首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文提出了基于光谱扫描技术的非机械扫描的表面等离子体共振(SPR)传感技术,采用白光为SPR激发光源,通过单色仪控制入射光的波长实现光谱寻址,在保证灵敏度和动态范围的同时,使系统在整个动态范围内具有较好的线性,简化了传感器结构。理论分析了光谱扫描SPR传感技术的灵敏度和动态范围,搭建了实验系统,并测量了不同浓度的酒精水混合溶液的SPR信号变化。结果表明:系统折射率测量范围为1.30-1.38,灵敏度可达3.1×105RIU。  相似文献   

2.

Noble metal nanoparticles (NPs) have attracted much attention due to their unique physical and chemical properties such as tunable surface plasmonics, high-efficiency electrochemical sensing, and enhanced fluorescence. We produced two biosensor chips consisting of Ag@Au bimetallic nanoparticles (BNPs) on a carbon thin film by simple RF-sputtering and RF-plasma-enhanced chemical vapor co-deposition. We deposited Au NPs with average size of 4 nm (Au1 NPs) or 11 nm (Au2 NPs) on a sensor chip consisting of Ag NPs with mean size of 15 nm, and we investigated the effect of shell size (Au NPs) on the chemical activities of the resulting Ag@Au1 BNPs and Ag@Au2 BNPs. We estimated the average size and morphology of Ag@Au BNPs by scanning electron microscopy (SEM) and atomic force microscopy (AFM) images. X-ray diffraction (XRD) patterns revealed that Ag NPs and Au NPs had face-centered cubic (FCC) structure. We studied aging of the biosensor chips consisting of Ag@Au BNPs by localized surface plasmon resonance (LSPR) spectroscopy for up to 3 months. UV–visible aging of the prepared samples indicated that Ag@Au1 BNPs, which corresponded to Ag NPs covered with smaller Au NPs, were more chemically active than Ag@Au2 BNPs. Furthermore, we evaluated changes in the LSPR absorption peaks of Ag@Au1 BNPs and bare Ag NPs in the presence of a DNA primer decamer at fM concentrations, to find that Ag@Au1 BNPs were more sensitive biosensor chips within a short response time as compared to bare Ag NPs.

  相似文献   

3.
While an array of technologies based on radioactive labels or luminescent tags are dominant in modern biomedical research on DNA, surface plasmon resonance (SPR) and SPR imaging measurements are sensitive, rapid, and label-free. This review summarizes recent advances in the development of SPR and coupled techniques and their applications in DNA research, including the gene analysis at trace levels and studies of DNA–protein and DNA–drug interactions.  相似文献   

4.
In this article, a D-shaped photonic crystal fiber based surface plasmon resonance sensor is proposed for refractive index sensing. Surface plasmon resonance effect between surface plasmon polariton modes and fiber core modes of the designed D-shaped photonic crystal fiber is used to measure the refractive index of the analyte. By using finite element method, the sensing properties of the proposed sensor are investigated, and a very high average sensitivity of 7700 nm/RIU with the resolution of 1.30 × 10?5 RIU is obtained for the analyte of different refractive indices varies from 1.43 to 1.46. In the proposed sensor, the analyte and coating of gold are placed on the plane surface of the photonic crystal fiber, hence there is no necessity of the filling of voids, thus it is gentle to apply and easy to use.  相似文献   

5.
The labeling strategy with gold nanoparticles for the conventional surface plasmon resonance (SPR) signal enhancement has been frequently used for the sensitive determination of small molecules binding to its interaction partners. However, the influence of gold nanoparticles with different size and shape on SPR signal is not known. In this paper, three kinds of gold nanoparticles, namely nanorods, nanospheres, and nanooctahedrons with different size, were prepared and used to investigate their effects on the conventional SPR signal at a fixed excitation wavelength 670 nm. It was found that the SPR signal (i.e., resonant angle shift) was varied with the shapes and sizes of gold nanoparticles in suspension at a fixed concentration due to their different plasmon absorbance bands. For gold nanorods with different longitudinal absorbance bands, three conventional SPR signal regions could be clearly observed when the gold nanorod suspensions were separately introduced onto the SPR sensor chip surface. One region was the longitudinal absorbance bands coinciding with or close to the SPR excitation wavelength that suppressed the SPR angle shift. The second region was the longitudinal absorbance bands at 624 to 639 and 728 to 763 nm that produced a moderate increase on the SPR resonant angle shift. The third region was found for the longitudinal absorbance bands from 700 to 726 nm that resulted in a remarkable increase in the SPR angle shift responses. This phenomenon can be explained on the basis of calculation of the correlation of SPR angle shift response with the gold nanorod longitudinal absorbance bands. For nanospheres and nanooctahedrons, the SPR angle shift responses were found to be particle shape and size dependent in a simple way with a sustaining increase when the sizes of the nanoparticles were increased. Consequently, a guideline for choosing gold nanoparticles as tags is suggested for the SPR determination of small molecules with binding to the immobilized interaction partners.  相似文献   

6.
Du  Chao  Wang  Qi  Hu  Haifeng  Zhao  Yong 《Plasmonics (Norwell, Mass.)》2017,12(6):1961-1965
Plasmonics - A highly sensitive refractive index (RI) sensor based on four-hole grapefruit fiber with surface plasmon resonance (SPR) has been proposed and theoretically investigated. By coating...  相似文献   

7.
The surface plasmon energy in spherical silver nanoparticles embedded in silica host matrix depends on the size and temperature of the nanoparticles. The dependences of the surface plasmon energy were studied for silver nanoparticles in the size range 11?C30?nm and in the temperature interval 293?C650?K. As the size of the nanoparticles decreases or the temperature increases, the surface plasmon resonance shifts to red. When the size of the nanoparticles decreases, the scattering rate of the conduction electrons increases, which results in the nonlinear red shift of the surface plasmon resonance. The red shift with temperature is linear for larger nanoparticles and becomes nonlinear for smaller ones. As the temperature of the nanoparticles increases, the volume thermal expansion of the nanoparticles leads to the red shift of the surface plasmon resonance. The thermal volume expansion coefficient depends on the size and temperature. It increases with a decrease of the nanoparticle size and an increase of the temperature.  相似文献   

8.
Yuan  Liming  Liao  Jianming  Ren  Aobo  Huang  Cheng  Ji  Chen  Wu  Jiang  Luo  Xiangang 《Plasmonics (Norwell, Mass.)》2021,16(4):1165-1174

Due to the advantage of improving the sensing performance, narrow-band metamaterial perfect absorbers (MPAs) have attracted much attention in the sensor field. Here, we propose an ultra-narrow-band infrared absorber (UNBIRA) based on localized surface plasmon resonance. The peak absorption of the UNBIRA exceeds 99% with the full width at half maximum (FWHM) of 1.94 nm and 6.32 nm for transverse electric (TE) wave and transverse magnetic (TM) wave in 1.5–1.8 μm. The corresponding Q-factors for TE wave and TM wave are 817 and 266, respectively. When used as an infrared refractive index sensor, the sensitivity of UNBIRA is as high as 1632.5 nm/RIU for TE wave and 1647.5 nm/RIU for TM wave. Accordingly, the figure of merits (FOMs) of 816.2/RIU for TE wave and 260.7/RIU for TM wave are achieved. This UNBIRA possesses a simple geometry structure and an excellent sensing performance, implying a great potential for application of ultra-narrow infrared sensing or detecting.

  相似文献   

9.
Plasmonics - In this study, we achieved an enhancement of the transmission surface plasmon resonance (T-SPR) intensity by depositing silver nanoparticles (AgNPs) onto a gold grating substrate. The...  相似文献   

10.
Localized surface plasmon resonances (LSPRs) of Ag-dielectric-Ag multi-layered nanoshell are studied by quasi-static approximation and plasmon hybridization theory. Absorption properties of multi-layered nanoshell with the silver core and nanoshell separated by a dielectric layer exhibit strong coupling between the core and nanoshell. The result shows absorption spectrum of LSPRS is influenced by the refractive index of surrounding medium, the dielectric constant of middle dielectric layer, the thickness of inner core radius and outer shell layer. LSPR shift of the longest wavelength \(\left |\omega _{-}^{-}\right >\) is red-shifted with increasing the inner core radius. It is interesting to find that longer wavelength \(\left |\omega _{-}^{+}\right >\) mode is mainly effected by the ratio constant of the surrounding medium refractive index ε 4 to the middle layer dielectric constant ε 2. \(\left |\omega _{-}^{+}\right >\) mode takes place a blue-shift with increasing inner core radius when ε 2 > ε 4, a red-shift when ε 2 < ε 4, and no-shifting when ε 2 = ε 4. However, the influence of dielectric layer radius to \(\left |\omega _{-}^{+}\right >\) mode shows the different property as that of increasing the inner core radius. The underlying mechanisms are analyzed with the plasmon hybridization theory and the distribution of induced charge interaction between the inner core and outer shell. In addition, the influence of core radius, middle dielectric layer radius and outer shell radius to sensitivity of Ag-dielectric-Ag multi-layered nanoshell are also reported, a higher sensitivity could be gotten by adjusting geometrical parameters. Our theoretical study could give an easy way to analyze properties of the core-shell nanosphere based on plasmon hybridization theory and the induced charge interaction, and usefully broaden the applications in nano-optics.  相似文献   

11.
We study an active modulation of surface plasmon resonance (SPR) of Au nanoparticles based on highly doped graphene in visible and near-infrared regions. We find that compared to the traditional metal SPR, the SPR of Au nanoparticles based on graphene causes a remarkable blue shift. The field intensity in the gap is redistributed to standing wave. The field intensity of standing wave is about one order of magnitude higher than the traditional model. Moreover, the SPR of Au nanoparticles can be actively modulated by varying the graphene Fermi energy. We find the maximum modulation of field intensity of absorption spectra is more than 21.6 % at λ?=?822?nm and the amount of blue shift is 17.4 nm, which is about 2.14 % of the initial wavelength λ 0?=?813.4?nm, with increasing monolayer graphene Fermi energy from 1.0 to 1.5 ev. We find that the SPR sensitivity to the refractive index n of the environment is about 642 nm per refractive index unit (RIU). The SPR wavelengths have a big blue shift, which is about 33 nm, with increasing number of graphene layers from 1 to 3, and some shoulders on the absorption spectra are observed in the models with multilayer graphene. Finally, we study the Au nanorod array based on monolayer graphene. We find that the blue shift caused by the graphene increases from 14 to 24 nm, with increasing gap g y from 10 to 20 nm. Then, it decreases from 24 to 14 nm, with increasing gap g y from 20 to 50 nm. This study provides a new way for actively modulating the optical and optoelectronic devices.  相似文献   

12.
Plasmonics - In the present work, we report our observations drawn from the numerical simulation of absorption and scattering efficiencies of spheroid shape nanostructures using discrete dipole...  相似文献   

13.
We propose a highly sensitive novel diamond ring fiber (DRF)-based surface plasmon resonance (SPR) sensor for refractive index sensing. Chemically active plasmonic material (gold) layer is coated inside the large cavity of DRF, and the analyte is infiltrated directly through the fiber instead of selective infiltration. The light guiding properties and sensing performances are numerically investigated using the finite element method (FEM). The proposed sensor shows a maximum wavelength and amplitude interrogation sensitivity of 6000 nm/RIU and 508 RIU?1, respectively, over the refractive index range of 1.33–1.39. Additionally, it also shows a sensor resolution of 1.67 × 10?5 and 1.97 × 10?5 RIU by following the wavelength and amplitude interrogation methods, respectively. The proposed diamond ring fiber has been fabricated following the standard stack-and-draw method to show the feasibility of the proposed sensor. Due to fabrication feasibility and promising results, the proposed DRF SPR sensor can be an effective tool in biochemical and biological analyte detection.  相似文献   

14.
Zhu  Meijun  Yang  Lin  Lv  Jingwei  Liu  Chao  Li  Qiao  Peng  Chao  Li  Xianli  Chu  Paul K. 《Plasmonics (Norwell, Mass.)》2022,17(2):543-550
Plasmonics - A highly sensitive surface plasmon resonance (SPR) sensor comprising a dual-core photonic crystal fiber (PCF) is designed to detect minute changes in analyte refractive indices (RIs)...  相似文献   

15.
16.
Wang  Famei  Sun  Zhijie  Liu  Chao  Sun  Tao  Chu  Paul K. 《Plasmonics (Norwell, Mass.)》2017,12(6):1847-1853

A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance (PCF-SPR) biosensor with a silver-graphene layer is described. The silver layer with a graphene coating not only prevents oxidation of the silver layer but also can improve the silver sensing performance due to the large surface-to-volume ratio of graphene. The dual-core PCF-SPR biosensor is numerically analyzed by the finite-element method (FEM). An average spectral sensitivity of 4350 nm/refractive index unit (RIU) in the sensing range between 1.39 and 1.42 and maximum spectral sensitivity of 10,000 nm/RIU in the sensing range between 1.43 and 1.46 are obtained, corresponding to a high resolution of 1 × 10−6 RIU as a biosensor. Our analysis shows that the optical spectra of the PCF-SPR biosensor can be optimized by varying the structural parameters of the structure, suggesting promising applications in biological and biochemical detection.

  相似文献   

17.
Methods for registration of intermolecular interactions based on the phenomenon of surface plasmon resonance (SPR) have become one of the most efficient tools to solve fundamental and applied problems of analytical biochemistry. Nevertheless, capabilities of these methods are often insufficient to detect low concentrations of analytes or to screen large numbers of objects. That is why considerable efforts are directed at enhancing the sensitivity and efficiency of SPR-based measurements. This review describes the basic principles of the detection of intermolecular interactions using this method, provides a comparison of various types of SPR detectors, and classifies modern approaches to enhance sensitivity and efficiency of measurements.  相似文献   

18.
The response of optical fiber surface plasmon resonance (SPR) sensor to potential is monitored in real time. The potential-induced reflectance of a gold-coated optical fiber SPR probe is dependent on potential step width and ionic strength. Wider potential step and stronger ionic strength are generally able to enhance the reflectance and accelerate the response time. The specifically adsorptive anion Cl? provides a pronounced effect on a potential-dependent SPR probe. The exclusive contact of the SPR probe with anion Cl? could significantly slow down the optical response. The work offers opportunities for optical fiber SPR probes to characterize the electrochemical application.  相似文献   

19.
It is demonstrated that the sensitivity of surface plasmon resonance phase-interrogation biosensor can be enhanced by using silver nanoparticles. Silver nanoparticles were fabricated on silver films by using thermal evaporation. Sizes of silver nanoparticles on silver thin film can be tuned by controlling the deposition parameters of thermal evaporation. By using surface plasmon resonance heterodyne interferometey to measure the phase difference between the p and s polarization of incident light, we have demonstrated that sensitivity of glucose detection down to the order of 10−8 refractive index units can be obtained.  相似文献   

20.
We developed a novel technique for increasing the sensitivity of transmission surface plasmon resonance (T-SPR) signals. T-SPR spectroscopy was performed by irradiating, with white light, a gold grating substrate whose surface was nanostructured by growing gold nanoparticles (AuNPs). AuNPs were grown directly on the substrate surface by alcohol reduction and their growth was observed at various stages by UV–visible spectroscopy and standard Kretschmann-type SPR spectroscopy. For comparison, normal gold film with smooth surface was examined under similar condition. The T-SPR results show a possibility of hybrid excitation of both localized and propagating surface plasmon. Significantly, T-SPR spectra of the gold grating substrate obtained during AuNP growth show stronger and narrower peaks in the range 650–800 nm. The maximum T-SPR excitation was at an incident angle of 35°. A layer-by-layer system of 5,10,15,20-tetrakis (1-methyl-4-pyridinio)porphyrin tetra(p-toluenesulfonate) molecules and sodium copper chlorophyllin molecules was used to verify the enhancement of the developed system. We believe that the AuNPs/Au grating for T-SPR devices will provide enhanced signals for detecting nanometer order materials and for high-sensitive sensor applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号