首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Feng  Yuncai  Liu  Youwen  Wang  Xiaohua  Dong  Daxing  Shi  Yaoyao  Tang  Liangzun 《Plasmonics (Norwell, Mass.)》2018,13(2):653-659
Plasmonics - We propose a tunable multichannel plasmonic mid-infrared filter of a single graphene sheet depositing on a Fibonacci quasiperiodic structure. The transmission spectra are numerically...  相似文献   

2.
We propose a modulating plasmonic structure device which is composed of a single layer graphene above the silicon Bragg grating with the silica spacer layer. This graphene-based plasmonic modulation provides a broad stop-band with high tunability in the mid-infrared region of the transmission spectra achieved by altering the geometrical parameters of the silicon grating and the gate voltage. By engineering, a phase discontinuity into the graphene-based Bragg grating, we can selectively open a transmission window in the previous stop-band spectra. These proposed graphene-based structures are easy to fabricate and operate, which have potential applications as ultra-compact high-sensitivity sensors.  相似文献   

3.
Plasmonics - A tunable plasmonic filter waveguide with indium antimonide activated by graphene layer configuration is proposed and numerically investigated. We demonstrate that the proposed tunable...  相似文献   

4.
Based on the interplay between propagating surface plasmon polaritons (PSPs) in graphene ribbon and double layer sheets structure, we theoretically demonstrate a tunable strong coupling mechanism significantly different from reported conventional noble metal nanostructures. The strong electromagnetic coupling between the low order antisymmetric and high order symmetric PSPs modes occurs due to the intersections of dispersion curves, which leads to a modification of plasmonic dispersion and multiple significant anti-crossing regions. Of particular, this strong coupling is controllable through external gate voltage of graphene sheets or ribbon. The results offer an effective regime to dynamically tune the interaction of graphene PSPs, which may find applications in the field of nanophotonic devices in the mid-infrared range.  相似文献   

5.

A tunable high transmission optical bandpass filter based on a plasmonic hybrid nanostructure, composed of a periodic array of nanocircles and nanoholes combining two isolated waveguides is introduced in this paper. The presented design improves the coupling, which results in a higher transmission peak. To study the filtering operation, different topologies are investigated. The transmission properties and the resonance wavelengths are adjusted by sweeping various geometrical parameters. A multimode spectrum for each of the topologies is obtained. A tunable bandgap and bandwidth can be obtained by adjusting the refractive index of the periodic nanostructure. We have reached a maximum quality factor and a small full width at half-maximum bandwidth with the maximum transmission values greater than 80%. The advantages of the presented structures which include the benefits of both plasmonic and periodic nanostructures are tunability, high detection resolution, and integrability at the nanoscale for optical applications.

  相似文献   

6.

Reconfigurable one-, two-, and three-bit plasmonic logic gate configurations have been proposed, which work by covering a straight slot waveguide with materials with tunable dielectric constants, such as graphene. By encoding the logic states in the values of dielectric constants as opposed to different waveguides, the plasmon excitation problems are minimized and the simplified logic gate configurations could be easily implemented.

  相似文献   

7.
Dynamically tunable multichannel filter based on plasmon-induced transparencies (PITs) is proposed in a plasmonic waveguide side-coupled to slot and rectangle resonators system at optical communication range. The slot and rectangle resonators in this system can be regarded as radiative or dark resonators as same as the radiative or dark elements in the metamaterial structure with the help of the evanescent coupling. The multiple PIT responses which can enable the realization of nanoscale filter with four channels are originated from the direct near-field coupling and indirect phase couple through a plasmonic waveguide simultaneously. Moreover, the magnitudes and bandwidths of the filter can be efficiently tuned by controlling of the geometric parameters such as the coupling distances and the pump light-induced refractive index change of the Kerr material which is embedded into the metal-dielectric-metal waveguide between the radiative resonators.  相似文献   

8.
Terahertz (THz) absorber with dynamically tunable bandwidth possesses huge application value in the fields of switches, sensors, and THz detection. However, the perfect absorbers based on photonic crystals and metamaterials are not intelligent enough to capture the electromagnetic wave in a tunable way. In this paper, we utilized only patterned graphene to tune the absorption positions and the bandwidth in the terahertz regime. More distinguished than some dynamic absorbers proposed before, the performances with peak frequency relative tuning range of 68 % and nearly unity absorbance are obtained by a single cross-shaped graphene layer. Additionally, the working bandwidth can be broadened with stacked structured graphene. The almost perfect absorption shifted from 2.36~3.2 to 3.26~3.99 THz continuously via changing the chemical potential of graphene.  相似文献   

9.
Plasmonics - Graphene-based photoconductive antenna structures for optically excited terahertz (THz) emission is reported. Initially, a dipole antenna is designed using plasmonic graphene material...  相似文献   

10.
A tunable wavelength filter based on plasmonic metal?Cdielectric?Cmetal waveguide with optofluidics pump system has been proposed and numerically investigated. The finite difference time domain method with perfectly matched layer-absorbing boundary condition is adopted to simulate and study their properties. An analytical solution to the resonant condition of the structure is derived by means of the cavity theory. It is found that the resonant wavelength of the filter is easily tuned in a broadband by manipulating the fluid filled in the cavity. Both analytical and simulative results reveal that the resonant wavelengths are proportional to the volume and refractive index of liquid in the cavity and are related to the structure of the filter. The resonant wavelengths of this structure can be changed from 1,106 to around 1,800?nm in this paper. The waveguide filter may become a choice for the design of devices in highly integrated optical circuits.  相似文献   

11.
We present high-quality (high-Q) Fano resonances in all-dielectric metasurfaces consisting of a periodic array of air holes on silicon (Si) film, deposited on the top of quartz substrate. With the control of the radius difference Δr and center distance Δd between the air holes, two asymmetric all-dielectric metasurfaces are proposed to achieve extremely high-Q Fano resonances. Numerical method with finite difference time domain and equivalent circuit model is employed to analyse the excitation mechanism of the sharp Fano resonances. It is shown that the high-Q Fano resonances come from the interference of two Fabry-Perot resonances, resulting in an extremely narrow window. Moreover, we also demonstrate that the high-Q Fano resonances can also be realized as electromagnetic wave is obliquely incident on the symmetric all-dielectric metasurface. Finally, we show the high-Q Fano resonances caused by asymmetric configurations can coexist with the Fano resonances in the symmetric configuration induced by oblique incidence. As a result, a tri-band Fano resonance is obtained. It is expected that our results will provide important mechanisms for tuning and switching a wide variety of optical devices such as angular sensors, filters, switches, and modulators.  相似文献   

12.
Owiti  Edgar  Yang  Hanning  Liu  Peng  Ominde  Calvine  Sun  Xiudong 《Plasmonics (Norwell, Mass.)》2018,13(6):2081-2089
Plasmonics - Conventional all-dielectric metasurfaces show remarkable properties including high efficiency and tunability of the optical response. However, extreme narrow bandwidth is a limitation...  相似文献   

13.
The two coplanar graphene strips coupling system supported on substrates is proposed and constructed on a monolayer graphene by spatially varying gate voltages. It is investigated numerically by using the finite-difference time-domain method. Simulation results reveal that despite of no traditional ring, disk, and rectangular geometry resonators used usually in metallic plasmonic filters, this structure based on the edge mode propagation exhibits an original, ultra-narrowband band-stop filtering effect in the mid-infrared region. This filtering effect results from the novel side-coupled resonator formed by the parallel graphene strips. The transmission spectrum is tuned and modified not only by engineering the locations of gate voltages without re-fabricating structures but also via changing substrates. Simulation results are consistent with the theoretical analysis. Our studies hence support the fabrication of ultra-compact planar plasmonic devices in nano-integrated circuits.  相似文献   

14.
A graphene-based metamaterial with tunable electromagnetically induced transparency is numerically studied in this paper. The proposed structure consists of a graphene layer composed of H shape between two cut wires, by breaking symmetry can control EIT-like effects and by increasing the asymmetry in the structure has strong coupling between elements. It is important that the peak frequency of transmission window can be dynamically controlled over a broad frequency range by varying the chemical potential of graphene layer. The results show that high refractive index sensitivity and figure of merit can be achieved in asymmetrical structures which is good for sensing applications. We calculated the group delay and the results show we can control the group velocity by varying the S parameter in asymmetrical structure. The characteristics of our system indicate important potential applications in integrated optical circuits such as optical storage, ultrafast plasmonic switches, high performance filters, and slow-light devices.  相似文献   

15.
In this paper, a surface plasmon polarition filter based on a side-coupled crossbeam square-ring resonator is presented and the transmission characteristics of the filter are analyzed by using the finite difference time domain method. The simulation results indicate that the proposed resonator supports multiple resonant modes, and these resonant modes can be adjusted all together by varying the length and refractive index of the outer square ring or partially adjusted by changing the width and refractive index of the crossbeam. By adding two coupled waveguides to the structure, we further demonstrate that a multiple wavelength download filter can be achieved via different coupled waveguides. The proposed structure has potential applications in plasmonic integrated circuits.  相似文献   

16.
We present a new set of nanostructured composites which can exhibit a phenomenon known as surface plasmon resonance in a broad frequency range from the deep infrared to the terahertz region. The structures are composites of two different kinds of non-overlapping spheres. These spheres are made from a high refractive index nonplasmonic material and a Drude-like plasmonic material. Our results are explained in the context of the extended Maxwell–Garnett theory. The effective permittivity and refractive index of zinc sulfide/Ge and zinc oxide/Ge composites have been calculated over terahertz frequencies.  相似文献   

17.

In this paper, an evolutionary optimization procedure is presented to generate band-pass metasurface-based filters in terahertz regime. As a measure of novelty, pass-band, transition, and out-band characteristics are investigated separately, all of which result in different metasurfaces for filtering applications. The presented approach is defined based on random hill climbing algorithm, regarding the established link between Matlab and HFSS software. A metasurface-based filter with specific properties is considered as the main problem to be solved by the optimization method. Moreover, the fuzzy theory, mean square method, and weighting coefficient procedure are considered to define an efficient fitness function evaluation approach. Also, a step-by-step procedure is used to generate desired structures with a great note of efficiency. The final generated structure has magnificent characteristics including sharp transitions together with transmittance around 0.68 and less than 0.04 at pass-band and out-band regions, respectively. Also, the generated metasurface benefits from wide bandwidth (65%) and great compactness compared to other previous works.

  相似文献   

18.
Liu  Qiong  Liu  Mingwei  Zhan  Shiping  Wu  Lingxi  Xie  Suxia  Chen  Zhaohui  Zhang  Yichen 《Plasmonics (Norwell, Mass.)》2019,14(4):1005-1011

In this paper, a graphene strip is introduced into a metal-insulator-metal (MIM)-integrated square cavity hybrid structure; the transmission spectra are theoretically investigated by the finite different time domain (FDTD) methods. An asymmetric Fano resonance dip that has high figure of merit (FOM) value appears in the transmission band. According to the multimode interference coupled mode theory (MICMT) analytical method, the Fano resonance originates from the coherent coupling between TM10 cavity magnetic mode and graphene plasmonic resonance electric mode. The center wavelength, full width at half maximum (FWHM), and FOM value of the Fano resonance can be tuned dynamically by altering the Fermi level of the graphene. Through breaking the symmetry of the hybrid structure or introducing double graphene strips with different Fermi level into hybrid structure, double Fano resonance are realized. This study can provide some theoretical basis and design reference for designing ultrahigh sensitivity plasmonic sensor.

  相似文献   

19.
Active plasmonic devices are mostly designed at visible frequencies. Here, we propose an active terahertz (THz) plasmonic lens tuned by an external magnetic field. Unlike other tunable devices where the tuning is achieved by changing the plasma frequency of materials, the proposed active lens is tuned by changing the cyclotron frequency through manipulating magnetoplasmons (MPs). We have theoretically investigated the dispersion relation of MPs of a semiconductor?Cinsulator?Csemiconductor structure in the Voigt configuration and systematically designed several lenses realized with a doped semiconductor slab perforated with sub-wavelength slits. It is shown through finite?Cdifference time?Cdomain simulations that THz wave propagating through the designed structure can be focused to a small size spot via the control of MPs. The tuning range of the focal length under the applied magnetic field (up to 1?T) is ??3??, about 50% of the original focal length. Various lenses, including one with two focal spots and a tunable lens for dipole source imaging, are realized for the proposed structure, demonstrating the flexibility of the design approach. The proposed tunable THz plasmonic lenses may find applications in THz science and technology such as THz imaging.  相似文献   

20.

This paper reports the excitation of surface plasmon polaritons (SPPs) and associated plasmonic band gap (PBG) while using TM plane wave interacting with 1D metallic grating on higher refractive index GaP substrate. A simple method is introduced to estimate the PBG which is crucial for many plasmonic devices. The PBG is estimated by measuring the transmission spectra obtained through the plasmonic grating structures when slit width is varied while periodicity and the thickness of the gold (Au) film remained fixed. The PBG is observed for the grating devices whose slit width is less than one third of the periodicity which is caused by the presence of a higher plasmonic mode. The PBG is absent for the grating device whose slit width is slightly less than half and greater than one third of the periodicity. Such grating devices support only a fundamental plasmonic mode because the profile/shape of the slit in the grating device is more like a sinusoidal nature. Furthermore, such grating offers intermediate scattering to the incident light and the SPP as well which in turn couple more incident energy to the SPPs. Far-field modelling results also support the results obtained through experiment.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号