首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The conditions under which the localized surface plasmon resonance (LSPR) model can be applied to the calculation of surface-enhanced Raman scattering (SERS) enhancement factors have been questioned because the chemical effect presents simultaneously with LSPR effect, resulting in calculations that are not always consistent with the measured data. The SERS spectra of crystal violet (CV) molecules on single, dimer, trimer, and aggregates of silver microparticles surface-modified with nanostructures (MSMN) were obtained. It is found that the chemical effect is determined by the chemical adsorption behavior of CV molecules on single particle. As more particles are introduced as amplifiers, to assemble dimer, trimer, and aggregates, no new SERS signals related to the chemical effect can be observed, except for the further enhancement to the original signals. The further enhancement is attributed to the LSPR effect from the electromagnetic coupling with introduced particles. This is also demonstrated by dark field scattering. The LSPR theoretical values of single, dimer, trimer, and aggregates of MSMNs should fit the measured enhancement factor (G LSPR) after correcting the SERS enhancement factor (G SERS) with the chemical enhancement factor on the single particle (G Chem-Sgl), i.e., G LSPR?=?G SERS/G Chem-Sgl. Tip-enhanced Raman spectroscopy with a gold nanoparticle further implies that this could be extended to nanoparticle systems. This work provides an effective and simple route, whereby only the chemical effect from a single particle needs to be considered when studying the fit between the LSPR model and the measured LSPR enhancement factor.  相似文献   

2.
In this work, we have demonstrated that the exquisite optical properties based on localized surface plasmon resonance (LSPR) of Au2S/AuAgS-coated gold nanorods (Au2S/AuAgS-coated GNRs) can be utilized to develop a simple and sensitive biosensor, and goat anti-human IgG can be detected by the human IgG probe as low as 0.2 nM. Moreover, we introduce an integrated LSPR biosensor constructed by integrating Au2S/AuAgS-coated GNRs immobilized on glass slide and isolated Au2S/AuAgS-coated GNRs in the form of liquid. The detection of target binding was performed via direct spectral changes induced by changes of refractive index in the vicinity of individual particles. The integrated LSPR optical biosensor is label-free, cost-effective, and easy to fabricate and requires only a visible/near-infrared spectrometer for detection purposes. Additionally, the investigation on the mutual influence of the two types of nanorods in the integrated LSPR biosensor was performed. The results of separate experiments indicate that the nanorods in the form of isolate or in integrated exhibit a similar behavior.  相似文献   

3.
The sensitivity of the wavelength position of localized surface plasmon resonance (LSPR) in metal nanostructures to local changes in the refractive index has been widely used for label-free detection strategies. Tuning the optical properties of the nanostructures from the visible to the infrared region is expected to have a drastic effect on the refractive index sensitivity. Here, we theoretically investigate the optical response of a newly designed plasmonic interface to changes in the bulk refractive index by the finite difference time domain method. It consists of a structured interface, where the planar interface is superposed with dielectric pillars 30 nm in height and 125 nm in length with a separation distance of 15 nm. The pillars are covered with U-shaped gold nanostructures of 50 nm in height, 125 nm in length, and 5 nm of gold base thickness. The whole structure is finally covered with a 5-nm thick dielectric layer of n 2?=?2.63. This plasmonic structure shows bulk refractive index sensitivities up to 1750 nm/RIU (RIU : refractive index unit) in the near infrared (λ?=?2621 nm). The enhanced sensitivity is a consequence of the extremely enhanced electrical field between the gold nanopillars of the plasmonic interface.  相似文献   

4.

Plasmonic nanoparticles (NPs) like silver (Ag) strongly absorb the incident light and produce enhanced localized electric field at the localized surface plasmon resonance (LSPR) frequency. Enormous theoretical and experimental research has focused on the plasmonic properties of the metallic nanoparticles with sizes greater than 10 nm. However, such studies on smaller sized NPs in the size range of 3 to 10 nm (quantum-sized regime) are sparse. In this size regime, the conduction band of the metal particles discretizes, thus altering plasmon properties of the NPs from classical to the quantum regime. In this study, plasmonic properties of the spherical Ag NPs in size range of 3 to 20 nm were investigated using both quantum and classical modeling to understand the importance of invoking quantum regime to accurately describing their properties in this size regime. Theoretical calculations using standard Mie theory were carried out to monitor the LSPR peak shift and electric field enhancement as a function of the size of the bare plasmonic nanoparticle and the refractive index (RI) of the surrounding medium. Comparisons were made with and without invoking quantum regime. Also, the optical properties of metallic NPs conjugated with a chemical ligand using multi-layered Mie theory were studied, and interesting trends were observed.

  相似文献   

5.

Gold nanoring array surfaces that exhibit strong localized surface plasmon resonances (LSPR) at near infrared (NIR) wavelengths from 1.1 to 1.6 μm were used as highly sensitive real-time refractive index biosensors. Arrays of gold nanorings with tunable diameter, width, and spacing were created by the nanoscale electrodeposition of gold nanorings onto lithographically patterned nanohole array conductive surfaces over large areas (square centimeters). The bulk refractive index sensitivity of the gold nanoring arrays was determined to be up to 3,780 cm−1/refractive index unit by monitoring shifts in the LSPR peak by FT-NIR transmittance spectroscopy measurements. As a first application, the surface polymerization reaction of dopamine to form polydopamine thin films on the nanoring sensor surface from aqueous solution was monitored with the real-time LSPR peak shift measurements. To demonstrate the utility of the gold nanoring arrays for LSPR biosensing, the hybridization adsorption of DNA-functionalized gold nanoparticles onto complementary DNA-functionalized gold nanoring arrays was monitored. The adsorption of DNA-modified gold nanoparticles onto nanoring arrays modified with mixed DNA monolayers that contained only 0.5 % complementary DNA was also detected; this relative surface coverage corresponds to the detection of DNA by hybridization adsorption from a 50 pM solution.

  相似文献   

6.
A localized surface plasmon resonance (LSPR) sensor surface was fabricated by the deposition of gold nanorods on a glass substrate and subsequent immobilization of the DNA aptamer, which specifically bind to thrombin. This LSPR aptamer sensor showed a response of 6‐nm λmax shift for protein binding with the detection limit of at least 10 pM, indicating one of the highest sensitivities achieved for thrombin detection by optical extinction LSPR. We also tested the LSPR sensor fabricated using gold bipyramid, which showed higher refractive index sensitivity than the gold nanorods, but the overall response of gold bipyramid sensor appears to be 25% less than that of the gold nanorod substrate, despite the approximately twofold higher refractive index sensitivity. XPS analysis showed that this is due to the low surface density of aptamers on the gold bipyramid compared with gold nanorods. The low surface density of the aptamers on the gold bipyramid surface may be due to the effect of shape of the nanostructure on the kinetics of aptamer monolayer formation. The small size of aptamers relative to other bioreceptors is the key to achieving high sensitivity by biosensors on the basis of LSPR, demonstrated here for protein binding. The generality of aptamer sensors for protein detection using gold nanorod and gold nanobipyramid substrates is anticipated to have a large impact in the important development of sensors toward biomarkers, environmental toxins, and warfare agents. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.

We numerically study plasmonic solar cells in which a square periodic array of core–shell Ag@SiO2 nanospheres (NSs) are placed on top of the indium tin oxide (ITO) layer using a 3D finite-difference time-domain (FDTD) method. We investigate the influence of various parameters such as the periodicity of the array, the Ag core diameter, the active layer thickness, the shell thickness, and the refractive index of the shell materials on the optical performance of the organic solar cells (OSC). Our results show that the optimal periodicity of the array of NSs is dependent on the size of Ag core NSs in order to maximize optical absorption in the active layer. A very thin active layer (<70 nm) and an ultrathin (<5 nm) SiO2 shell are needed in order to obtain the highest optical absorption enhancement. Strong electric field localization is observed around the plasmonic core–shell nanoparticles as a result of localized surface plasmon resonance (LSPR) excited by Ag NSs with and without silica shell. Embedding 50 nm Ag NSs with 1-nm-thick SiO2 shell thickness on top of ITO leads to an enhanced intrinsic optical absorption in a 40-nm-thick poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) active layer by 24.7% relative to that without the NSs. The use of 1-nm-thick ZnO shell instead of SiO2 leads to an enhanced intrinsic absorption in a 40-nm-thick P3HT:PCBM active layer by 27%.

  相似文献   

8.
Zhang  RuXin  Du  ChaoLing  Sun  Lu  Rong  WangXu  Li  Xiang  Lei  MingXin  Shi  DaNing 《Plasmonics (Norwell, Mass.)》2022,17(3):965-971

In this paper, individual split Au square nanorings were numerically proposed as novel substrates for surface-enhanced Raman and hyper-Raman scattering (SERS and SEHRS) simultaneously. The peak wavelengths of their localized surface plasmon resonance (LSPR) fall in the near-infrared and visible light regions, respectively, which are able to be finely tuned to match well with the wavelengths of the incident laser and hyper-Raman scattered light beams. Their SEHRS and SERS performances along with electromagnetic (EM) field distributions are numerically investigated by finite element method. With the enhancement of near electric-fields generated by LSPRs, the maximum SEHRS and SERS enhancement factors are demonstrated to reach 1.22?×?1012 and 108, respectively. Meanwhile, the corresponding SERS-based refractive index (RI) sensitivity factor reaches as high as 258 nm/RIU and 893 nm/RIU, at visible and near-infrared wavelengths, respectively. The proposed structure holds great promise both for developing SEHRS- and SERS-based RI sensing substrates, which shows strong potential applications in nanosensing and enhanced Raman scattering.

  相似文献   

9.
Scattering efficiencies of Ag–Cu, Ag–Au, and Au–Cu alloy nanoparticles are studied based on Mie theory for their possible applications in solar cells. The effect of size (radius), surrounding medium, and alloy composition on the scattering efficiency at the localized surface plasmon resonance (LSPR) wavelengths has been reported. In the alloy nanoparticles of Ag1?x Cu x , Au1?x Cu x and Ag1?x Au x ; the scattering efficiency gets red-shifted with increase in x. Moreover, the scattering efficiency enhancement can be tuned and controlled with both the alloy composition and the surrounding medium refractive index. A linear relationship which is in good agreement to the experimental observations between the scattering efficiency and metal composition in the alloys are found. The effect of nanoparticle size and LSPR wavelength (scattering peak position) on the full width half maxima and scattering efficiency has also been studied. Comparison of Au–Ag, Au–Cu, and Ag–Cu alloy nanoparticles with 50-nm radii shows the optical response of Ag–Cu alloy nanoparticle with wide bandwidth in the visible region of the electromagnetic spectrum making them suitable for plasmonic solar cells. Further, the comparison of Ag–Cu alloy and core@shell nanoparticles of similar size and surrounding medium shows that Cu@Ag nanoparticle exhibits high scattering efficiency with nearly the same bandwidth.  相似文献   

10.
Du  ChaoLing  Peng  Sheng  Yang  WanChun  Shi  DaNing 《Plasmonics (Norwell, Mass.)》2018,13(5):1729-1734

Plasmonic coupling effects (between neighboring components) are able to red shift the peak wavelengths of dipolar-localized surface plasmon resonances (LSPRs) and increase the corresponding refractive index sensitivity of nanoparticle sensors. The coupling effects on plane Au-nanosphere-cluster (including nanosphere dimer, trimer, pentamer, and heptamer) sensors are numerically investigated by finite element method (FEM). We found that the coupling does not violate the quadratic response characteristics of LSPR peak wavelengths, hence the linear responses of the sensitivities to the bulk refractive index of Au cluster sensors. Yet, for nanosphere dimer sensors, they contribute to the exponential decrease of sensitivities with their gap distances, which follow the universal plasmon ruler behavior. The amplitude of their fractional sensitivity shift is revealed to be bulk refractive index independent, which is different from that of their fractional LSPR peak wavelength shift. These are analytically explained well in terms of an effective nanoparticle model. The present work also gives an upper sensitivity limit for Au nanosphere dimer systems and provides a method to estimate the interparticle separation between the two component nanospheres of the dimer.

  相似文献   

11.

A self-referencing plasmonic platform is proposed and analyzed. By introducing a thin gold layer below a periodic two-dimensional nano-grating, the structure supports multiple modes including localized surface plasmon resonance (LSPR), surface plasmon resonance (SPR), and Fabry-Perot resonances. These modes get coupled to each other creating multiple Fano resonances. A coupled mode between the LSPR and SPR responses is spatially separated from the sensor surface and is not sensitive to refractive index changes in the surrounding materials or surface attachments. This mode can be used for self-referencing the measurements. In contrast, the LSPR dominant mode shifts in wavelength when the refractive index of the surrounding medium is changed. The proposed structure is easy to fabricate using conventional lithography and electron beam deposition methods. A bulk sensitivity of 429 nm/RIU is achieved. The sensor also has the ability to detect nanometer thick surface attachments on the top of the grating.

  相似文献   

12.
Surface plasmonic-enhanced light trapping from metal nanoparticles is a promising way of increasing the light absorption in the active silicon layer and, therefore, the photocurrent of the silicon solar cells. In this paper, we applied silver nanoparticles on the rear side of polycrystalline silicon thin film solar cell and systematically studied the dielectric environment effect on the absorption and short-circuit current density (Jsc) of the device. Three different dielectric layers, magnesium fluoride (MgF2, n?=?1.4), tantalum pentoxide (Ta2O5, n?=?2.2), and titanium dioxide (TiO2, n?=?2.6), were investigated. Experimentally, we found that higher refractive index dielectric coatings results in a redshift of the main plasmonic extinction peak and higher modes were excited within the spectral region that is of interest in our thin film solar cell application. The optical characterization shows that nanoparticles coated with highest refractive index dielectric TiO2 provides highest absorption enhancement 75.6 %; however, from the external quantum efficiency characterization, highest short-circuit current density Jsc enhancement of 45.8 % was achieved by coating the nanoparticles with lower refractive index MgF2. We also further optimize the thickness of MgF2 and a final 50.2 % Jsc enhancement was achieved with a 210-nm MgF2 coating and a back reflector.  相似文献   

13.
Gold–silver core–shell triangular nanoprisms (Au/AgTNPs) were grown onto transparent indium tin oxide (ITO) thin film-coated glass substrate through a seed-mediated growth method without using peculiar binder molecules. The resulting Au/AgTNPs were characterized by scanning electron microscopy, atomic force microscopy, X-ray diffraction, UV–vis spectroscopy, and cyclic voltammograms. The peak of dipolar plasmonic resonance was located at near infrared region of ~700 nm, which showed the refractive index (RI) sensitivity of 248 nm/RIU. Moreover, thin gold shells were electrodeposited onto the surface of Au/AgTNPs in order to stabilize nanoparticles. Compared with the Au/AgTNPs, this peak of localized surface plasmon resonance (LSPR) was a little red-shift and decreased slightly in intensity. The refractive index sensitivity was estimated to be 287 nm/RIU, which showed high sensitivity as a LSPR sensing platform. Those triangular nanoprisms deposited on the ITO substrate could be further functionalized to fabricate LSPR biosensors. Results of this research show a possibility of improving LSPR sensor by using core–shell nanostructures.  相似文献   

14.

Platinum diselenide (PtSe2), an emerging two-dimensional transition metal dichalcogenide, exhibits thickness-dependent refractive index, and hence, intriguing optical properties. Here, we employ it as a plasmonic sensing substrate to achieve significant enhancement in Goos-Hänchen shift sensitivity. Through systematic optimization of all parameters, four optimum sensing configurations have been achieved at different wavelengths ranging from visible to near-infrared region, where the Goos-Hänchen shift sensitivity receives four times enhancement in comparison with the conventional bare gold sensing substrate. There is a linear range of Goos-Hänchen shift with the tiny change of refractive index for each optimal configuration. The detection limit of the refractive index change can be as low as 5 × 10−7 RIU which is estimated to be lower by 2 orders of magnitude, and the corresponding sensitivity of biomolecules has a 1000-fold increment compared with that of bare gold-based sensors.

  相似文献   

15.
Gold nanoparticles (GNP) have been used in a variety of localized surface plasmon resonance (LSPR)-based optical sensor systems and in a variety of forms, such as colloidal suspensions, immobilized GNP on flat surfaces or optical fibres. A key parameter affecting the sensitivity of these systems is the effective depth of penetration of the surface plasmons. This study aims to determine the plasmon penetration depth in the case of an immobilized GNP-based LSPR optical biosensor. The optical biosensor used for experimentation is a U-bend fibre optic probe of 200-μm core diameter and 1.5-mm bend diameter on which GNP is immobilized. Formation of multilayered nanostructures on the immobilized GNP was used to investigate the field of the localized surface plasmons. Two multilayered nanostructures were explored in this study, viz. a polyelectrolyte multilayer formed by layer-by-layer (LBL) deposition of oppositely charged polyelectrolytes and an immunoglobulin G (IgG) multilayer formed through sequential immobilization of two mutually specific antibodies. Measurement of LSPR absorbance change with deposition of each analyte layer was used to determine the plasmon penetration depth (d P) of the LSPR biosensor. Probing the plasmon field with an IgG multilayer gave rise to at least twofold higher d P compared to d P obtained from the polyelectrolyte multilayer. The effect of GNP size was also studied, and GNP of three diameters, viz. 18, 36 and 45 nm, were used. The 36-nm-diameter GNP exhibited the highest d P. The outcomes of this study may provide leads for optimization of LSPR-based sensors for various biosensing applications.  相似文献   

16.
The localized surface plasmon resonance (LSPR) spectrum of noble metal nanoparticles is studied by quasi-static approximation. Taking the sensitivity of LSPR shape to the size and shape of nanoparticle along with surrounding refractive index, parameters like refractive index sensitivity and sensing figure of merit have been determined. In the present analysis from the sensing relevant parameters, it is concluded that Ag represents a better sensing behavior than Au and Cu over the entire visible to infrared regime of EM spectrum.  相似文献   

17.
Tunable properties of localized surface plasmon resonances (LSPR) of gold-dielectric multilayered nanoshells are studied by quasi-static theory and plasmon hybridization theory. Multilayered nanoshells with the gold core and nanoshell separated by a spacer layer exhibit strong coupling between the core and nanoshell plasmon resonance modes. It is found that the absorption spectra characteristics of LSPR are sensitive to multiple parameters including the surrounding medium refractive index, the dielectric constant of spacer layer, the radius of inner core gold sphere, outer shell layer thickness, and their coupling strength. The results show that LSPR is mainly influenced by the ratio of spacer layer dielectric constant ε 2 to surrounding medium dielectric constant ε 4. Absorption spectrum of \(\left |\omega _{-}^{+}\right \rangle \) mode is red-shifted with increasing core radius when ε 2 > ε 4. It is surprising to find that LSPR is blue-shifted with increasing core radius when ε 2 < ε 4, and no shift when ε 2 = ε 4. These interesting contrary shifts of \(\left |\omega _{-}^{+}\right \rangle \) mode with different ratios ε 2/ε 4 are well analysed with plasmon hybridization theory and the distributions of induced charges interaction between the inner core and outer shell. In addition, for the sake of clarity, the distributions of electric filed intensity at their plasmon resonance wavelengths are also calculated. This work may provide an alternative approach to analyse property of the core-shell nanoshell particles based on plasmon hybridization theory and the induced charge interaction.  相似文献   

18.
Zhai  Jinan  Li  Jiayu 《Plasmonics (Norwell, Mass.)》2019,14(3):647-652

The localized surface plasmon resonance (LSPR) spectroscopy of Ag nanoparticles (NPs) is sensitive to the changes of the surrounding medium, which enables the NPs to serve as plasmonic nanosensors. In this paper, the refractive index (RI) sensitivity and figure of merit (FOM) of individual NPs and nanoarrays are investigated by employing the finite difference time domain (FDTD) method. The influence of shape and size are analyzed for individual NPs, and the influence of particle spacing is analyzed for nanoarrays. It is found that the NP with shorter size in incident direction or longer size in polarization direction exhibits better sensing performance. And when the aeff is between 20 and 60 nm, the larger NP exhibits higher sensitivity but lower FOM. The results of nanoarrays show that when particle spacing is large, the sensitivity of nanoarrays is large, and the sensitivity of nanoarrays decreases first and then increases as particle spacing decreases. In addition, the FOM of nanoarrays exhibits the similar trend.

  相似文献   

19.
We report a strategy to improve two types of the figure of merit (FOM and FOM*) of the refractive index sensitivity of a gold nanobar array localized surface plasmon resonance (LSPR) biosensor by simply placing it close to a thin gold film with a dielectric spacer. The thickness of the dielectric spacer determines the plasmon coupling strength between the gold nanobars and the gold film and consequently the FOM and FOM* of the biosensor. From our calculations, when the spacer thickness is 20 nm, the FOM and FOM* reach maximal (4.68 and 310, respectively) and the sensitivity remains at a high value of 600 nm per refractive index unit. This biosensor scheme is practically realizable, and this strategy is also potentially applicable to the LSPR biosensors with other geometries.  相似文献   

20.

Metal-dielectric-graphene hybrid heterostructures based on oxides Al2O3, HfO2, and ZrO2 as well as on complementary metal–oxide–semiconductor compatible dielectric Si3N4 covering plasmonic metals Cu and Ag have been fabricated and studied. We show that the characteristics of these heterostructures are important for surface plasmon resonance biosensing (such as minimum reflectivity, sharp phase changes, resonance full width at half minimum and resonance sensitivity to refractive index unit (RIU) changes) can be significantly improved by adding dielectric/graphene layers. We demonstrate maximum plasmon resonance spectral sensitivity of more than 30,000 nm/RIU for Cu/Al2O3 (ZrO2, Si3N4), Ag/Si3N4 bilayers and Cu/dielectric/graphene three-layers for near-infrared wavelengths. The sensitivities of the fabricated heterostructures were?~?5–8 times higher than those of bare Cu or Ag thin films. We also found that the width of the plasmon resonance reflectivity curves can be reduced by adding dielectric/graphene layers. An unexpected blueshift of the plasmon resonance spectral position was observed after covering noble metals with high-index dielectric/graphene heterostructures. We suggest that the observed blueshift and a large enhancement of surface plasmon resonance sensitivity in metal-dielectric-graphene hybrid heterostructures are produced by stationary surface dipoles which generate a strong electric field concentrated at the very thin top dielectric/graphene layer.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号