首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forty hypertensive patients were studied to examine the assumption that the angiotensin pressor dose reflects endogenous renin activity. Peripheral renin activity was assayed by the method of Boucher et al.4 Sensitivity to the infusion of synthetic angiotensin II was determined as suggested by Kaplan and Silah.1Sixteen patients with essential hypertension with normal renal angiography required 3.8 ng. angiotensin/kg./min. to raise the diastolic pressure 20 mm. Hg. All but one were sensitive to angiotensin infusion of less than 5 ng./kg./min. Renin activity was normal in all except in one sensitive subject. Angiotensin infusion response and mean renin activity in 13 patients with essential hypertension with abnormal renal angiography were similar to that of the first group. The pressor dose in 11 renovascular hypertensives was 9.8 ng./kg./min. All but three had elevated plasma renin activity.Our results suggest that: (1) the angiotensin infusion test is suitable for differentiating patients with true renovascular hypertension from those with essential hypertension with or without associated renal artery disease; (2) the angiotensin pressor dose correlates with the level of peripheral venous renin activity (p < 0.01).  相似文献   

2.
An investigation of the relationship between nephrotensin and the renin angiotensin system was carred out. Nephrotensin was found in the plasma of rats with renal clip hypertension and with chemically induced kidney damage. There was no demonstrable correlation between presence of nephrotensin and plasma renin activity, and the pressor activity of nephrotensin was not altered by previous immunization of test animals with angiotensin II nor by pretreatment with angiotensin I converting enzyme inhibitor. These results indicate that nephrotensin is different from the components of the renin-angiotensin system.  相似文献   

3.
Seven patients with essential hypertension and seven patients with hypertension associated with renal artery stenosis received captopril (SQ 14225), an inhibitor of angiotensin I converting enzyme. There was a significant reduction in mean blood pressure, from 176/113 +/- 4/3 mm Hg during the control period to 140/90 +/- 5/3 mm Hg during captopril administration. Five patients received captopril alone and nine patients needed hydrochlorothiazide in addition to control their blood pressure. Captopril produced a significant increase in peripheral plasma renin activity. When measured 12 hours after the administration of captopril the angiotensin I converting enzyme activity was found to be similar to that during the control period even though the blood pressure was at or near normal. These findings indicate that although captopril is an effective antihypertensive agent, its action does not depend only on inhibition of plasma angiotensin I converting enzyme activity.  相似文献   

4.
Local renin-angiotensin systems   总被引:6,自引:0,他引:6  
The existence of a local cardiovascular renin-angiotensin system (RAS) is often invoked to explain the long-term beneficial effects of RAS inhibitors in heart failure and hypertension. The implicit assumption is that all components of the RAS are synthesized in situ, so that local angiotensin II formation may occur independently of the circulating RAS. Evidence for this assumption however is lacking. The angiotensin release from isolated perfused rat hearts or hindlimbs depends on the presence of renal renin. When calculating the in vivo angiotensin production at tissue sites in humans and pigs, taking into account the extensive regional angiotensin clearance by infusing radiolabeled angiotensin I or II, it was found that angiotensin production correlated closely with plasma renin activity. Moreover, in pigs the cardiac tissue levels of renin and angiotensin were directly correlated with their respective plasma levels, and both in tissue and plasma the levels were undetectably low after nephrectomy. Similarly, rat vascular renin and angiotensin decrease to low or undetectable levels within 48 h after nephrectomy. Aortic renin has a longer half life than plasma renin, suggesting that renin may be bound by the vessel wall. In support of this assumption, both renin receptors and renin-binding proteins have been described. Like ACE, renin was enriched in a purified membrane fraction prepared from cardiac tissue. Binding of renin to cardiac or vascular membranes may therefore be part of a mechanism by which renin is taken up from plasma. It appears that the concept of a local RAS needs to be reassessed. Local angiotensin formation in heart and vessel wall does occur, but depends, at least under normal circumstances, on the uptake of renal renin from the circulation. Tissues may regulate their local angiotensin concentrations by varying the number of renin receptors and/or renin-binding proteins, the ACE level, the amount of metabolizing enzymes and the angiotensin receptor density.Abbreviations RAS renin-angiotensin system - ANG angiotensin - ACE angiotensin-converting enzyme - PRA plasma renin activity  相似文献   

5.
The converting enzyme inhibitor enalapril, in single daily doses of 10-40 mg, was given to 20 hypertensive patients with renal artery stenosis. The blood pressure fall six hours after the first dose of enalapril was significantly related to the pretreatment plasma concentrations of active renin and angiotensin II and to the concurrent fall in angiotensin II. Blood pressure fell further with continued treatment; the long term fall was not significantly related to pretreatment plasma renin or angiotensin II concentrations. At three months, 24 hours after the last dose of enalapril, blood pressure, plasma angiotensin II, and converting enzyme activity remained low and active renin and angiotensin I high; six hours after dosing, angiotensin II had, however, fallen further. The rise in active renin during long term treatment was proportionally greater than the rise in angiotensin I; this probably reflects the fall in renin substrate that occurs with converting enzyme inhibition. Enalapril alone caused reduction in exchangeable sodium, with distinct increases in serum potassium, creatinine, and urea. Enalapril was well tolerated and controlled hypertension effectively long term; only two of the 20 patients required concomitant diuretic treatment.  相似文献   

6.
《Life sciences》1981,28(21):2329-2336
The effect of intraventricular (IVT) infusion of a subpressor dose (6.25 or 12.5 ng/kg/min) of angiotensin II (AII) on the pressor responses to intravenous (IV) infusion of AII were studied in pentobarbital anesthetized rats. This study was undertaken to determine whether the central iso-renin angiotensin system alters pressor responsiveness to IV infused AII. Pressor responses to IV infusion of AII were potentiated by concurrent IVT infusion of a subpressor dose of AII. IVT pressor doses of AII decreased plasma renin activity, however, IVT subpressor doses of AII did not. These results suggest that the central iso-renin angiotensin system plays an important role in pressor responsiveness to IV AII and that the potentiation of IV AII is not related to decreases in endogenous AII as a result of IVT administered AII.  相似文献   

7.
In the current study, we aimed to determine the cardiovascular effects of arachidonic acid and peripheral mechanisms mediated these effects in normotensive conscious rats. Studies were performed in male Sprague Dawley rats. Arachidonic acid was injected intracerebroventricularly (i.c.v.) at the doses of 75, 150 or 300 microg and it caused dose- and time-dependent increase in mean arterial pressure and decrease in heart rate in normal conditions. Maximal effects were observed 10 min after 150 and 300 microg dose of arachidonic acid and lasted within 30 min. In order to evaluate the role of main peripheral hormonal mechanisms in those cardiovascular effects, plasma adrenaline, noradrenaline, vasopressin levels and renin activity were measured after arachidonic acid (150 microg; i.c.v.) injection. Centrally injected arachidonic acid increased plasma levels of all these hormones and renin activity. Intravenous pretreatments with prazosin (0.5 mg/kg), an alpha1 adrenoceptor antagonist, [beta-mercapto-beta,beta-cyclopentamethylenepropionyl1, O-Me-Tyr2-Arg8]-vasopressin (10 microg/kg), a vasopressin V1 receptor antagonist, or saralasin (250 microg/kg), an angiotensin II receptor antagonist, partially blocked the pressor response to arachidonic acid (150 microg; i.c.v.) while combined administration of these three antagonists completely abolished the effect. Moreover, both individual and combined antagonist pretreatments fully blocked the bradycardic effect of arachidonic acid. In conclusion, our findings show that centrally administered arachidonic acid increases mean arterial pressure and decreases heart rate in normotensive conscious rats and the increases in plasma adrenaline, noradrenaline, vasopressin levels and renin activity appear to mediate the cardiovascular effects of the drug.  相似文献   

8.
The angiotensin I converting enzyme (ACE) inhibitor enalapril (MK-421), at a dose of 1 mg/kg or more by gavage twice daily, effectively inhibited the pressor response to angiotensin I for more than 12 h and less than 24 h. Plasma renin activity (PRA) did not change after 2 or 4 days of treatment at 1 mg/kg twice daily despite effective ACE inhibition, whereas it rose significantly at 10 mg/kg twice daily. Blood pressure fell significantly and heart rate increased in rats treated with 10 mg/kg of enalapril twice daily, a response which was abolished by concomitant angiotensin II infusion. However, infusion of angiotensin II did not prevent the rise in plasma renin. Enalapril treatment did not change urinary immunoreactive prostaglandin E2 (PGE2) excretion and indomethacin did not modify plasma renin activity of enalapril-treated rats. Propranolol significantly reduced the rise in plasma renin in rats receiving enalapril. None of these findings could be explained by changes in the ratio of active and inactive renin. Water diuresis, without natriuresis and with a decrease in potassium urinary excretion, occurred with the higher dose of enalapril. Enalapril did not potentiate the elevation of PRA in two-kidney one-clip Goldblatt hypertensive rats. In conclusion, enalapril produced renin secretion, which was in part beta-adrenergically mediated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
A specific radioimmunoassay for angiotensin II has shown that its normal concentration in arterial blood is 2·4±1·2 (S.D.) mμg./l00 ml.; the venous level is consistently below this value, being usually 50–75% of it. Definite rises in blood angiotensin II levels were found in some patients with hypertension, both essential and secondary to renal disease. Extremely low levels were observed in two anephric women, and in one patient with Conn''s syndrome. This radioimmunoassay offers a valuable alternative to renin bioassay in evaluation of the role of the renal pressor system in clinical disorders associated with hypertension and aldosteronism.  相似文献   

10.
The present experiments were designed to evaluate vascular reactivity to angiotensin II in rats with experimental cirrhosis of the liver (induced with CCl4 and phenobarbital) before ascites appearance. The systemic pressor response to angiotensin II in conscious animals and the contractile effect of angiotensin II in isolated femoral arteries were studied. In addition, the effect of high sodium intake on these parameters was also analyzed. Both renin and aldosterone plasma concentrations were similar in control and cirrhotic rats on the normal or on the high sodium diet. Basal mean arterial pressure was higher in control rats than in cirrhotic rats on the normal sodium (116 +/- 4 vs. 101 +/- 4 mmHg (1 mmHg = 133.3 Pa), p less than 0.05) or on the high sodium diet (118 +/- 7 vs. 98 +/- 6 mmHg). No differences in plasma renin activity or plasma aldosterone were found between control and cirrhotic rats. Upon injection of angiotensin II, control rats show a dose-dependent increase in mean arterial pressure which is higher in high sodium than in normal sodium rats. Cirrhotic rats showed a lower hypertensive response to angiotensin II than their corresponding control rats. In addition, no difference between pressor responses to angiotensin II was observed when normal sodium and high sodium cirrhotic rats were compared. On application of angiotensin II, femoral arteries of control and cirrhotic rats exhibited a dose-dependent contraction. However, maximal contraction was higher in high sodium control rats (145 +/- 12 mg) than in normal sodium control rats (99 +/- 6 mg, p less than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Adrenomedullin and the renin-angiotensin-aldosterone system   总被引:1,自引:0,他引:1  
Despite its positive inotropic effects and its propensity to stimulate the renin system, adrenomedullin (AM) is hypotensive as a result of dramatic reductions in peripheral resistance. Furthermore, it does not appear to increase aldosterone secretion in spite of often vigorous activation of circulating renin. Hence, we postulate that AM may act as a functional antagonist to angiotensin II both in the vasculature and the adrenal glomerulosa. In the series of studies performed in sheep and human (normal and circulatory disorders) reviewed here, we report significant hemodynamic and hormonal actions of AM. These actions include consistent reduction of arterial pressure associated with rises in cardiac output and hence a dramatic reduction in calculated total peripheral resistance (CTPR). AM also consistently attenuates the pressor effects of angiotensin II (but not norepinephrine). Furthermore, AM consistently increases plasma renin activity (PRA) and induces either a reduction in plasma aldosterone, dissociation between aldosterone/PRA ratio, or attenuation of angiotensin II-induced aldosterone secretion. Thus, these results clearly point to a role for AM in pressure and volume homeostasis acting, at least in part, by interaction with the renin-angiotensin-aldosterone system (RAAS).  相似文献   

12.
The human renin infused rat model (HRIRM) was used as an in vivo small-animal model for evaluating the efficacy of a collection of inhibitors of human renin. The intravenous infusion of recombinant human renin (2.4 microg x kg(-1) x min(-1)) in the ganglion-blocked, nephrectomized rat produced a mean blood pressor response of 47+/-3 mm Hg (1 mm Hg = 133.3 Pa), which was reduced by captopril, enalkiren, and losartan in a dose-dependent manner following oral administration, with ED50 values of 0.3+/-0.1, 2.5+/-0.9, and 5.2+/-1.6 mg/kg, respectively. A series of peptidomimetic P2-P3 butanediamide renin inhibitors inhibited purified recombinant human renin in vitro in a concentration-dependent manner, with IC50 values ranging from 0.4 to 20 nM at pH 6.0, with a higher range of IC50 values (0.8-80 nM) observed at pH 7.4. Following i.v. administration of renin inhibitors, the pressor response to infused human renin in the HRIRM was inhibited in a dose-dependent manner, with ED50 values ranging from 4 to 600 microg/kg. The in vivo inhibition of human renin following i.v. administration in the rat correlated significantly better with the in vitro inhibition of human renin at pH 7.4 (r = 0.8) compared with pH 6.0 (r = 0.5). Oral administration of renin inhibitors also resulted in a dose-dependent inhibition of the pressor response to infused human renin, with ED50 values ranging from 0.4 to 6.0 mg/kg and the identification of six renin inhibitors with an oral potency of <1 mg/kg. The ED50 of renin inhibitors for inhibition of angiotensin I formation in vivo was highly correlated (r = 0.9) with the ED50 for inhibition of the pressor response. These results demonstrate the high potency, dose dependence, and availability following oral administration of the butanediamide series of renin inhibitors.  相似文献   

13.
A 37-year-old woman with postoperative hypoparathyroidism had hypertension, and elevated plasma renin activity (PRA) and subsequent hyperaldosteronism during a two-month hypercalcemic period caused by vitamin D and excessive calcium supplements. The hypertension with elevated PRA, however, was resistant to the angiotensin II (AII) analog [Sar1, Ile8] ALL. PRA further increased and plasma aldosterone decreased in response to the [Sar1, Ile8] ALL. When the patient became normocalcemic, normotensive and normoreninemic, calcium gluconate (5 mg calcium/kg/h) was infused for one hour. The calcium infusion reproduced hypercalcemic hypertension mediated by an increase in total peripheral resistance. These observations suggest that the hypertension observed while taking vitamin D and excessive calcium supplements may be caused by a direct effect of calcium on peripheral blood vessels and the renin-angiotensin system may play a negligible role.  相似文献   

14.
Insulin therapy, administered by continuous subcutaneous infusion with osmotic pumps over a 28 day period at doses of 2.5 and 5.0 units/day, resulted in a statistically significant increase in body weight of diabetic rats. The concentration of blood glucose was reduced by 68% to 109 mg/dl blood sugar by the higher dose of insulin and only partial control of diabetes was achieved by the lower dose (185 mg/dl blood sugar, -39%). Blood pressure was normalized by both doses of insulin. Elevated serum angiotensin converting enzyme activity and plasma renin activity, expressed as generated angiotensin I, were unaffected by the lower dose of insulin, but were reduced by 26% and 40%, respectively at the higher dose. These data suggest that elevated serum ACE and plasma renin activity, commonly found in the streptozotocin-diabetic rat, may not be primarily responsible for hypertension in this model.  相似文献   

15.
The effect of prolonged preoperative treatment with spironolactone has been studied in a series of 67 patients with hypertension, aldosterone excess, and low plasma renin. In the series as a whole a highly significant reduction in both systolic and diastolic pressures was achieved, with no evidence of escape from control during therapy lasting several years in some cases. The drug was equally effective in controlling blood pressure in patients with and without adrenocortical adenomata. Occasional unresponsive patients were encountered in both groups; pretreatment blood urea levels in these were significantly higher than in the responsive patients. The hypotensive effect of spironolactone usually predicted the subsequent response to adrenal surgery.Spironolactone in all cases corrected plasma electrolyte abnormalities; significant increases in total exchangeable (or total body) potassium and significant reductions in total exchangeable sodium, total body water, extracellular fluid, and plasma volumes were seen. Plasma urea rose during treatment and there was a slight fall in mean body weight. Significant increases in peripheral venous plasma renin and angiotensin II concentrations occurred during treatment.In two patients no increase in aldosterone secretion rate was found during treatment, although plasma aldosterone rose in three of four subjects studied.Severe side effects were rare; in only two of the 67 patients did the drug have to be stopped.In addition to its routine preoperative use, spironolactone can now be advised as long-term therapy in selected patients.  相似文献   

16.
To examine the effects of acute stimulation on the peripheral and central renin-angiotensin system, simultaneous sampling of blood and cerebrospinal fluid (CSF) for measurements of plasma renin activity (PRA), plasma angiotensin I-immunoreactivity (PAng I-ir), plasma angiotensin II-immunoreactivity (PAng II-ir), plasma angiotensinogen and cerebrospinal fluid angiotensin II-ir (CSF Ang II-ir) and CSF angiotensinogen was carried out following intravenous injection of furosemide (5 mg/kg) in conscious dogs. Administration of furosemide induced marked increases in PRA, Ang I-ir, PAng II-ir and CSF Ang II-ir, however, neither plasma nor CSF angiotensinogen was changed. Furthermore, a relatively large dose (20 mg/kg/min) of intravenously infused synthetic Ang II for 20 min produced a five-fold increase in PAng II-ir compared with no significant increase in CSF Ang II-ir. In spite of significant suppression of PRA and PAng I-ir, there were no significant changes in either plasma or CSF angiotensinogen. These results primarily suggest that the peripheral and the brain renin-angiotensin systems may be linked and that acute changes in the peripheral renin-angiotensin system do not alter either plasma or CSF angiotensinogen.  相似文献   

17.
Reduced uterine perfusion initiated in late gestation in the rat results in intrauterine growth restriction (IUGR) and development of hypertension by 4 wk of age. We hypothesize that the renin angiotensin system (RAS), a regulatory system important in the long-term control of blood pressure, may be programmed by placental insufficiency and may contribute to the etiology of IUGR hypertension. We previously reported that RAS blockade abolished hypertension in adult IUGR offspring; however, the mechanisms responsible for the early phase of hypertension are unresolved. Therefore, the purpose of this study was to examine RAS involvement in early programmed hypertension and to determine whether temporal changes in RAS expression are observed in IUGR offspring. Renal renin and angiotensinogen mRNA expression were significantly decreased at birth (80 and 60%, respectively); plasma and renal RAS did not differ in conjunction with hypertension (mean increase of 14 mmHg) in young IUGR offspring; however, hypertension (mean increase of 22 mmHg) in adult IUGR offspring was associated with marked increases in renal angiotensin-converting enzyme (ACE) activity (122%) and renal renin and angiotensinogen mRNA (7-fold and 7.4-fold, respectively), but no change in renal ANG II or angiotensin type 1 receptor. ACE inhibition (enalapril, 10 mg x kg(-1) x day(-1), administered from 2 to 4 wk of age) abolished hypertension in IUGR at 4 wk of age (decrease of 15 mmHg, respectively) with no significant depressor effect in control offspring. Therefore, temporal alterations in renal RAS are observed in IUGR offspring and may play a key role in the etiology of IUGR hypertension.  相似文献   

18.
Plasma renin activity (PRA), plasma renin concentration (PRC), inactive renin concentration (IRC) and total renin concentration (TRC) were measured in 31 normal controls and in 8 patients with hyperthyroidism. TRC was determined as angiotensin I generated with sheep renin substrate after an acid activation of plasma. The angiotensin I of non-acidified plasma was expressed as PRC. IRC was calculated as TRC minus PRC. The mean values for PRA, PRC, IRC and TRC were significantly (P less than 0.05 to P less than 0.01) higher in the hyperthyroid patients than in the normal or euthyroid controls. The administration of a beta 1-adrenergic blocker, metoprolol (120 mg/day for 14 days), produced a significant (P less than 0.05 to P less than 0.01) fall in levels of T4, PRA and TRC, and reduced the active renin ratio calculated from PRC/TRC significantly (P less than 0.025), as compared to the pretreatment values. Our observations support the idea that the higher PRA in hyperthyroidism is due to an increased secretion of renin. Furthermore, the results may indicate that the conversion of inactive to active renin is accelerated in hyperthyroidism, possibly by an increased sympathetic activity.  相似文献   

19.
A role for arginine vasopressin has been implicated in the compensatory control of arterial blood pressure in several animal models with reported increases in plasma levels of arginine vasopressin. A threefold elevation in plasma vasopressin has been reported in conscious dogs following constriction of the inferior vena cava. In the present study, infusion of the arginine vasopressin antagonist [1-(beta-mercapto-beta,beta-cyclopentamethylenepropionic acid), 2-O-methyltyrosine] Arg8-vasopressin into conscious dogs with chronic caval constriction did not decrease mean arterial blood pressure. However, the dose of infused antagonist completely blocked the pressor response to 2 micrograms of exogenous vasopressin. Also the antagonist produced no effect on heart rate, plasma renin activity, or urinary volume and electrolyte excretions. A slight, transient increase (P less than or equal to 0.05) was observed in creatinine clearance and in PAH clearance following antagonist infusion, suggesting a possible decrease in renal vascular resistance. These data suggest that the direct vasoconstrictor actions of vasopressin contribute minimally, if at all, to blood pressure maintenance following chronic caval constriction. Alternatively, blockade of endogenous vasopressin receptors at the level of peripheral arterioles may have resulted in no depressor response due to a masking of this response by other compensatory hormonal and neural pressor systems.  相似文献   

20.
In order to study the vascular and adrenal renin angiotensin system in the chronic phase (4 months after clipping) of 'two-kidney, one-clip' hypertension in rats, systolic blood pressure, plasma renin activity, and tissue renin-like activity in both aorta and adrenal have been measured. Renin activity in adrenal gland was studied in both the zona glomerulosa (GLO) and the remainder of the gland. Results showed an increase in vascular renin activity in chronic hypertensive rats. Moreover it was found that GLO of hypertensive rats presented a significant increase in renin-like activity compared with controls (349.43 +/- 43.86 versus 167 +/- 34.25 ng AI/g/20 h, p less than 0.01) and the fasciculata-reticular-medullar (FRM) portion also showed greater renin activity (345.16 +/- 64.36 versus 57.90 +/- 4.83 ng AI/g/20 h, p less than 0.01). The higher levels of vascular and FRM renin-like activity in chronic renal hypertension are probably a consequence of plasma renin increase. This hypothesis is supported by the fact that bilateral nephrectomy in normal rats induces a significant decrease in plasma renin activity and both aortic and FRM renin-like activity. On the other hand the GLO renin-like activity could depend on both plasma renin and local synthesis since bilateral nephrectomy induces an increase in the renin-like activity in this tissue. These data support the idea that aortic and FRM renin are, at least in part, due to plasma renin uptake and GLO renin is an autonomic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号