened survival. Healing a problem wound requires a multi-faceted comprehensive approach. First and foremost, the wound environment will have to be made receptive to therapies. Second, the appropriate therapeutic regimen needs to be identified and provided while managing systemic limitations that could secondarily limit the healing response. Unfortunately, most current solutions seem to aim at designing therapeutic regimen with little or no consideration of the specific details of the wound environment and systemic limitations. One factor that is centrally important in making the wound environment receptive is correction of wound hypoxia. Recent work have identified that oxygen is not only required to disinfect wounds and fuel healing but that oxygen-dependent redox-sensitive signaling processes represent an integral component of the healing cascade. Over a decade ago, it was proposed that in biological systems oxidants are not necessarily always the triggers for oxidative damage and that oxidants such as H(2)O(2) could actually serve as signaling messengers and drive several aspects of cellular signaling. Today, that concept is much more developed and mature. Evidence supporting the role of oxidants such as H(2)O(2) as signaling messenger is compelling. A complete understanding of the continuum between the classical and emergent roles of oxygen requires a thorough consideration of current concepts in redox biology. The objective of this review is to describe our current understanding of how redox-sensitive processes may drive dermal tissue repair.  相似文献   

13.
皮肤是哺乳动物最重要的组织之一.当皮肤受损时,受损组织通过系列伤口愈合反应的生理和心理作用被修复,实现组织再生.再生反应主要发生在胚胎发育早期,伤口自愈能力随着机体的成熟而减弱;并且哺乳动物的组织重塑过程较为复杂,在不正确的信号引导下,可能引起并发症而导致创面愈合异常.研究表明,伤口微环境的稳态和信号分子的辅助作用是愈...  相似文献   

14.
Wound healing is a synchronized cascade of chemical, biological, and mechanical phenomena, which act in concert to restore the damaged tissue. An imbalance between these events can induce painful scarring. Despite intense efforts to decipher the mechanisms of wound healing, the role of mechanics remains poorly understood. Here, we establish a computational systems biology model to identify the chemical, biological, and mechanical mechanisms of scar formation. First, we introduce the generic problem of coupled chemo-bio-mechanics. Then, we introduce the model problem of wound healing in terms of a particular chemical signal, inflammation, a particular biological cell type, fibroblasts, and a particular mechanical model, isotropic hyperelasticity. We explore the cross-talk between chemical, biological, and mechanical signals and show that all three fields have a significant impact on scar formation. Our model is the first step toward rigorous multiscale, multifield modeling in wound healing. Our formulation has the potential to improve effective wound management and optimize treatment on an individualized patient-specific basis.  相似文献   

15.
This review covers the use of plasma technology relevant to the preparation of dressings for wound healing. The current state of knowledge of plasma treatments that have potential to provide enhanced functional surfaces for rapid and effective healing is summarized. Dressings that are specialized to the needs of individual cases of chronic wounds such as diabetic ulcers are a special focus. A summary of the biology of wound healing and a discussion of the various types of plasmas that are suitable for the customizing of wound dressings are given. Plasma treatment allows the surface energy and air permeability of the dressing to be controlled, to ensure optimum interaction with the wound. Plasmas also provide control over the surface chemistry and in cases where the plasma creates energetic ion bombardment, activation with long-lived radicals that can bind therapeutic molecules covalently to the surface of the dressing. Therapeutic innovations enabled by plasma treatment include the attachment of microRNA or antimicrobial peptides. Bioactive molecules that promote subsequent cell adhesion and proliferation can also be bound, leading to the recruitment of cells to the dressing that may be stem cells or patient-derived cells. The presence of a communicating cell population expressing factors promotes healing.  相似文献   

16.
Various forms of fibrosis, comprising tissue thickening and scarring, are involved in 40% of deaths across the world. Since the discovery of scarless functional healing in fetuses prior to a certain stage of development, scientists have attempted to replicate scarless wound healing in adults with little success. While the extracellular matrix (ECM), fibroblasts, and inflammatory mediators have been historically investigated as separate branches of biology, it has become increasingly necessary to consider them as parts of a complex and tightly regulated system that becomes dysregulated in fibrosis. With this new paradigm, revisiting fetal scarless wound healing provides a unique opportunity to better understand how this highly regulated system operates mechanistically. In the following review, we navigate the four stages of wound healing (hemostasis, inflammation, repair, and remodeling) against the backdrop of adult versus fetal wound healing, while also exploring the relationships between the ECM, effector cells, and signaling molecules. We conclude by singling out recent findings that offer promising leads to alter the dynamics between the ECM, fibroblasts, and inflammation to promote scarless healing. One factor that promises to be significant is fibroblast heterogeneity and how certain fibroblast subpopulations might be predisposed to scarless healing. Altogether, reconsidering fetal wound healing by examining the interplay of the various factors contributing to fibrosis provides new research directions that will hopefully help us better understand and address fibroproliferative diseases, such as idiopathic pulmonary fibrosis, liver cirrhosis, systemic sclerosis, progressive kidney disease, and cardiovascular fibrosis.  相似文献   

17.
Huang CM  Wang CC  Barnes S  Elmets CA 《Proteomics》2006,6(21):5805-5814
The identification of in vivo secreted proteins is a major challenge in systems biology. Here we report a novel technique using capillary ultrafiltration (CUF) probes to identify the secreted proteins involved in wound healing. CUF probes, which use semipermeable membrane hollow fibers to continuously capture secreted proteins, were used to sample skin wound fluids. To identify low-abundance proteins, we digested the CUF probe-collected wound fluid with trypsin and then directly subjected it to MS without using 2-DE separation. Two protein fragments with masses of 1565.7 and 1694.8 Da were identified by MS as peptides of thymosin beta10 and beta4, respectively. This is the first identification of thymosin beta10 as an in vivo constituent of the skin wound fluid. The LKKTETQ peptide, a common actin-binding domain of thymosin beta4 and beta10, significantly enhanced skin wound healing in vitro and in vivo. Our data suggest that the enhancement of wound healing by LKKTETQ may be mediated by purinergic receptors. The technique of using CUF probes linked to mass spectrometric proteomics represents a powerful method to identify in vivo secreted proteins, and may be applicable for identification of proteins relevant in various human diseases.  相似文献   

18.
Oxidative stress is triggered by the wound which results in the production of reactive oxygen species (ROS), thereby delaying normal wound repair. Therefore, it is important to reduce the level of ROS to improve healing. A known antioxidant, dehydrozingerone (DHZ) was synthesized and selected for the study. The authors aimed to investigate the wound healing action of topical (100 mg/wound) and systemic (100 mg/kg, p. o.). DHZ on different wound models in normal and dexamethasone (DEX)-suppressed healing. Topical DHZ showed a significant (P < 0.05) rise in tensile strength when compared to control in normal healing. Significant (P < 0.05) wound closure was observed from 3 to 9 days in DHZ oral and gel treated groups. There was a significant (P < 0.05) rise in hydroxyproline content with the DHZ treated groups when compared to control. Systemic DHZ exhibited a significant (P < 0.05) increase in lysyl oxidase (LO) levels of 3.73 ± 0.15 nmol of H(2)O(2) when compared to control. In DEX-suppressed healing, showed good pro-healing activity with respect to the parameters mentioned above. DHZ treatment exhibited a parabolic dose response of ROS inhibition with a plateau effect at 75 μM. There was a steady and constant increase in the % NO inhibition with increasing doses of DHZ. Oral DHZ is effective in accelerating the healing process in both normal and dexamethasone-suppressed wounds. Our study suggests that DHZ (half analog of curcumin) supplementation reduces the steroid-induced delay in wound healing.  相似文献   

19.
Endothelins are important mediators of physiological and pathophysiologic processes including cardiovascular disorders, pulmonary disease, renal diseases and many others. Additionally, endothelins are involved in many other important processes such as development, cancer biology, wound healing, and even neurotransmission. Here, we review the cell and molecular biology as well as the prominent pathophysiological aspects of the endothelin system.  相似文献   

20.
I Cohen 《Acta anatomica》1979,103(2):134-141
An experiment was performed to compare the effects of stressors--cold, heat and noise--on primary wound activity (i.e., wound closure in the first 24 h after wound infliction) and on rate of healing in mice. A significant correlation was found between reduced primary wound activity and a faster rate of healing. Conversely, a correlation was found between relatively greater primary wound activity and a slower rate of healing. A possible explanation of this correlation is a compensatory mechanism inherent to the skin healing process. This mechanism is visualized as (1) stress exposure affecting the skin by (a) causing it to become thinner and tauter and (b) causing it to have less elastic recoil; therefore, (2) when a square wound is produced in stressed skin, (a) the wound does not recoil readily or gapes soon after cutting and (b) a longer wound perimeter results. Because there is evidence that rate of healing is governed by cells on the wound perimeter, the greater the perimeter, the greater the number of cells that will undergo rapid mitosis and the faster will be the rate of healing. Therefore, stressed skin will heal at a faster rate, compensating for the loss of elasticity and cellular depletion caused by stress. This study is of interest to anthropology because it deals with dynamic adaptation, trying to grasp the meaning of the elusive endocrine interface between environmental stimulation and a measurable physical entity like healing. This work may have revealed a functional complex that is common to the healing of all mammalian skin, whereby retarding effects of stress on the healing process are obviated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号